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Common to all DMT/OFDM systems is a large peak-to-average ratio (PAR), which can lead to low power efficiency and nonlinear
distortion. Tone reservation uses unused or reserved tones to design a peak-canceling signal to lower the PAR of a transmit block.
In DMT ADSL systems, the power allocated to these tones may be limited due to crosstalk issues with many users in one twisted
pair bundle. This PSD limitation not only limits PAR reduction ability, but also makes the optimization problemmore challenging
to solve. Extending the recently proposed active set tone reservation method, we develop an efficient algorithm with performance
close to the optimal solution.
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1. INTRODUCTION

Communication systems using multicarrier modulation
have recently become widely used both in wireless (DVB-T,
DAB, IEEE 802.11a) and wireline (ADSL, VDSL) environ-
ments [1, 2, 3]. Multicarrier systems have distinct advantages
over single-carrier systems, but suffer from a serious draw-
back: the approximately Gaussian-distributed output sam-
ples cause a high peak-to-average ratio (PAR) that results in
low power efficiency and possible nonlinear distortion.

In order to alleviate this PAR problem, many researchers
have made efforts to reduce large signal peaks through a va-
riety of PAR reduction methods [4, 5, 6, 7, 8, 9, 10]. A tech-
nique known as tone reservation was initially developed in
[4, 5] and is well suited for discrete multitone modulation
(DMT) ADSL systems over twisted pair copper wiring. A

common phenomenon of this environment is a distance-
dependent rolloff of the channel transfer function power
with increasing frequency, resulting in upper frequency sub-
channels having very low SNRs and being incapable of reli-
ably transmitting data. An additive peak-canceling signal can
be constructed from these dataless tones, as in [4, 5], to help
reduce the PAR problem. Further developed tone reservation
algorithms have been presented in [11, 12, 13, 14, 15, 16, 17,
18].

In ADSL and other practical systems, the peak-reduction
signal may be power limited on each of the reserved tones
due to crosstalk constraints with many users being serviced
in one twisted pair bundle. This is, for instance, manifested
in the recent ADSL2 standard [19] as a −10dB PSD limit
on the reserved tones compared to the data-carrying tones.
This PSD constraint on the tones can change the theoretical
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Figure 1: Addition of a PAR reduction signal, c[n], that counteracts
the peaks in x[n]. The signal c[n], comprised of a small subset of
tones, is a function of the data signal x[n].

ability of tone reservation to reduce the PAR [20, 21] as well
as the complexity versus performance tradeoff for practical
algorithms.

In this paper, we analyze the PSD-constrained tone reser-
vation problem and its complexity versus performance trade-
off. We extend the recently proposed active set tone reser-
vation approach [16] to handle PSD constraints. Results are
analyzed and compared to performance bounds, and com-
putational complexity and algorithm alteration are detailed.
In Section 2, we define the system and data model, give a de-
scription of the active set PAR reduction algorithm, and in-
troduce PSD-constrained tone reservation. Extension of the
active set approach to the PSD-constrained case is presented
and analyzed in Section 3, followed by simulation results pre-
sented in Section 4.

2. DMT AND TONE RESERVATION

A DMT system uses a symbol length of N samples, which
is typically 512 samples in the ADSL downstream direction.
Although these samples uniquely define a signal block, when
considering the PAR of the analog signal, peak regrowth [16,
17, 18] between the sampling points upon digital-to-analog
(D/A) conversion has to be considered. Oversampling of the
digital signal is a viable approach.

Figure 1 schematically describes the reduction approach.
A reduction signal c[n] is added to the original data signal
x[n], and is constructed of dataless tones that either cannot
transmit data reliably (due to low SNRs) or are explicitly re-
served by the system for PAR reduction. For example, in the
ADSL2 standard, the mechanism for this is to exclude the
reserved tones from the supported set of data tones during
startup. The goal for the PAR reduction algorithm is to make
the resulting signal, x̄[n] = x[n]+c[n], have a smaller ampli-
tude span than x[n]. If the reduction signal is constructed of
tones with low SNRs, the reduction signal c[n] may be atten-
uated before arriving at the receiver. This makes tone reserva-
tion using low SNR tones mainly applicable to reducing the
transmitter side PAR.

