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A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access sys-
tems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift
keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly out-
performs the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased
complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection.
Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is
below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still
capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial
basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna as-
sisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal
forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation
procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced κ-means clustering techniques and
the recursive least squares algorithm.

Keywords and phrases: smart antenna, adaptive beamforming, mean square error, bit error rate, Bayesian classification, radial
basis function network.

1. INTRODUCTION

Spatial processing invoking adaptive antenna arrays has
shown real promise in terms of attaining substantial capacity
enhancements in mobile communication [1, 2, 3, 4, 5, 6, 7,
8]. Multiple-antenna aided receivers are capable of separating
signals transmitted on the same carrier frequency, provided
that signals are sufficiently separated in the spatial domain.
Classically, beamforming algorithms create a linear combi-
nation of the signals received from the different elements of
an antenna array. We refer to this classic beamforming prin-
ciple as linear beamforming. A traditional approach to lin-
ear beamforming is based on the minimum mean square er-
ror (MMSE) principle that minimizes the mean square error
(MSE) between the desired output generated from a known
reference signal and the actual array output. Adaptive imple-
mentations of the linear MMSE (LMMSE) beamforming so-

lution can readily be realized using the well-known family of
temporal reference techniques [2, 3, 9, 10, 11, 12, 13]. Specif-
ically, block-data-based beamformer weight adaptation can
be achieved using the sample matrix inversion (SMI) algo-
rithm [9, 10], while sample-by-sample based array-weight
adaptation can be carried out using the least mean square
(LMS) algorithm [11, 12, 13]. Recent work [14, 15] has in-
vestigated a linear beamforming technique based directly on
minimizing the system’s bit error rate (BER) rather than the
MSE and developed both block-data-based and sample-by-
sample adaptive algorithms for implementing linear mini-
mum BER (LMBER) beamforming. The results of [14, 15]
have demonstrated that LMBER beamforming is capable of
providing considerable performance gains in terms of a re-
duced BER over the usual LMMSE beamforming.

In the context of space-division multiple access (SDMA),
the spatial separation in angles of arrival between the desired



1226 EURASIP Journal on Applied Signal Processing

b̂1(k)

R
ec

ei
ve

r

x1(t)

x2(t)

xL(t)

n1(t)

n2(t)

nL(t)

∑

∑

∑

.

.

.
.
.
.

Modulator

Modulator

Modulator

b1(k)

b2(k)

bM(k)

User 1

User 2

User M

Desired

Interfering

Interfering

Figure 1: Multiantenna receiver configuration for the multiuser space-division multiple-access system.

signal and the closest interfering signal dominates the achiev-
able system performance and hence the system’s user capac-
ity. When this angular separation is below a certain thresh-
old, linear beamforming ultimately fails since the signals
transmitted by the individual users become linearly insep-
arable, a situation that has also been observed in the con-
text of single-user channel equalization and multiuser de-
tection designed for code-division multiple access (CDMA)
[16, 17, 18, 19, 20]. In fact, it has been observed even in lin-
early separable scenarios that a nonlinear processing tech-
nique is capable of providing a better performance than a
linear one, although this is typically achieved at the cost of
an increased complexity. In conjunction with nonlinear spa-
tial processing, the achievable system capacity can be signifi-
cantly increased since an adequate performance can be main-
tained even in case of a low angular separation compared
to linear beamforming. These considerations motivate this
study of nonlinear detection techniques contrived for multi-
antenna aided systems.

The outline of the paper is as follows. Section 2 intro-
duces the system model, while Section 3 outlines our lin-
ear beamforming-based benchmarker. In Section 4, we de-
rive the optimal solution of the nonlinear spatial processing
assisted receiver for binary phase shift keying (BPSK) sig-
nalling, which is referred to as the Bayesian detection solu-
tion. It is shown that this Bayesian solution has an identi-
cal form to a radial basis function (RBF) network [17, 21].
In Section 5, two schemes are proposed for realizing block-
data-based adaptive RBF detectors. One of them is based
on the relevance vector machine (RVM) invoked for clas-
sification [22, 23] and the other one is the orthogonal for-
ward selection (OFS) procedure using the Fisher ratio class-
separability measure [24]. Finally, in Section 6, an adaptive
sample-by-sample implementation of the RBF detector is
also considered using an amalgam of the enhanced κ-means
clustering and the recursive least squares (CRLS) algorithm
[19, 25] before offering our conclusions in Section 7.

2. SYSTEM MODEL

We consider the multiple-antenna aided receiver configura-
tion of Figure 1 invoked for assisting the operation of a mul-
tiuser SDMA system. It is assumed that the system supports
M users (signal sources), and each user transmits a BPSK
modulated signal on the same carrier frequency of ω = 2π f .
Let k denote the bit instance. Then the baseband signal of
user i, sampled at symbol rate, is given by

mi(k) = Aibi(k), 1 ≤ i ≤M, (1)

where the complex-valued coefficientAi models the multipli-
cation of the channel coefficient of user iwith the transmitted
signal power of user i and therefore |Ai|2 denotes the received
signal power for user i, and bi(k) ∈ {±1} is the kth bit of user
i. Without any loss of generality, source 1 is assumed to be
the desired user and the rest of the sources are the interfering
users. A linear antenna array is considered which consists of
L uniformly spaced elements, and the signals received by the
L-element antenna array are given by

xl(k) =
M
∑

i=1

mi(k) exp
(

jωtl
(

θi
))

