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A new impulsive noise (IN) elimination filter, entitled adaptive neuro-fuzzy inference system-based IN removal filter (Anfis-F),
which shows high performance at the restoration of images distorted by IN, is proposed in this paper. The Anfis-F comprises three
main steps: finding the pixels that are suspected to be corrupted, the Delaunay triangulation, and finally, making estimation for
intensity values of corrupted pixels within each of the Delaunay triangles. Extensive simulation results show that the proposed
filter achieves better performance than other filters mentioned in this paper in the cases of being effective in noise suppression and
detail preservation, especially when the noise density is very high.
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1. INTRODUCTION

Image enhancement and noise filtering are the most com-
mon tasks in image processing. Images are affected by im-
pulsive noise (IN) during image acquisition, transmission, or
storage; therefore noise-free images are rare in the real world.
Noise suppression of distorted images requires a balance be-
tween the gained improvement and the introduced degrada-
tion by a particular filter. Preservation of image details while
eliminating IN is usually not possible during the noise sup-
pression process, but both of them are crucial for the subse-
quent processing stages.

It has been approved that the standard median filter
(SMF) [1], as well as its modifications and generalizations,
[2, 3, 4, 5, 6, 7, 8], offers satisfying performance in suppres-
sion of IN. However, these approaches are implemented in-
variantly across the image, thus they tend to alter the pix-
els undisturbed by IN and increase the edge jitters when the
noise ratio is high. Consequently, achieving a good perfor-
mance in the suppression of IN is usually at the expense
of blurred and distorted image features. One way to avoid
this problem is to include a decision-making component
in the filtering structure based on very simple, but effec-
tive, impulse detection (ID) mechanism. The function of the
ID mechanism is to check each pixel to detect whether it
is distorted or not. Then, the nonlinear filtering scheme is
achieved for the distorted pixels, while the noise-free pix-
els are left unaltered in order to avoid excessive distor-
tion. Recently, such ID-based median filtering methods with
thresholding operations have been realized by using differ-

ent modifications of impulse detectors where the output is
switched between the identities or median-based filtering
scheme [2, 4, 6, 7].

TheAnfis-F, proposed in this paper, differs from the other
median-based filters by performing the restoration of de-
graded images with high performance according to both sub-
jective measures (e.g., visually pleasing) and objective mea-
sures (e.g., mean squared error (MSE)) even if the images
have been highly corrupted by IN.

The theories of the fuzzy set and neural paradigm have
been greatly used in the field of image processing since they
were proposed. It is apparent that a combination of the fuzzy
and neural paradigms can play a very important role in the
processing of signals because the well understandable struc-
ture of fuzzy knowledge can be discovered from a set of train-
ing data. The neuro-fuzzy approach is in fact very effective
for system modeling and information processing because of
its ability to approximate complex nonlinear functions and
this paper proposes a new filter based on adaptive neuro-
fuzzy inference system (Anfis) theory. The performance of
the proposed filter is compared with SMF [1], iterative me-
dian filter (IMF) [2], and the recently introduced complex
structured IN removal filters: progressive switching median
filter (PSM) [2], signal-dependent rank order mean filter
(SDROM) [5], two-state recursive signal-dependent rank
order mean filter (SDROMR) [5], impulse rejecting filter
(IRF) [7], nonrecursive adaptive center weighted median fil-
ter (ACWM) [4], recursive adaptive center weighted median
filter (ACWMR) [4], center weighted median filter (CWM)
[6], recursive center weighted median filter (CWMR) [9],
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Figure 1: The Anfis structure used in the proposed method.

selective median filter (SSMF) [10], and Yüksel’s Anfis-based
fuzzy filter (YUKSEL) [11].

The rest of the paper is organized as follows. The details
of the Anfis and finite-element-based soft computing is given
in Section 2. Using Delaunay triangles as finite elements is
given in Section 3. Analyzing impulsive behavior of the pixels
by using lillietest is mentioned in Section 4. The proposed
method is defined in Section 5 and, finally, experiments and
conclusions are presented in Sections 6 and 7, respectively.