The PAR is defined as

PAR{x̄} = maxn
∣∣x[n] + c[n]

∣∣2
E
[∣∣x[n]∣∣2] , (1)

where the average power in the denominator is that of the

data-bearing signal before PAR reduction is applied.1 We de-
fine

x̄[n] = x[n] + c[n]

= 1√
N

N−1∑
k=0

(
Xk + Ck

)
e j2πkn/N ,

(2)

whereXk represents the data symbols andCk the FFT domain
PAR reduction signal. On a given DMT tone, one of them has
to be zero to maintain distortionless data transmission

Xk + Ck =


Xk, k ∈Uc,

Ck, k ∈U,
(3)

whereUc represents the set of data-bearing subchannels and
U represents the set of available subchannels for PAR reduc-
tion.

Let xL denote the data signal of one symbol block and let
cL denote the additive peak-reduction signal generated from
the tone set U, both oversampled to L times the nominal
sample rate. We focus on the specific case of a real baseband
DMT system, where the data and reduction signals can be
expressed as weighted sums of real-valued sinusoids and cos-
inusoids. In matrix form, we can write cL = Q̌LČ, where Q̌L

is an NL× 2U matrix of sinusoidal and cosinusoidal column
vectors with frequencies specified by the U reserved tones
t1, . . . , tU ,

Q̌L(i, j) =



cos

2π(i− 1)t( j+1)/2
NL

, i odd,

sin
2π(i− 1)t j/2

NL
, i even,

(4)

and Č is a length 2U vector with the weights of these
(co)sinusoids,

Č(i) =




2√
N

Re
{
Ct(i+1)/2

}
, i odd,

− 2√
N

Im
{
Cti/2

}
, i even.

(5)

For this real-valued case, minimizing the peak magnitude of
the resulting signal, equivalent to minimizing its peak power,
can be formulated as the linear program [5]

minimize γ

subject to



xL + Q̌LČ ≤ γ,

−xL − Q̌LČ ≤ γ.

(6)

2.1. Tone selection

It is desired that reduction signal cL cancels out the peaks
in the data signal xL as best as possible. Total cancellation,

1Although it is mainly referred to as the PAR problem, the real issue is the
peak power at the high power amplifier (HPA), in DSL systems commonly
called the line driver. Reducing the PAR by inflating the average power does
not help. The average power is simply a way of normalizing peak power re-
sults, and this normalization factor should remain constant for comparison
purposes.
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cL = −xL, is naturally impossible, and an alternative, yet
still unrealistic, goal is to drive the signal towards a PAR of
0 dB (i.e., the peak power and average power are equal). This
tight control of the signal requires a large portion of the fre-
quency band. In general, more reserved tones lead to a lower
PAR, and therefore, a tradeoff exists between data through-
put and PAR [22]. A choice must be made as to which tones
will be used for PAR reduction rather than data transmis-
sion. If the system is able to freely choose, the distribution of
these tones over the system bandwidth has a significant im-
pact on PAR reduction ability. In general, with no power con-
straints on the reduction tones, an uneven, spread-out place-
ment (e.g., generated by a random selection of tones) allows
for very good PAR reduction [5, 23]. A significant perfor-
mance loss, however, results by placing the reduction tones
as a contiguous block or uniformly distributed over the en-
tire bandwidth.

In wireline DMT systems, it is preferred to use those
tones which cannot send data reliably due to insufficient
SNRs, thereby maintaining the same throughput level. Gen-
erally, these tones are in the uppermost frequencies, and tend
to resemble a contiguous block of tones, which is not a good
tone set in terms of performance. An alternative is to reduce
the system throughput by sacrificing some tones for peak re-
duction and achieving an uneven, spread-out placement. We
will consider these two extreme cases of tone placement. In
practice, a combination of these may turn out to be the most
attractive choice.

After determining the set of reserved tones, the reduction
signal cL is created from a nominal peak-reduction kernel p
[5], formed by projecting an impulse at n = 0 onto the set
of tones U. This corresponds to the least squares approxi-
mation of the impulse with equal weight on each reduction
tone. Other forms of p generated by different criteria, such as
minimizing the size of their sidelobes, have been suggested in
[5].

2.2. Active set tone reservation

The linear program in (6) can be solved with a simplex
method, but is expensive with a complexity of O(N2L2) op-
erations. Computationally efficientO(NL) approaches based
upon projection-onto convex sets (POCS) and gradient pro-
jection were developed in [4, 5], respectively, but suffer from
slow convergence. A recentO(NL) approach [13, 16] was de-
veloped based on active set methods [24] and exhibits rapid
convergence towards a minimax PAR solution. Whereas a fi-
nite number of iterations will achieve the optimal PAR level
γ∗ for the given tone set, a very good suboptimal solution
can be achieved in two or three iterations, making this an at-
tractive practical solution.