+ nl(k) = x̄l(k) + nl(k) (2)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay
at element l for source i, θi is the direction of arrival for
source i, and nl(k) is a complex-valued white Gaussian noise
with zero mean and E[|nl(k)|2] = 2σ2

n . The desired user’s
signal-to-noise ratio is defined as SNR = |A1|2/2σ2

n , and
the desired signal-to-interference ratio with respect to in-
terfering user i is defined by SIRi = |A1|2/|Ai|2 for i =
2, . . . ,M. In vectorial form, the antenna array output x(k) =
[x1(k) x2(k) · · · xL(k)]T can be expressed as

x(k) = x̄(k) + n(k) = Pb(k) + n(k), (3)

where n(k) = [n1(k) n2(k) · · · nL(k)]T has a covariance
matrix of E[n(k)nH(k)] = 2σ2

nIL with IL denoting the L × L
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identity matrix, the system matrix P is given by

P =
[

A1s1 A2s2 · · · AMsM
]

, (4)

the steering vector for source i is formulated as

si=
[

exp
(

jωt1
(

θi
))

exp
(

jωt2
(

θi
))

· · · exp
(

jωtL
(

θi
))T
]

,

(5)

and the transmitted bit vector is

b(k) =
[

b1(k) b2(k) · · · bM(k)
]T

. (6)

The task of the spatial-processing assisted receiver is to

provide an estimate b̂1(k) of the desired user’s transmit-
ted bit b1(k), given the input x(k). To keep our notations
and the associated concepts relatively simple, we have used
a BPSK modulation scheme, a narrowband channel model,
and narrowband beamforming (space-only processing). The
approach can be extended to other modulation schemes
and wideband channels that induce intersymbol interference.
The same idea can also be applied to broadband beamform-
ing (space-time processing).

3. LINEAR BEAMFORMING ASSISTED RECEIVER

The output of the linear beamformer is given by

y(k) = wHx(k) = wH x̄(k) + wHn(k) = ȳ(k) + e(k), (7)

where w = [w1 w2 · · · wL]T is the complex-valued beam-
former weight vector, and e(k) is Gaussian distributed with
a zero mean and a variance E[|e(k)|2] = 2σ2

nwHw. The esti-
mate of the transmitted bit b1(k) is given by

b̂1(k) = sgn
(

yR(k)
)

=






+1, yR(k) > 0,

−1, yR(k) ≤ 0,
(8)

where yR(k) = ℜ[y(k)] denotes the real part of y(k). Classi-
cally, the linear beamformer’s weight vector is determined by
minimizing the MSE term of E[|b1(k)− y(k)|2] between the
desired user’s transmitted bit and the beamformer’s output,
which leads to the following LMMSE solution:

wMMSE =
(

PPH + 2σ2
nIL
)−1

p1 (9)

with p1 being the first column of P. Using a temporal refer-
ence technique aided approach [7], the LMMSE beamform-
ing solution can be readily realized using the block-data-
based SMI algorithm [7], and recursive sample-by-sample
adaptation can be performed using the LMS or RLS algo-
rithm [21].

In order to derive the BER formula of the linear beam-
former with the weight vector w, firstly note that there are
Nb = 2M possible sequences of b(k), which are denoted as
bq, 1 ≤ q ≤ Nb. Furthermore, denote the first element of bq,
corresponding to the desired user, as bq,1. As expected, the

noiseless part of the beamformer input signal, x̄(k), assumes
encountering values only from the signal set defined as

X ,
{

x̄q = Pbq, 1 ≤ q ≤ Nb
}

. (10)

This set can be partitioned into two subsets depending on the
specific value of b1(k) as follows:

X(±) ,
{

x̄(±)
q ∈X : b1(k) = ±1

}

. (11)

Similarly, ȳ(k) takes values from the scalar set

Y ,
{

ȳq = wH x̄q, 1 ≤ q ≤ Nb
}

(12)

which can be divided into the two subsets defined as

Y(±) ,
{

ȳ(±)
q ∈ Y : b1(k) = ±1

}

. (13)

Thus, ȳR(k) can only take values from the set

YR ,
{

ȳR,q = ℜ
[

ȳq
]

, 1 ≤ q ≤ Nb
}

(14)

which can be partitioned into the two subsets conditioned on
the value of b1(k):

Y
(±)
R ,

{

ȳ(±)
R,q ∈ YR : b1(k) = ±1

}

. (15)

It can be readily seen that the conditional probability
density function (pdf) of y(k) given b1(k) = +1 is a Gaus-
sian mixture given by

p(y| + 1) = 1

Nsb

Nsb
∑

q=1

1

2πσ2
nwHw

exp

(

−
∣

∣y − ȳ(+)
q
∣

∣

2

2σ2
nwHw

)

,

(16)

where ȳ(+)
q ∈ Y(+) and Nsb = Nb/2 is the number of the

points in Y(+). Therefore, the conditional marginal pdf of
yR(k) given b1(k) = +1 is formulated as follows:

p
(

yR
∣

∣ + 1
)

= 1

Nsb

Nsb
∑

q=1

1
√

2πσ2
nwHw

exp

(

−
(

yR − ȳ(+)
R,q

)2

2σ2
nwHw

)

,

(17)

where ȳ(+)
R,q ∈ Y

(+)
R . Thus, it can be shown that the BER of

the linear beamformer associated with the weight vector w is
given by [14, 15]

PE(w) = 1

Nsb

Nsb
∑

q=1

Q
(

gq,+(w)
)

, (18)

where

Q(u) = 1√
2π

∫∞

u
exp

(

− v2

2

)

dv,

gq,+(w) =
sgn

(

bq,1

)

ȳ(+)
R,q

σn
√

wHw
= sgn

(

bq,1

)

ℜ
[

wH x̄
(+)
q
]

σn
√

wHw
.