2. ANFIS AND FINITE-ELEMENT-BASED
SOFT COMPUTING

In the last few years, soft-computing techniques (artificial
neural networks, fuzzy systems, genetic algorithms, etc.)
have been successfully applied in the area of image pro-
cessing [10, 11, 12, 13, 14, 15, 16]. Soft-computing tech-
niques are in fact very effective for image processing because
of their ability to approximate complex nonlinear functions
[17, 18, 19, 20, 21]. A key advantage of the Anfis is its use
in the representation of image information. Therefore, Anfis
[17, 18] has been used in this paper in order to remove IN
from distorted images.

2.1. Anfis

Neuro-fuzzy systems [17, 18] are hybrids of fuzzy systems
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and neural networks
[23, 24, 25]. The goal of neuro-fuzzy systems is to combine
the learning capability of a neural network with the intuitive
representation of knowledge found in a fuzzy system. This
may be accomplished by designing a network architecture
to mimic a fuzzy system, by incorporating linguistic terms
into the computations performed by the network, by means
of an explanation mechanism for the network, and so forth.
Anfis is the well-known neuro-fuzzy system, which mimics
the operation of a Takagi-Sugeno-Kang (TSK) fuzzy system
[20, 21]. The mathematical details of the Anfis have been
given in [17, 25]. The Anfis network is a five-layered network,
in which the layers are not fully connected. The transfer func-
tion of a neuron is determined according to the layer where
the neuron is.

All the Anfis structures used in this paper (Figure 1) pos-
sess two inputs (x, y) and one output (g). Here, (x, y) and g
denote the spatial positions of the corner nodes and the in-
tensity (gray) values at the corner nodes of the related Delau-
nay triangles [25, 26, 27, 28, 29, 30] (Figure 2), respectively.
Each input of the Anfis structures has 2 different triangular
membership functions and the rule base contains a total of 4
(22) rules, which are as follows:

(i) Rule 1: if x is A1 and y is B1, then f11 = p11x + q11y +
r11,

(ii) Rule 2: if x is A1 and y is B2, then f12 = p12x + q12y +
r12,

(iii) Rule 3: if x is A2 and y is B1, then f21 = p21x + q21y +
r21,

(iv) Rule 4: if x is A2 and y is B2, then f22 = p22x + q22y +
r22,

where p, q, and r denote the consequent parameters [17, 25].
The parameters of membership functions were obtained

for each Delaunay triangle [25, 26, 27, 28, 29, 30] by training
the Anfis structures with 10 epochs. At the training phase of
the fuzzy structures, a combination of least squares and back-
propagation gradient descent methods [17, 25] is used, in or-
der to compute the parameters of the membership functions,
which are used to model given set of inputs (x, y) and single-
output data “g.” The computational detail of Anfis structures
is given below.

Let the membership functions of fuzzy sets Ai and Bj , be
µAi and µBj , respectively, where i = 1, 2 and j = 1, 2.

(i) Layer 1:

µAi(x) = max

(
min

(
x − ai
bi − ai

,
ci − x

ci − bi

)
, 0

)
,

µBj (y) = max

(
min

(
y − aj

bj − aj
,
cj − y

cj − bj

)
, 0

)
,

(1)

where µAi(x) and µBj (y) were chosen as triangular
membership functions [25] with the parameters of a,
b, and c.
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Node3 (x3, y3, g3)
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(d)

Figure 2: The relations between the corrupted image, Delaunay triangulation, and the Anfis structure. (a) The corrupted Lena image at
the noise density of 90% (corrupted pixels have been represented as black for illustration). (b) Delaunay network over the noisy image (the
corner nodes of the Delaunay triangles are uncorrupted pixels of the corrupted image). (c) One of the Delaunay triangles given in detail.
(d) The Anfis structure, which has been used in this paper.

(ii) Layer 2:

wij = µAi(x)µBj (y). (2)

The logical operation and has been used as product
[17, 25] for all the rules.