As in the gradient project and POCS approaches, the ac-
tive set approach reduces the PAR through the use of the ker-
nel p. Circularly shifted versions of this kernel, p〈·〉, also lie in
the signal space generated from U, allowing easy reduction
of a peak at an arbitrary sample location.

Beginning with the sample of largest magnitude γ0 at lo-
cation n0, the peak is reduced by subtracting a scaled version
of p〈n0〉 until a second peak at some location n1 is balanced

with it at some magnitude γ1 < γ0. These two peaks are then
reduced equally through a linear combination of p〈n0〉 and
p〈n1〉 until a third peak is balanced. These three peaks are re-
duced equally until a fourth is balanced, and so forth. When
a sample is at the peak magnitude, it signifies an active in-
equality constraint (i.e., strictly equal) in (6), and the active
set approach is therefore building a set of active constraints.
Mathematically, the iteration updates can be written as

x̄(i) = x̄(i−1) − µ(i)p̂(i), (7)

where x̄(i) represents the signal after the ith iteration, p̂(i) is
the descent direction in the ith iteration, and µ(i) represents
the descent step size.

At the start of the ith iteration, there will be i peaks which
are balanced at locations n0,n1, . . . ,ni−1. To keep these peaks
balanced, the next iteration descent must satisfy

p̂(i)nk = sign
(
x̄(i)nk
) = Snk , k = 0, 1, . . . , i− 1, (8)

with the assumption that we scale p̂(i) to have unit magni-
tude in locations corresponding to the active set of peaks. No
matter what value of µ(i) is chosen, the magnitudes of the
peaks at n0,n1, . . . ,ni−1 will remain equal. The p̂ni values can
be calculated as

p̂(i) =
i−1∑
k=0

α(i)k p〈nk〉, (9)

where the α(i)k are computed by solving the i × i system of
equations




1 pn0−n1 · · · pn0−ni−1
pn1−n0 1 · · · pn1−ni−1

...
...

. . .
...

pni−1−n0 pni−1−n1 · · · 1







α(i)0

α(i)1
...

α(i)i−1



=




Sn0
Sn1
...

Sni−1



. (10)

This requires an i × i matrix inverse, but in practical imple-
mentations, i will typically be at most 3, and the inverse cost
is then insignificant relative to the total iteration complexity.
Furthermore, efficient inverse techniques [25] can be applied
as in addition to being symmetric (due to the symmetry of
p), the matrix in a given iteration is contained in the matrix
for the next iteration.

The step size µ(i) required to balance the next active peak
is determined by testing samples as follows2 (see [15, 16] for
more details),

µ(i) = min
q /∈A


 γ(i−1) − ∣∣x̄(i−1)q

∣∣
1− sign

(
x̄(i−1)q

)
p̂(i)q

≥ 0


, (11)

whereA represents the set of samples in the active set. Strate-
gies exist [15, 16] to reduce the sample testing complexity

2The min(· ≥ 0) notation means to take the minimum over the nonneg-
ative elements.
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as the structure of x̄(i) and p̂(i) can be exploited to elimi-
nate many potential samples from consideration. For prac-
tical implementation, the division operation can be replaced
by a multiplication with the output of a prestored inverse

lookup table to approximate 1/(1 − sign(x̄(i−1)q ) p̂(i)q ). Exact
values are not needed for comparison purposes, and there-
fore, a dense lookup table is not required.

2.3. PSD-constrained tone reservation

Solving (6) for the optimum PAR value will in many cases
cause the power on the reduction tones to grow immensely
as the very last bits of reduction performance require large
reduction signals. A standardized system generally has to fol-
low certain PSD constraints on data tones. Similar rules are
applicable for reduction tones as well, especially in wireline
systems where crosstalk exists and the effect on other users
should be kept to a minimum. Thus, a system may have to
abide by instantaneous and/or average power constraints on
the reserved tones.