(19)
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Figure 2: Locations of the desired source and the interfering
sources with respect to the two-element linear antenna array hav-
ing λ/2 element spacing, where λ is the wavelength.

The LMBER beamforming solution is then defined as fol-
lows:

wMBER = arg min
w

PE(w). (20)

Unlike the LMMSE solution (9), there exists no closed-form
LMBER solution. In [14, 15], a simplified conjugate gradient
method [26, 27] is used to obtain numerical solutions. Both
the block-data-based gradient and LMS-style stochastic gra-
dient adaptive algorithms have been derived in [14, 15] to
realize the LMBER beamforming solution.

For the linear beamformer to work adequately, the un-
derlying system must be linearly separable. The linear separa-

bility means that there exists a weight vector w such that Y
(−)
R

and Y
(+)
R are completely separated by the decision threshold

yR = 0. When the minimum spatial separation expressed
in angles of arrival between the desired user and interfer-
ing users is below a certain threshold, the system inevitably
becomes linearly inseparable. In such a situation, the linear
beamformer will have a high irreducible BER floor, and non-
linear processing has to be adopted for the sake of achieving
an adequate BER performance. In general, nonlinear spatial
processing is capable of achieving a better performance than
a linear receiver, regardless whether the output of the system
is linearly separable or not. The limitation of a linear beam-
forming assisted receiver is illustrated in the following exam-
ple, which is also used throughout this paper for investigating
the proposed nonlinear multiantenna detection techniques.

Simulation example

The example consisted of four signal sources and a two-
element antenna array. Figure 2 shows the locations of the
desired source and the three interfering sources in a graphi-
cal form. The simulated channel conditions were Ai = 1+ j0,
1 ≤ i ≤ 4. The desired user and all the three interfering users
had equal signal power, and therefore we had SIRi = 0 dB
for i = 2, 3, 4. The minimum spatial separation in this exam-
ple was the difference in angles of arrival between the desired
user 1 and the interferer 2, which was θ ≤ 30◦. Figure 3 com-

pares the BERs of the LMMSE and LMBER beamformers for
the two cases of θ = 30◦ and θ = 10◦, respectively. It can
be seen from Figure 3a that for θ = 30◦, the underlying sys-
tem scenario was linearly separable as was confirmed by the
performance of the LMBER beamformer, while the LMMSE
beamformer was unable to achieve the linear separability of
the signal constellation and hence exhibited a high BER floor.
Figure 4 plots the conditional pdfs p(y|+ 1), the conditional
marginal pdfs p(yR| + 1), and the conditional subsets Y(+)

and Y
(+)
R for the LMMSE and LMBER beamformers, given

θ = 30◦ and SNR = 10 dB, which represented a typical
condition in Figure 3a. It is clearly seen from Figure 4 that
the LMBER beamformer was “smarter” than the LMMSE
scheme and hence achieved the desired linear separability.
However, when the minimum spatial separation was reduced
to θ = 10◦, the system became inherently linearly insepara-
ble, and any linear beamformer failed to perform adequately
as can be seen in Figure 3b. Figure 5 depicts the conditional
pdfs p(y|+ 1), the conditional marginal pdfs p(yR|+ 1), and

the conditional subsets Y(+) and Y
(+)
R for the LMMSE and

LMBER beamformers, given θ = 10◦ and SNR = 10 dB,
which provided a typical condition in Figure 3b. The results
of Figure 5 confirm that the underlying system was linearly
inseparable, and it also explains why the LMBER solution
did better than the LMMSE scheme, resulting in a lower BER
floor. This example clearly demonstrates the need for invok-
ing a nonlinear spatial-processing assisted receiver structure.

4. BAYESIAN DETECTION SCHEME

Given the observation vector x(k), the optimal solution to
the multiantenna aided spatial processing problem in terms
of the achievable BER is the maximum a posteriori probabil-
ity solution, which is similar to the case of single-user chan-
nel equalization [17, 18], and therefore can readily be for-
mulated. The posterior probabilities or decision variables for
b1(k) = ±1 given x(k) are given by

η(±)(k) =
Nsb
∑

q=1

ξ(±)
q

(

2πσ2
n

)L exp

(

−
∥

∥x(k)− x̄
(±)
q
∥

∥

2

2σ2
n

)

, (21)

where ξ(±)
q are a priori probabilities of x̄

(±)
q and ‖x‖2 = xHx.