(iii) Layer 3:

wij =
wij

w11 +w12 +w21 +w22
. (3)

(iv) Layer 4: every node in this layer is a square node with
a linear function [17, 25] (ηi j) as

ηi j = wij fi j = wij
(
pi jx + qi j y + ri j

)
. (4)

(v) Layer 5: the single node in this layer is labeled with
∑
,

which computes the overall output, g, as the summa-
tion of all incoming signals, that is,

g =
2∑
i=1

2∑
j=1

ηi j . (5)

2.2. Finite-element-based soft computing

The proposed method benefits from finite-element comput-
ing [30] in making estimation for gray values of the cor-
rupted pixels. In this paper, Delaunay triangular finite ele-
ments have been used.

Surface fitting is a useful tool for preserving huge amount
of information in the spatial data [26, 27, 28, 29, 30]. An im-
age surface is a representation of the pixel values that are con-
tinuous over image space and image surfaces can be created
to represent any kind of measure of thematic information,
such as topographic elevation, spatial temperature, or spatial
intensity of electromagnetic field [27].

Descriptive surface fitting (DSF) methods are the most
commonly used methods for surface fitting [26, 27, 28, 29,
30]. The DSF methods do not use statistical models and do
not explicitly recognize spatial dependence [26, 27, 28, 29,
30]. Furthermore, error estimates cannot be achieved in DSF
methods and predictions for corrupted pixel values with the
lowest error cannot be produced [27]. Therefore, DSF meth-
ods are really exploratory methods for image surfaces, not
formal predictors. In real-time applications, the DSF meth-
ods are often used for prediction of surfaces, due to their
ease of use and simplicity in computational requirements.
There are many techniques introduced to create DSF surfaces
[26, 27, 28, 29, 30].

In real images, pixels do not scatter randomly. Therefore,
the gray value of a pixel is more related to the neighbor-
ing pixels than distant ones. The restoration of image sur-
face from the data of uncorrupted pixels is based on this ob-
servation, which is a reflection of the spatial dependence of
the uncorrupted pixels in real images. Since TSK fuzzy mod-
els are universal approximators and provide good interpola-
tion and extrapolation characteristics [20, 21], Anfis, which
is based on TSK fuzzymodel, has been preferred in this paper
in order to interpolate the restored values of the corrupted
pixels.

3. USING DELAUNAY TRIANGLES
AS FINITE ELEMENTS

Delaunay triangulation [25, 26, 27, 28, 29, 30] is a fundamen-
tal and well-studied problem in computational geometry and
it is commonly used as finite elements in the literature [30].
In this study, Delaunay triangulation is defined within the
convex hull [25] of the uncorrupted pixels as a set of trian-
gles with the following five properties:
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Figure 3: The relation among the Delaunay triangle, corrupted pix-
els, and uncorrupted pixels.

(i) the triangle vertices are corner nodes, which are mem-
bers of the set of uncorrupted pixels,

(ii) no triangle contains a corner node other than its ver-
tices,

(iii) the interiors of the triangles are pairwise disjointed,
(iv) the union of triangles is the convex hull of the set of

corner nodes,
(v) the interior of the circumcircle of each triangle con-

tains no corner node.

Delaunay triangles have been used in solving some prob-
lems on simulation of the growth of crystals, cartography,
photogrammetry, city planning, computational geometry,
mesh generation for finite elements methods, visualization
of surfaces, and image processing [25, 26, 27, 28, 29, 30]. The
geometric definition of the Delaunay triangulation has been
illustrated in Figure 3.

4. ANALYZING IMPULSIVE BEHAVIOR OF
THE PIXELS BY USING LILLIETEST

Statistical methods are useful tools for analyzing impulsive
behavior of the pixels within the real images [31]. Extensive
simulations exposed that each intensity level within the real
images possesses at least one best-fitted statistical distribu-
tion model. For the study proposed in this paper, 30 statisti-
cal distribution models have been examined and all of them
have been implemented in Matlab [25], in order to find out
the best-fitted distribution statistical model for each of the
intensity levels. The examined distribution models are given
in Figure 4. This statistical analysis has revealed that the well-
known normal distribution model [25, 32, 33, 34] appears
to be the best statistical distribution model for the sample
of intensity data, which are derived from 32× 32 pixel-sized
unoverlapping blocks (bins) as explained below and seen in
Figure 5.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