What the PSD constraint should be is a system design
issue based upon factors such as crosstalk and power con-
sumption or, in practice, often determined by a standard.
In the new ADSL2 ITU-T Recommendation [19, Figure 8-
19/G.992.3], passband tones are under strict control and can
be grouped into different categories: one group of tones is for
data transmission and another group consists of monitored
tones for receiver functions (e.g., channel estimation). Both
of these groups belong to themedley set. Tones that are not in
the medley set have a PSD restriction 10 dB below the nom-
inal PSD level and these are the tones that can be used for
PAR reduction.

Since the PSD is a measurement averaged over time, the
power on the tones may be allowed to vary from symbol to
symbol, and the instantaneous power of a symbol may there-
fore exceed the PSD constraint. As an example, consider a
target PAR value of 12 dB and the uppermost probability
curves for unreduced signals shown in Figures 4 to 9. It fol-
lows that approximately 8% of the symbols require PAR re-
duction, and due to averaging, a revised PSD constraint on
the reserved tones can be determined. If PAR reduction is
employed for only 8% of the symbols, we can allow an av-
erage reserved tone power 10 log(1/0.08) ≈ 11dB above its
overall −10dB PSD constraint. This results in a revised PSD
constraint on the reserved tones −10dB + 11dB = +1dB
above the nominal PSD mask for the ADSL2 system.

When processing one symbol at a time, however, a peak
power constraint per tone for each symbol is much easier to
deal with than an averaged PSD constraint. Using this power
constraint can cause the averaged PSD figure to be somewhat
less than this peak constraint. Nevertheless, for a given peak
power constraint per tone, a corresponding averaged PSD
level can be determined experimentally for a specific system,
and the constraints can then be interchanged. In the rest of
this paper, we consider the peak power limitation, or instan-
taneous PSD constraint, on each tone rather than a PSD as a
result of averaging.

Incorporating the power constraint on each tone, the
PSD restriction becomes part of (6) in the form of a quad-

ratic constraint:

minimize γ

subject to




xL + Q̌LČ ≤ γ,

−xL − Q̌LČ ≤ γ,

Č2
(2l−1) + Č2

(2l) ≤ A2
l,max,

(12)

where Al,max is the limitation in amplitude on tone tl. Due
to the introduction of quadratic constraints, the problem is
no longer a linear program, but instead a quadratically con-
strained quadratic program (QCQP).

3. PSD-CONSTRAINED ACTIVE SET APPROACH

3.1. Modifications for PSD constraints

If the active set algorithm is to be used in the PSD-
constrained case, it must be modified. Letting Čl denote the
lth element of Č (including both cosine and sine parts), the
total weight on tone tl after iteration i can be described as

Č(i)
l = Č(i−1)

l + ∆Č(i)
l , (13)

where the increments ∆Č(i)
l in each iteration include the ef-

fect from reducing one additional peak. Using the step size

µ(i) and weighting α(i)k from (9), the increments ∆Č(i)
l can be

expressed in cosine and sine components.

∆Č(i)
l =

[
∆Č(i)

l,cos ∆Č(i)
l,sin

]

= Kµ(i)
i−1∑
k=0

α(i)k

[
cos
(

2πtlnk
NL

)
sin
(

2πtlnk
NL

)]
,

(14)

where K is a known constant that results from normalizing p
so that p0 = 1. We can think of three main outcomes when
performing an active set iteration at an instance where none
of the PSD constraints have been met or exceeded.

(1) A new peak is balanced and no PSD constraints are met.
This is the same case as with no PSD constraint. The
algorithm can continue with its next step.

(2) All tones meet/exceed the PSD constraints at the same
time.This happens when reducing one peak and reach-
ing the PSD constraint before a second active peak is
encountered.

(3) Some tones meet/exceed the PSD constraint. This can
happen when two or more peaks are already balanced.
Then different tones will likely have different magni-
tudes, see Figure 2.

For case (1), the algorithm will be identical to what is de-
scribed in Section 2.2. For case (2), the algorithm merely
takes the step µmax that fills all subchannels to the PSD con-
straint, and the optimal solution has been reached.

The interesting question is what to do in case (3), as some
of the tones have filled up or gone past their PSD constraints,
while others are still available for further reduction. The µ de-
scent can easily be scaled back to where the first tone reaches
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2

1

Tone t2

21

Tone t1

Figure 2: Addition of the tone weights for reduction of two dif-
ferent peaks can cause the PSD constraint to be reached on certain
tones before others.

the PSD constraint, that tone can be frozen, and the remain-
ing tones can be used for PAR reduction for subsequent iter-
ations. This process can be repeated until all tones reach the
PSD constraint. We note that an iteration now refers to the
operations performed to reach either a new active peak or a
new tone that meets the PSD constraint.