Typically, all the states x̄
(±)
q are equiprobable, and thus we

have ξ(±)
q = 1/Nb. The optimal decision regarding the trans-

mitted bit b1(k) is given by

b̂1(k) =






+1, η(+)(k) ≥ η(−)(k),

−1, otherwise.
(22)

We redefine a single decision variable as

yB(k) =
Nb
∑

q=1

υq exp

(

−
∥

∥x(k)− x̄q

∥

∥

2

2σ2
n

)

, (23)
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Figure 3: Comparison of the bit error rates of three theoretical detection schemes: the LMMSE and LMBER beamformers, and the optimal
Bayesian detector. (a) θ = 30◦. (b) θ = 10◦.
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Figure 4: Conditional pdfs p(y| + 1) (surface), conditional marginal pdfs p(yR| + 1) (curve), and conditional subsets Y(+) (symbol ∗) and

Y
(+)
R (symbol ◦), given θ = 30◦ and SNR = 10 dB. Beamformer weight vector has been normalized to a unit length. (a) LMMSE beamformer.

(b) LMBER beamformer.

where

υq =
sgn

(

bq,1

)

Nb
(

2πσ2
n

)L . (24)

Then the optimal decision (22) is equivalent to

b̂1(k) = sgn
(

yB(k)
)

=






+1, yB(k) ≥ 0,

−1, yB(k) < 0.
(25)



1230 EURASIP Journal on Applied Signal Processing

−3 −2 −1 0 1 2 3 4

Re[y]
−2

0
2

Im[y]

0

0.2

0.4

0.6

0.8

p
d

f

(a)

−3 −2 −1 0 1 2 3 4

Re[y]
−2

0
2

Im[y]

0

0.2

0.4

0.6

0.8

p
d

f

(b)

Figure 5: Conditional pdfs p(y| + 1) (surface), conditional marginal pdfs p(yR| + 1) (curve), and conditional subsets Y(+) (symbol ∗) and

Y
(+)
R (symbol ◦), given θ = 10◦ and SNR = 10 dB. Beamformer weight vector has been normalized to a unit length. (a) LMMSE beamformer.

(b) LMBER beamformer.

Note that (23) has the exact form of the RBF network in con-
junction with a Gaussian kernel function.

The BER performance of the optimal Bayesian detec-
tion scheme was evaluated using the simulation example of
Section 3 under the two conditions of having minimum spa-
tial separations of θ = 30◦ and θ = 10◦, and the results
are plotted in Figures 3a and 3b, respectively, in compari-
son to the BERs of linear beamformers. It can be seen from
Figure 3a that the Bayesian detector achieved an SNR im-
provement of 4 dB at the BER of 10−4 over the LMBER beam-
former. In the linearly inseparable case, the achievable per-
formance improvement over the linear beamformer was even
greater. In particular, Figure 3b shows that the Bayesian spa-
tial processing assisted receiver removed the irreducible BER
that was experienced by the linear beamforming aided re-
ceiver. The Bayesian detection scheme (23) may be viewed
as a nonlinear “beamforming” process, and this nonlinear
beamformer is clearly more complex than the simple linear
beamformer (7). Therefore, the performance improvement
achieved by the Bayesian detection scheme is attained at the
expense of considerably increased computational complex-
ity.

5. BLOCK-DATA KERNEL-BASED NONLINEAR
DETECTOR CONSTRUCTION

In reality, the signal subsets X(±) are unknown and have
to be estimated in order to realize the Bayesian solution.
We will adopt a temporal reference technique to construct
a nonlinear detector. Given a block of N training data
{x(k), b1(k)}Nk=1, consider the nonlinear detector of the form

y(x) =
N
∑

l=1

βlφl(x), (26)

where βl represents the real-valued weights and φl(x) =
φ(x, x(l)) are the appropriately chosen kernel basis functions
with x(l) denoting the lth training input. In our spatial pro-
cessing aided application, φ(·, ·) can be chosen as the Gaus-
sian kernel function of the form

φ
(

x, x(l)
)

= exp

(

−
∥

∥x − x(l)
∥

∥

2

2ρ2

)

, (27)

where the kernel variance ρ2 is an estimate of the noise vari-
ance σ2

n . Define the modelling residual as

ǫ(k) = t(k)− y(k) = b1(k)− y
(

x(k)
)

. (28)

Then the kernel model (26) generated for the training data
set can be formulated as

t = Φβ + ǫ, (29)

where the target vector t is defined as

t =
[

t(1) t(2) · · · t(N)
]T

=
[

b1(1) b1(2) · · · b1(N)
]T

,
(30)

the kernel weight vector is given by β=[β1 β2 · · · βN ]T , the
residual vector is formulated as ǫ = [ǫ(1) ǫ(2) · · · ǫ(N)]T ,
and the regression matrix Φ is given by

Φ =
[

φ1 φ2 · · · φN

]

(31)

with

φi =
[

φi(1) φi(2) · · · φi(N)
]T

=
[

φ
(

x(1), x(i)
)

φ
(

x(2), x(i)
)

· · · φ
(

x(N), x(i)
)

]T
,

(32)
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for 1 ≤ i ≤ N . We adopt two different techniques for con-
structing a sparse detector model having Nspa(≪ N) number
of terms from the full model (26).

5.1. Relevance vector machine for sparse kernel
detector construction

The RVM method [22, 23] can readily be applied for con-
structing a sparse kernel model having Nspa number of terms
from the full model (26). The introduction of an individual
hyperparameter αi for every weight βi of the model (26) is
the key feature of the RVM, and is ultimately responsible for
the sparsity properties of the RVM method [22]. During the
optimization process, many of the αi coefficients are driven
to large values so that the corresponding model weights βi
are effectively pruned out. Thus the corresponding model
terms φi(·) can be removed from the trained model. The con-
struction procedure produces a beamformer having a sparse
final kernel structure consisting of Nspa number of signifi-
cant terms. The detailed RVM method used is summarized
in Appendix A.