Figure 4: The probability distribution models of the examined dis-
tributions: (1) logarithmic normal, (2) Poisson, (3) normal, (4)
Pareto, (5) logarithmic normal (continuous), (6) Pearson, (7) T-
student, (8) histogram, (9) triangular, (10) Beta, (11) Rayleigh, (12)
Weibull, (13) exterme value, (14) integer uniform, (15) Gamma,
(16) general, (17) exponential, (18) inverse Gaussian, (19) Beta gen-
eral, (20) cumulative (ascending), (21) Beta subjective, (22) hy-
pergeometric, (23) discrete uniform, (24) cumulative (descending),
(25) discrete, (26) Chi-squared, (27) Pert (beta), (28) geometric,
(29) binomial, and (30) uniform.

The lillietest (Lilliefors test) [25, 33, 34], evaluates the hy-
pothesis that the sample has a normal distribution with un-
specified mean and variance against the alternative hypothe-
sis that the sample does not have a normal distribution. Lil-
lietest is generally more relevant than the commonly used
statistical tests (e.g., Kolmogorov-Semirnov test [25, 32, 33])
because of its computational structure.

The lillietest statistic is computed from the maximum
vertical offset of the empirical cumulative distribution func-
tions (CDFs) [25, 33] of the sample, after conversion to
Z-scores [25, 33], and the standard normal distribution. A
sample is converted to Z-scores by subtracting the sample
mean and dividing by the sample standard deviation, so
that the mean of the Z-score series is 0 and the standard
deviation is 1.000. The empirical CDF of this Z-score se-
ries is computed. The details of the lillietest is given below
[25, 33].

Data

U samples are considered as Xg = {X0,X1,X2, . . . ,XU} for
the intensity levels, g = 0, 1, 2, . . . , 255. The corrupted image
plane is divided into 32×32 pixel-sized unoverlapping blocks
(bins) (as seen in Figure 5), in order to count the number
of the g within each block. Therefore, totally 64 blocks have
been obtained for 256× 256 pixel-sized test images and U =
64. Each element of the Xg corresponds to the numbers of
the g within each of the blocks. The distribution function of
the set Xg is denoted by Q. The sample mean, λ, and sample
standard deviation, σ , are computed and then the sample is
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(a)

(b)

Figure 5: Searching the corrupted pixels for the Mandrill image
which is at the noise density of 30%. (a) The 32 × 32 pixel-sized
blocks (bins) over the corrupted image (the corrupted pixels were
marked as black for illustration). (b) The corrupted image where
the corrupted pixels were derived by using lillietest and weremarked
as black for illustration.

converted to Z-scores as

Zh = Xh − λ

σ
, h = 0, 2, 3, . . . ,U. (6)

Assumption

It is assumed that Xg is a sample set of the observations
Xg = {X0,X1,X2, . . . ,XU}, which are not independent from
another. This assumption is essential for modeling the spatial
uniformity of real images.

Hypotheses
(H0) The distribution function of the Xg is normal distri-

bution with unspecified mean and variance.
(H1) The distribution function of Xg is abnormal.

Test statistics

The test statistics of the lillietest is the maximum vertical dis-
tance between the empirical distribution function of the Z-
score series in (7) and the distribution function of the stan-
dard normal distribution is given as

T = sup
∣∣Q∗ − S

∣∣, (7)
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Figure 6: Test statistics of lillietest for the corrupted Mandrill test
images.

where Q∗ and S denote the CDF of the standard normal
distribution and the empirical CDF of the Z-scores, respec-
tively. Extensive simulations show that the value of the lil-
lietest statistics, T , smaller than 0.10 ± 0.05 corresponds to
abnormally distributed intensity levels in real images.

The test statistics of the lillietest for the Mandrill test
image is illustrated in Figure 6. Abnormally distributed
intensity values were assumed to be corrupted pixels in this
paper and extensive simulations verified this assumption as
seen in the results of the experiments (Tables 1, 2, and 3, and
Figures 7–10).

Decision rule
Reject (H0) at the significance level if T exceeds (1−α), where
α denotes the significance level of the test and α = 0.05 [33].

5. PROPOSEDMETHOD

The proposed filter, Anfis-F, is a finite-element-based filter
and uses Delaunay triangles (as seen in Figures 2 and 3) as fi-
nite elements. The Anfis-F comprises three main steps: find-
ing the pixels that are suspected to be corrupted, Delaunay
triangulation, and making estimation for intensity values of
corrupted pixels. For the implementation of Anfis-F, the dis-
torted image was padded with 5 pixels reflected copy of itself
on the sides in order to cover the whole image with Delaunay
triangulation network. The triangulation phase was achieved
by using the spatial positions of the abnormally distributed
intensity levels. The convex hull and Delaunay triangles were
both obtained over the image after the Delaunay triangula-
tion phase as expressed in Section 3.

The abnormally distributed intensity levels within the
corrupted image were determined by using lillietest, as ex-
plained in Section 4. After the Delaunay triangulation phase,
the Delaunay triangles, which do not consist at least one cor-
rupted pixel, were deleted in order to reduce computational
cost of Anfis-F. Delaunay triangles encompass the most likely
corrupted pixels because the corner nodes of the Delaunay
triangles are centered at uncorrupted pixels.
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Table 1: The restoration results for Lena test image in respect of MSE.

Method
Noise density

10% 20% 30% 40% 50% 60% 70% 80% 90%

Noisy image 1852.70 3767.60 5563.60 7451.50 9268.40 11152.00 13078.00 14769.00 16804.00

Anfis-F 13.47 26.76 49.60 75.36 114.16 154.95 205.15 278.50 385.89

IMF 124.05 140.06 158.84 203.36 261.87 491.57 1402.70 3971.50 10140.00

SMF 87.09 148.82 353.46 958.83 2046.10 3856.60 6769.10 9938.00 14269.00

PSM 54.92 85.76 132.48 272.63 647.30 1938.30 5036.00 9495.10 14862.00

SDROM 60.52 136.35 408.80 1105.70 2339.10 4322.30 7404.70 10619.00 14831.00

SDROMR 56.79 91.21 171.88 287.33 553.76 1071.80 2452.10 5615.90 13152.00

IRF 61.15 127.84 366.24 981.06 2098.80 3918.50 6821.70 9982.40 14290.00

ACWM 51.97 121.51 367.27 993.73 2119.40 3951.00 6859.10 10015.00 14311.00

ACWMR 46.95 85.67 170.71 299.57 536.23 1007.80 2042.30 4230.20 9975.40

CWM 76.27 259.94 727.17 1729.30 3273.40 5431.60 8350.40 11291.00 15060.00

CWMR 586.89 662.15 962.16 1550.30 2750.50 4539.70 6943.40 9950.80 13190.00

SSMF 88.47 159.34 415.68 1000.00 2288.50 4369.80 7236.40 11026.00 15283.00

YUKSEL 397.60 519.93 696.40 932.45 1229.00 1611.90 2091.90 2704.10 3433.80

Table 2: The restoration results for Mandrill test image in respect of MSE.

Method
Noise Density

10% 20% 30% 40% 50% 60% 70% 80% 90%

Noisy image 1766.50 3585.30 5351.70 7093.50 8898.20 10623.00 12415.00 14201.00 15998.00