The RVM method is known to be able to produce very
sparse models while exhibiting excellent generalization capa-
bilities [22]. A drawback of the RVM method is its high com-
putational complexity. The algorithm contains two loops,
with the inner loop used for updating the kernel weights
and the outer loop for the associated hyperparameters (see
Appendix A). Both loops involve “expensive” nonlinear op-
timization, and therefore converge relatively slowly, while in-
curring high computational costs. Furthermore, the RVM
method starts with the full model set Φ and removes those
kernel terms that have large values in their associated hy-
perparameters. In other words, it is based on the backward
elimination principle. Since the Hessian matrix H associ-
ated with the full model set ((A.8) in Appendix A) is typ-
ically ill-conditioned and may even be non invertible, the
RVM method is inherently ill-conditioned and its iterative
procedure may converge at a slow rate, requiring numer-
ous iterations. The threshold Lg employed by the prun-
ing process (see Appendix A) is problem-dependent and has
to be determined empirically. Provided that the value of
Lg is tuned appropriately, the RVM algorithm is in gen-
eral capable of identifying a sparse detector from the full
model (26), which closely approximates the Bayesian perfor-
mance.

5.2. Orthogonal forward selection with Fisher ratio
class-separability measure for sparse kernel
detector construction

An alternative way of constructing a sparse kernel model
from the full model (26) is offered by the OFS procedure
based on Fisher ratio class-separability measure [24], which
is computationally attractive and numerically very robust.
Let an orthogonal decomposition of the regression matrix Φ

be

Φ = UD, (33)

where

D =















1 d1,2 · · · d1,N

0 1
. . .

...
...

. . .
. . . dN−1,N

0 · · · 0 1















,

U =
[

u1 u2 · · · uN

]

=













u1,1 u1,2 · · · u1,N

u2,1 u2,2 · · · u2,N

...
...

...
...

uN ,1 uN ,2 · · · uN ,N













,

(34)

with orthogonal columns that satisfy uT
i uq = 0 if i 6= q. The

kernel model (29) can alternatively be expressed as

t = Ug + ǫ, (35)

where the orthogonal weight vector g = [g1 g2 · · · gN ]T

satisfies the triangular system Dβ = g.
A sparse Nspa-term model can be selected by incremen-

tally maximizing a class separability measure in an OFS pro-
cedure, as is presented in [24]. Define the two class sets
X± = {x(k) : d(k) = ±1}, and let the numbers of points
in X± be N±, respectively, with N+ +N− = N . The means and
variances of training samples belonging to class X+ and class
X− in the direction of basis ul are given by

m+,l =
1

N+

N
∑

i=1

δ
(

t(i)− 1
)

ui,l,

σ2
+,l =

1

N+

N
∑

i=1

δ
(

t(i)− 1
)(

ui,l −m+,l
)2

,

m−,l =
1

N−

N
∑

i=1

δ
(

t(i) + 1
)

ui,l,

σ2
−,l =

1

N−

N
∑

i=1

δ
(

t(i) + 1
)(

ui,l −m−,l
)2

,

(36)

respectively, where δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0.
Fisher ratio is defined as the ratio of the interclass difference
and the intraclass spread encountered in the direction of ul,
which is given by [28]

Fl =
(

m+,l −m−,l
)2

σ2
+,l + σ2

−,l

. (37)

Based on this Fisher ratio for class separability measure, sig-
nificant kernel terms can be selected with the aid of an OFS
procedure. At the lth stage, a term is chosen as the lth term
in the selected model if it produces the largest Fl among the
candidate terms ui, l ≤ i ≤ N . The procedure is terminated
with a sparse Nspa-term model when we have

FNspa

∑Nspa

l=1 Fl
< ξ, (38)
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Figure 6: Performance comparison of the Bayesian detector with the RBF detectors constructed by the RVM algorithm and the OFS with
Fisher ratio, respectively. (a) θ = 30◦. (b) θ = 10◦.

where the threshold ξ determines the sparsity of the selected
model. The appropriate value for ξ depends on the applica-
tion concerned, and in our spatial processing oriented ap-
plication, we have found out empirically that the appropri-
ate values for ξ is in the range of 0.005 to 0.01. The least
square solution for the corresponding sparse model weight
vector βNspa

is readily available given the least square solution

of gNspa .
The detailed construction algorithm is summarized in

Appendix B. This algorithm involves only linear optimiza-
tion and is computationally significantly more attractive
compared with the RVM method. In the selection procedure,
if uT

i ui is too small, this term will not be selected. Thus, any
ill-conditioning problem or singular situations are automati-
cally avoided. The construction process is guaranteed to con-
verge and, to arrive at the sparsest possible kernel detector
that is also capable of closely approximating the optimum
Bayesian performance, the only algorithmic parameter that
requires tuning is the threshold ξ.

5.3. Simulation study

The example given in Section 3 was used for testing the two
block-data kernel-based construction algorithms. Two con-
ditions of θ = 30◦ and θ = 10◦ were simulated, representing
the linearly separable and inseparable cases, respectively. In
each case, the OFS algorithm employing the Fisher ratio and
the RVM algorithm were used for constructing a RBF detec-

tor. The number of training data used for each SNR value was
N = 160. The Gaussian kernel variance ρ2 was determined
empirically and the appropriate values of ρ2 were found to
be in the range spanning from 2σ2

n to 10σ2
n , depending on

the SNR. The number of RBF centers or kernel terms iden-
tified by the two algorithms for the given SNR values was
similar, ranging from Nspa = 14 to 20, having typical val-
ues of Nspa = 18. The BERs of the RVM and OFS detectors
are compared in Figure 6. It can be seen that both kernel-
based detectors had a similar performance at a similar model
sparsity, and the two RBF detectors constructed from noisy
training data closely approximated the optimal Bayesian per-
formance. However, the OFS algorithm based on the Fisher
ratio is known to have considerable computational and nu-
merical advantages over the RVM algorithm.

6. RECURSIVE ADAPTIVE RBF DETECTOR USING THE
COMBINED CLUSTERING AND RLS ALGORITHM

In practice, it is often desirable to update a detector on a re-
cursive sample-by-sample basis. Consider again the RBF de-
tector of the form

y
(

x(k)
)

=
Nc
∑

i=1

βiφ
(

x(k), ci
)

, (39)

where ci are the complex-valued kernel centers and the num-
ber of kernel centers Nc is assumed to be given. We propose
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to apply a combined enhanced κ-means clustering and RLS
algorithm [19, 25] for a recursive sample-by-sample based
adaptation of this RBF detector.

The enhanced κ-means clustering algorithm [29], which
recursively updates the RBF centers, is described by

ci(k) = ci(k − 1) + Mi
(

x(k)
)(

ḡc
(

x(k)− ci(k − 1)
))

(40)

for 1 ≤ i ≤ Nc, where 0 < ḡc < 1.0 defines the learning rate,
the membership function Mi(x(k)) is defined as follows:

Mi(x) =






1, if v̄i
∥

∥x − ci
∥

∥

2 ≤ v̄l
∥

∥x− cl
∥

∥

2 ∀l 6= i,

0, otherwise,
(41)

and v̄i is the variation of the ith cluster. In order to esti-
mate the associated variation v̄i, the following updating rule
is used:

v̄i(k) = ḡv v̄i(k − 1)

+
(

1− ḡv
)

(

Mi
(

x(k)
)
∥

∥x(k)− ci(k − 1)
∥

∥

2
)

,
(42)

where ḡv is a constant slightly less than 1.0. The initial vari-
ations v̄i(0), 1 ≤ i ≤ Nc, are set to the same small number.
The learning rate ḡc can either be set to a fixed small positive
number or be self-adjusting, based on an entropy formula
[29].

The traditional κ-means clustering algorithm [28] can
only achieve a local optimal solution in partitioning the in-
put data set into Nc clusters, and the solution obtained de-
pends on the initial locations of cluster centers. A conse-
quence of this local optimality is that some initial centers may
become trapped in regions of the input domain, which have
only a few or no input patterns, and never move to regions
where they are needed. This wastes resources and results in
an unnecessarily large network. The enhanced κ-means clus-
tering algorithm [29] overcomes the above-mentioned draw-
back. When using a cluster variation-weighted measure, we
always achieve an optimal center configuration in the sense
that after convergence, all clusters have an equal cluster vari-
ance. The above-mentioned enhanced κ-means clustering al-
gorithm is an unsupervised one. In order to take full advan-
tage of training, the algorithm can be modified in order to
create a semisupervised one. Let the RBF center set be di-
vided into the two subsets

C(+) =
{

ci, 1 ≤ i ≤ Nc

2

}

,

C(−) =
{

ci, 1 +
Nc

2
≤ i ≤ Nc

}

,

(43)

corresponding to the two classes b1(k) = ±1. During the
training instance k, the enhanced κ-means clustering algo-
rithm is applied only to the center subset C(+) if we have
b1(k) = +1. Otherwise, it is applied to C(−) provided that
we have b1(k) = −1. This “semisupervised” clustering tech-
nique was found to be more effective in dealing with linearly
inseparable cases.

The RBF weights βi are updated using the classic RLS
algorithm. Thus the combined CRLS algorithm used for
training the RBF detector (39) can readily be summa-

rized as follows. At the instance k, given the center set
{ci(k − 1), 1 ≤ i ≤ Nc} and weight vector β(k − 1) =
[β1(k − 1) β2(k − 1) · · · βNc(k − 1)]T , we invoke the fol-

lowing procedure:

RBF center updating: use the enhanced κ-means clustering
algorithm for obtaining an updated RBF center set
{ci(k), 1 ≤ i ≤ Nc};

RBF weight updating: employ the RLS algorithm for obtain-
ing an updated RBF weight vector β(k).

The enhanced κ-means clustering process is guaranteed
to converge to the optimal center configuration if either the
learning rate ḡc is self-adjusting based on an entropy formula
or it is fixed to a positive constant that is not too large [29].
The convergence properties of the standard RLS algorithm
are well known. It is therefore reasonable to believe that the
above-mentioned combined κ-means clustering and RLS al-
gorithm is capable of guaranteeing convergence, provided
that the algorithmic parameters are set appropriately.