Anfis-F 32.55 70.49 114.15 165.16 221.13 294.10 371.94 462.27 600.31

IMF 324.10 340.02 358.99 386.60 456.02 657.79 1653.40 4082.50 9688.00

SMF 271.04 329.47 560.00 1094.30 2184.30 3836.80 6583.00 9739.10 13720.00

PSM 108.39 147.80 205.12 335.73 736.27 1932.40 5146.60 9665.40 14527.00

SDROM 165.39 259.65 544.67 1187.70 2443.10 4264.30 7185.30 10451.00 14272.00

SDROMR 171.74 224.09 312.82 429.68 692.46 1122.90 2482.90 5432.60 12614.00

IRF 171.56 252.63 497.92 1071.00 2190.20 3856.00 6614.30 9786.60 13742.00

ACWM 125.94 215.00 470.31 1052.30 2180.10 3851.70 6620.20 9798.60 13749.00

ACWMR 115.20 176.27 263.32 381.32 620.87 975.77 1888.50 3713.40 8619.00

CWM 184.00 348.50 836.76 1795.20 3319.70 5272.30 8037.50 10960.00 14346.00

CWMR 436.04 524.33 803.14 1356.30 2407.60 3980.50 6161.00 8760.20 11555.00

SSMF 206.63 269.15 493.26 1017.60 2120.60 3899.20 6462.20 9807.10 13570.00

YUKSEL 44.13 83.68 143.72 235.90 363.89 547.14 787.89 1118.30 1534.10

Anfis was used as an interpolant for each Delaunay tri-
angle in order to get the estimated gray values of corrupted
pixels, which are encompassed by the related Delaunay trian-
gle. Then, the original gray values of the normally distributed
pixels and the estimated gray values of the corrupted pixels
were reorganized in order to obtain the restored image. For
the computation of restored gray values of corrupted pixels;
this paper offers using an Anfis, whose structure is shown in
Figure 1, as a DSF interpolant [27, 28, 29, 30] for each Delau-
nay triangle. DSF-based applications of the supervised fuzzy
systems do not need using verification data [25] in their
training (e.g., as in [11, 35]), in order to produce good re-
sults. The final result is more important than local verifica-
tions of data for DSF interpolants.

Since Anfis has been used as a DSF interpolant for each
Delaunay triangle, only training data set has been enough to
solve our problem, as in [11, 35]. The structure of the Delau-

nay network changes with the intensity of the noise density
in distorted image, therefore a specific learning phase is re-
quired whenever a new corrupted image is presented.

The training phase of the Anfis structure is visually ex-
plained in Figure 2. Each Delaunay triangle includes at least
one corrupted pixel and the number of the Delaunay trian-
gles corresponds to the number of the Anfis structures that
are needed to be trained. In order to explain the proposed
methodmore coherently, the computational algorithm of the
Anfis-F is given below step by step.

(i) Pad the image with 5 pixels reflected copy of itself on
the sides in order to cover the whole image with De-
launay network.

(ii) Find the spatial image coordinates, (x, y), of the ab-
normally distributed pixels, which were determined by
using lillietest statistics.
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Table 3: The restoration results for Peppers test image in respect of MSE.

Method
Noise density

10% 20% 30% 40% 50% 60% 70% 80% 90%

Noisy image 1940.10 3988.80 5897.70 7914.50 9960.80 11929.00 13993.00 15930.00 17908.00

Anfis-F 13.19 29.65 53.17 84.66 124.42 172.13 234.00 332.78 488.56

IMF 123.82 149.80 190.54 249.05 335.41 667.77 1693.60 4329.20 10742.00

SMF 77.69 160.17 389.36 1021.90 2161.00 4151.50 7271.20 10690.00 15164.00

PSM 55.24 94.58 159.79 301.41 714.25 1952.20 5280.30 9673.30 15099.00

SDROM 63.70 195.43 482.43 1240.30 2528.90 4674.00 7960.80 11444.00 15787.00

SDROMR 61.34 149.97 268.08 474.06 750.02 1568.00 3167.30 6270.00 13218.00

IRF 60.14 182.08 437.96 1126.40 2299.90 4309.50 7444.10 10835.00 15306.00

ACWM 55.70 181.99 442.58 1139.30 2317.90 4333.40 7471.50 10859.00 15324.00

ACWMR 54.51 142.14 259.92 463.44 727.67 1395.30 2753.00 4820.70 10357.00

CWM 84.55 303.75 818.32 1860.70 3557.80 5858.40 8999.30 12226.00 16049.00

CWMR 298.04 375.45 645.59 1200.00 2281.40 3958.70 6310.80 9158.70 12313.00

SSMF 29.67 82.28 302.77 838.66 2005.70 3922.20 6687.50 10286.00 14384.00

YUKSEL 97.46 144.16 227.19 360.70 559.04 843.88 1217.80 1713.90 2350.80

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7: The restored images of noisy Lena for the noise density of 50%. (a) The original (noise-free) Lena, (b) noisy Lena for the noise
density of 50%, (c) Anfis-F (proposed), (d) IMF, (e) SMF, (f) PSM, (g) SDROM, (h) SDROMR, (i) IRF, (j) ACWM, (k) ACWMR, (l) CWM,
(m) CWMR, (n) SSMF, and (o) YUKSEL.
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Figure 8: The restored images of noisy Lena for the noise density of 80%. (a) The original (noise-free) Lena, (b) noisy Lena for the noise
density of 80%, (c) Anfis-F (proposed), (d) IMF, (e) SMF, (f) PSM, (g) SDROM, (h) SDROMR, (i) IRF, (j) ACWM, (k) ACWMR, (l) CWM,
(m) CWMR, (n) SSMF, and (o) YUKSEL.

(iii) Set Delaunay triangulation network over the noisy im-
age by using (x, y) values.

(iv) Delete the Delaunay triangles, which do not consist at
least one corrupted pixel.

(v) Train the same Anfis structure for each Delaunay tri-
angle using coordinates and intensity values of the cor-
ner nodes of the related Delaunay triangle.

(vi) Use the corresponding trained Anfis network to get the
restored gray values of abnormally distributed pixels,
which are suspected to be corrupted pixels.

(vii) Delete the padded pixels in order to obtain the restored
image at the size of the original noisy image.

6. EXPERIMENTS

A number of experiments were achieved in order to eval-
uate the performance of the proposed Anfis-F in compari-
son with the recently introduced and highly approved filters.
The experiments were carried out on the Lena, the Mandrill
and the Peppers gray scale test images, which are 256 × 256
pixel-sized and 8 bits/pixel. The test images were corrupted

by IN at various noise densities ranging from 10% to 90%.
The restoration results of the Lena and the Mandrill images
for the noise densities of 50% and 80% are illustrated in
Figures 7–10 in order to evaluate the restoration perfor-
mances of the mentioned methods subjectively. It is eas-
ily seen from Figures 7–10 that noise suppression and de-
tail preservation are satisfactorily compromised by the pro-
posed Anfis-F, especially when the noise density is very high.
Restoration performances are objectively evaluated by using
MSE, which is defined as

MSE = 1
MN

M∑
x=1

N∑
y=1

(
Ox,y − Rx,y

)2
, (8)

whereOx,y and Rx,y denote the original noise-free image pix-
els and the restored image pixels, respectively. M and N are
the total number of pixels in the horizontal and vertical di-
mensions of the images. The major improvement achieved
by the proposed Anfis-F has been demonstrated with exten-
sive simulations of the mentioned test images corrupted at
different noise densities.
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Figure 9: The restored images of noisy Mandrill for the noise density of 50%. (a) The original (noise-free) Mandrill, (b) noisy Mandrill for
the noise density of 50%, (c) Anfis-F (proposed), (d) IMF, (e) SMF, (f) PSM, (g) SDROM, (h) SDROMR, (i) IRF, (j) ACWM, (k) ACWMR,
(l) CWM, (m) CWMR, (n) SSMF, and (o) YUKSEL.

The IMF, SMF, PSM, SDROM, SDROMR, IRF, ACWM,
ACWMR, CWM, CWMR, SSMF, and YUKSEL have been
simulated as well for performance comparison. The restora-
tion performances of the mentioned methods in MSE have
been listed in Tables 1, 2, and 3, where it is obviously seen
that the proposed Anfis-F provides a substantial improve-
ment compared with the simulated filters, especially at the
high noise density values. The IN removal and detail preser-
vation are best compromised by the proposed Anfis-F. Ro-
bustness is one of the most important requirements of mod-
ern image enhancement filters and Tables 1, 2, and 3 indicate
that the proposed Anfis-F provides robustness substantially
across a wide variation of noise densities.

The average runtimes of all the mentioned filters were
also determined and given in Table 4 in order to appreciate
the computational complexities. These average values were
obtained by running the algorithms 20 times and calculating
the arithmetic means of the runtimes for each of the filters.
The runtime analysis of the proposed Anfis-F filter and con-
cerned filters were conducted for test images using Pentium
IV, 1.1GHz PC and documented in Table 4.