The example given in Section 3 was employed again for
investigating the CRLS algorithm used for training the RBF
detector of (39). Two conditions associated with θ = 30◦

and θ = 10◦ were simulated. For this example, the num-
ber of states that defined the Bayesian detector was Nb = 16,
and Nc = 16 was assumed for the RBF detector. The train-
ing data length was N = 1000. The first Nc number of
samples x(k) were used as the initial RBF centers and the
two adaptive parameters of the clustering algorithm were
set to ḡc = 0.2 and ḡv = 0.995. Half of the RBF weights
were set initially to +0.001 and the other half to −0.001.
The initial condition of the RLS algorithm was chosen as
Ψ(0) = diag{1000.0, 1000.0, . . . , 1000.0} with the forgetting
factor given by µ = 0.995. Figure 7 depicts the achievable
BER of the CRLS RBF detector in comparison to the opti-
mal Bayesian performance. For the CRLS RBF detector, the
results obtained using the unsupervised and semisupervised
clustering algorithms were similar in the linearly separable
case (θ = 30◦). By contrast, for the linearly inseparable sce-
nario of θ = 10◦, it was observed that the semisupervised
clustering performed better than the unsupervised one. The
results given in Figure 7 are those obtained with the aid of
semi-supervised clustering. From Figure 7, it can be seen that
the performance of the CRLS RBF detector closely matched
the optimal Bayesian performance.

7. CONCLUSIONS AND DISCUSSIONS

A nonlinear detection technique has been investigated in the
context of a multiantenna assisted receiver. The optimal so-
lution of the nonlinear spatial processing aided receiver has
been derived for binary phase shift keying signalling. It has
been shown that this optimal Bayesian detector significantly
outperforms the linear beamformer in terms of a reduced bit
error rate, at the expense of an increased complexity. The re-
sults presented in this paper have demonstrated the potential
system capacity enhancements that may be achieved by em-
ploying nonlinear spatial processing. Both block-data-based
and recursive sample-by-sample adaptive implementations
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Figure 7: Performance comparison of the Bayesian detector with the RBF detector trained by the CRLS algorithm. (a) θ = 30◦. (b) θ = 10◦.

of the optimal Bayesian detector have been considered using
a radial basis function network. For block-data-based adap-
tation, both the RVM algorithm and the orthogonal forward
selection procedure employing the Fisher-ratio-based class
separability measure have been considered. Both algorithms
have been shown to produce similarly good performance, but
the latter is known to have considerable computational ad-
vantages. For recursive sample-by-sample based adaptation,
the combination of the enhanced κ-means clustering and the
recursive least squares algorithm has been invoked.

The nonlinear detection scheme proposed in this paper
is based on what we refer to as a “direct” approach, namely,
on estimating the RBF centers directly from received train-
ing data contaminated by the channel. Alternatively, an “in-
direct” approach can be adopted, where the system matrix P
defined in (4) is first identified and then used for construct-
ing the nonlinear detector. This indirect approach has the
advantage of requiring a significantly shorter training time,
since estimating the channel matrix needs a shorter training
sequence than estimating the noiseless channel states that de-
fine RBF centers. This indirect approach is not applicable in
the SDMA assisted multiuser downlink, since the receiver in
this case only has access to the one desired user’s training se-
quence. However, this indirect scheme becomes attractive in
the uplink, as the receiver has to detect all the users’ data and
has access to the training sequences of all the users. Moreover,
numerous complexity-reduction schemes can be adopted for
the RBF detector [21]. Indeed, it was demonstrated in [21]
that the complexity of the RBF detector may be rendered
comparable to that of classic linear detectors. For example,

decision feedback can be employed not only to improve the
performance significantly but also to reduce the complexity
dramatically of the RBF detector, similar to the case of single-
user channel equalization [18, 30]. This nonlinear detection
scheme designed for the SDMA assisted multiuser uplink is
currently under investigation.

APPENDICES

A. RELEVANCE VECTOR MACHINE METHOD

The posterior probability of the kernel detector weight vector
β is defined by

p(β|t,α) = p(t|β,α)p(β|α)

p(t|α)
, (A.1)

where p(β|α) is the prior with α = [α1 α2 · · · αN ]T de-
noting the vector of hyperparameters, p(t|β,α) is the likeli-
hood, and p(t|α) the evidence. Following the Bayesian clas-
sification framework [22, 23], the likelihood is expressed as

p(t|β,α)

=
N
∏

l=1

(

f
(

y
(

x(l)
)))(t(l)+1)/2(

1− f
(

y
(

x(l)
)))(1−t(l))/2

,
(A.2)

where

f (y) = 1

1 + exp(−y)
(A.3)
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is the logistic sigmoid function. The Gaussian prior is chosen:

p(β|α) =
N
∏

l=1

√
αl√
2π

exp

(

− αlβ
2
l

2

)

. (A.4)

As the marginal likelihood p(t|α) cannot be obtained analyt-
ically by integrating out the weights from (A.1), an iterative
procedure is necessitated [22].

With a fixed given α, the maximum a posteriori prob-

ability (MAP) solution β̂ can be obtained by maximizing
log(p(β|t,α)) or, equivalently, by minimizing the following
cost function:

J(β|t,α) =
N
∑

l=1

(

αlβ
2
l

2
− t(l) + 1

2
log
(

f
(

y
(

x(l)
)))

− 1− t(l)

2
log
(

1− f
(

y
(

x(l)
)))

)

.