Table 4: Average runtimes of mentioned methods obtained by us-
ing Matlab.

Method Average runtime (s)

Anfis-F 21.45

IMF 0.71

SMF 0.37

PSM 476.87

SDROM 4.26

SDROMR 5.76

IRF 12.50

ACWM 7.76

ACWMR 520.78

CWM 3.76

CWMR 150.92

SSMF 470.96

YUKSEL 4.90
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Figure 10: The restored images of noisy Mandrill for the noise density of 80%. (a) The original (noise-free) Mandrill, (b) noisy Mandrill for
the noise density of 80%, (c) Anfis-F (proposed), (d) IMF, (e) SMF, (f) PSM, (g) SDROM, (h) SDROMR, (i) IRF, (j) ACWM, (k) ACWMR,
(l) CWM, (m) CWMR, (n) SSMF, and (o) YUKSEL.

7. CONCLUSIONS

In this paper, a new and efficient Anfis-based IN elimina-
tion filter,Anfis-F, is introduced. The effectiveness of the pro-
posed filter in processing different images can easily be eval-
uated by appreciating Tables 1, 2, and 3, which are given to
present the restoration results of Anfis-F and the compari-
son filters for images degraded by IN, where noise density
ranges from 10% to 90%. It is seen from Tables 1, 2, and 3
that the proposed Anfis-F gives absolutely better restoration
results and a higher resolution in the restored images than
the comparison filters, IMF, SMF, PSM, SDROM, SDROMR,
IRF, ACWM, ACWMR, CWM, CWMR, SSMF, and YUKSEL.
Compared with the other filters, the proposed Anfis-F yields
satisfactory results in suppressing IN while requiring a sim-
ple computational structure. In addition, the proposedAnfis-
F supplies more pleasing restoration results aspect of visual
perception and also provides the best tradeoff between IN
suppression and image enhancement for detail preservation
as seen in Figures 7–10.

The advantages of the proposed filter may be summa-
rized as follows.

(i) The proposed method uses Delaunay triangles as finite
elements, therefore it requires training Anfis struc-
tures. This is a new approach for Anfis-based appli-
cations and it is obviously seen from Tables 1, 2, and
3 that the proposed method supplies superior restora-
tion results to the comparison filters.

(ii) Anfis-F supplies visually pleasing images even if the
noise density is very high, whereas others do not sup-
ply visually pleasing images when the noise density is
higher than 50%.

(iii) In order to find the corrupted pixels more accurately,
the proposed method uses lillietest, which is known as
a powerful tool for normality test of samples.

(iv) Anfis-F needs training many artificial soft computing
structures (in this paper Anfis structures), as in [35],
but it guarantees superior restoration results as seen in
Tables 1, 2, and 3.

(v) The proposedmethod uses simple triangular member-
ship functions and linear function at the inputs and
output of the Anfis structures, respectively, in order to
simplify computational requirements.
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Erkan Beşdok was born in 1969 in Kay-
seri, Turkey. He received the B.S., M.S., and
Ph.D. degrees from Istanbul Technical Uni-
versity, Istanbul, Turkey, all in geodesy and
photogrammetry engineering. He is now an
Assistant Professor with the Erciyes Univer-
sity, Engineering Faculty, Geodesy and Pho-
togrammetry Engineering Department and
Institute of Science, Computer Engineering
Department. His current research interests
are computer vision, photogrammetric image processing, medi-
cal imaging, information visualization, neural networks, fuzzy sets
and systems, genetics, ant colony theory, and information sys-
tems.


	1. INTRODUCTION
	2. ANFIS AND FINITE-ELEMENT-BASED SOFT COMPUTING
	2.1. Anfis
	2.2. Finite-element-based soft computing

	3. USING DELAUNAY TRIANGLES AS FINITE ELEMENTS
	4. ANALYZING IMPULSIVE BEHAVIOR OF THE PIXELS BY USING LILLIETEST
	5. PROPOSED METHOD
	6. EXPERIMENTS
	7. CONCLUSIONS
	REFERENCES