(A.5)

The gradient of J with respect to β is

∇J = Aβ + Φ
T
(

f − 1

2

(

t + 1N
)

)

, (A.6)

where

A = diag
{

α1,α2, . . . ,αN
}

,

f =
[

f
(

y
(

x(1)
))

f
(

y
(

x(2)
))

· · · f
(

y
(

x(N)
))

]T
,

1N =
[

1 1 · · · 1
]T

,

(A.7)

and Φ is the regression matrix defined in (31). The Hessian
of J is

H = ∇2J = Φ
TBΦ + A, (A.8)

where

B = diag
{

f
(

y
(

x(1)
))(

1− f
(

y
(

x(1)
)))

, . . . ,

f
(

y
(

x(N)
))(

1− f
(

y
(

x(N)
)))}

.
(A.9)

The hyperparameters α are updated using

αnew
i = 1− αold

i γi,i

β̂2
i

(A.10)

with γi,i being the diagonal elements of Γ which is defined by

Γ =
(

H|β̂
)−1

. (A.11)

The following simple iterative procedure can be adopted
to construct a sparse RVM detector.

Initialization

The N × Nspa kernel matrix Φ is initialized with Nspa = N ,
that is, every training data point is considered as a candidate
kernel. Each weight βi is initially associated with the same
value of the hyperparameter αi.

Step 1. Given current value α, find β̂ by minimizing the cost
function (A.5). A simplified conjugate gradient algorithm
[26, 27] is used in our application.

Step 2. The hyperparameters are updated using (A.10). If a
αi > Lg, where Lg is a preset large positive value, Nspa :=
Nspa − 1, the corresponding column in Φ is removed, and
thus the corresponding weight βi and model term φi(·) are
pruned out the model.

Test

If the hyperparameters α remain sufficiently unchanged in
two successive iterations (no removal of hyperparameters) or
a preset maximum iteration number is reached, stop; other-
wise, go to Step 1.

B. ORTHOGONAL FORWARD SELECTION ALGORITHM

The modified Gram-Schmidt orthogonalization procedure
[31] calculates the D matrix row by row and orthogonal-
izes Φ as follows: at the lth stage, make the columns φi,
l + 1 ≤ i ≤ N , orthogonal to the lth column and repeat the

operation for 1 ≤ l ≤ N − 1. Specifically, denoting φ
(0)
i = φi,

1 ≤ i ≤ N , then

ul = φ
(l−1)
l ,

dl,i =
uT
l φ

(l−1)
i

(

uT
l ul
) , l + 1 ≤ i ≤ N ,

φ
(l)
i = φ

(l−1)
i − dl,iul, l + 1 ≤ i ≤ N ,

(B.1)

where l = 1, 2, . . . ,N − 1.
The last stage of the procedure is simply uN = φ

(N−1)
N .

The elements of g are computed by transforming t(0) = t in a
similar way:

gl =
uT
l t(l−1)

(

uT
l ul

) ,

t(l) = t(l−1) − glul,

(B.2)

where 1 ≤ l ≤ N .
This orthogonalization scheme can be used to derive a

simple and efficient algorithm for selecting subset models in
a forward-regression manner [31]. First define

Φ
(l−1) =

[

u1 · · ·ul−1 φ
(l−1)
l · · ·φ(l−1)

N

]

. (B.3)

If some of the columns φ
(l−1)
l , . . . ,φ(l−1)

N in Φ
(l−1) have

been interchanged, this will still be referred to as Φ
(l−1)

for notational convenience. With the notation φ(l−1)
q =

[φ(l−1)
1,q φ(l−1)

2,q · · · φ(l−1)
N ,q ]T , the lth stage of the selection

procedure is given as follows.
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Step 1. For l ≤ q ≤ N , compute

m
(q)
+,l =

1

N+

N
∑

i=1

δ
(

t(i)− 1
)

φ(l−1)
i,q ,

(

σ
(q)
+,l

)2
= 1

N+

N
∑

i=1

δ
(

t(i)− 1
)

(

φ(l−1)
i,q −m

(q)
+,l

)2
,

m
(q)
−,l =

1

N−

N
∑

i=1

δ
(

t(i) + 1
)

φ(l−1)
i,q ,

(

σ
(q)
−,l

)2
= 1

N−

N
∑

i=1

δ
(

t(i) + 1
)

(

φ(l−1)
i,q −m

(q)
−,l

)2
,

F
(q)
l =

(

m
(q)
+,l −m

(q)
−,l

)2

(

σ
(q)
+,l

)2
+
(

σ
(q)
−,l

)2 .

(B.4)

Step 2. Find

Fl = F
(ql)
l = max

{

F
(q)
l , l ≤ q ≤ N

}

. (B.5)

Then the qlth column of Φ(l−1) is interchanged with the lth

column of Φ(l−1), and the qlth column of D is interchanged
with the lth column of D up to the (l − 1)th row. This effec-
tively selects the qlth candidate as the lth kernel term in the
subset model.

Step 3. Perform the orthogonalization as indicated in (B.1)

to derive the lth row of D and to transform Φ
(l−1) into Φ

(l).
Calculate gl and update t(l−1) into t(l) in the way shown in
(B.2).

The selection is terminated at the Nspa stage when the
criterion (38) is satisfied and this produces a sparse subset
model containing Nspa significant kernel terms.
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