3.2. Cost-versus-performance issues

It can be expected that once any tone reaches the PSD con-
straint, many or all of the remaining tones are not far from
reaching it as well. At this point, the problem is that conver-
gence speed (i.e., additional PAR reduction per iteration) is
severely reduced as a new iteration must be performed to the
point where either a new tone reaches the PSD constraint or
a new active peak is encountered.

After each new tone reaches the PSD constraint and
is shut off, the set U changes and a new nominal peak-
reduction kernel p needs to be recomputed. Rather than
compute the projection of an impulse onto the remaining
tones, the contribution of the removed tone can just be sub-
tracted (using NL operations) from the latest p.

3.3. Low complexity algorithm

The cost-versus-performance tradeoff dictates that it may
not be worth iterating beyond the point where the first tone
reaches the PSD constraint, and therefore not utilizing the
available remaining power in the other tones. This low com-
plexity approach saves a lot of computation and results in
only a small performance loss from the optimal solution as
simulations show in the next section. The complexity of this
extended algorithm is the same as the unconstrained active
set approach with an additional extra cost of keeping track of
the signal power in each tone. This cost is insignificant com-
pared to the rest of the algorithm since U 	 NL.

During each iteration, a new p̂(i) is created according to
(9), and in parallel to that, the new signal in each tone is cal-
culated, based on the additional contributions according to
(14). Before applying (7) and potentially wasting operations,
2U multiplies and U adds are used to check the tones pow-
ers against the PSD constraint. If any of the tones exceeds
the PSD constraint, µ(i) must be scaled back to find the point
where the PSD constraint is met with one or more tones. The

A l
,m
ax

cos component

sin component

Figure 3: Linear approximation of the quadratic magnitude con-
straints. An octagon is shown here, but a polygon with a larger num-
ber of sides can be used for a better approximation.

quadratic equation

∣∣∣C(i−1)
l + βlµ

(i)∆C(i)
l

∣∣∣2 = A2
l,max (15)

is solved for βl for the tone(s) exceeding the PSD constraint,
and the minimum βl value is chosen to scale µ(i). This mod-
ified step size is then used in (7) to compute the final PAR-
reduced signal.

3.4. Performance bounds

It is important to gauge how much performance is lost when
using this low complexity algorithm that halts PAR reduc-
tion once any tone reaches the PSD constraint. Three lower
bounds on achievable PAR level are now presented.

3.4.1. Bound onminimumPAR

The resulting PAR level after the low complexity algorithm
can be compared to the optimal solution of (12). This equa-
tion represents a QCQP, and still is a convex problem. Lin-
ear approximations of the quadratic constraint (see Figure 3)
can be employed to transform the problem back to lin-
ear programming form [21], in order to solve the prob-
lem with linear programming algorithms. Thereby, a per-
formance bound3 can be computed through simulations. It
should be noted that this bound on the optimal solution is
extremely tight when used with polygons of 16 sides and
larger.

3.4.2. Amax bound

The constraint on maximum power per tone (equivalent to
a constraint on the maximummagnitude) results in limiting
the magnitude of the peak-reduction signal to Amax, where

Amax =
U∑
l=1

Al,max. (16)

We assume that an arbitrary peak-reduction signal can be
created, with the only limitation being that its amplitude is

3The polygonal approximation completely bounds the circle, thus, the
resulting performance will be at least as good as the quadratically con-
strained optimal solution.
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between −Amax and Amax. As a result, starting with a symbol
with peak level max |xL[n]|, the peak level can at best be re-
duced down to max |xL[n]| − Amax. Since this model admits
additional degrees of freedom compared to the true reduc-
tion signal, it serves as a lower bound on the achievable PAR
level. Given a peak value for a symbol block, this can be ex-
pressed as

max
∣∣x̄L∣∣ = max

∣∣xL + cL
∣∣ ≥ max

∣∣xL∣∣− Amax. (17)

ThisAmax bound shows that when the PSD constraint is quite
restrictive and only a small number of tones are reserved,
PAR reduction performance is severely limited, even with an
arbitrary choice of reduction tones [20, 21]. In this case, a
choice of tones discarding the minimum amount of data ca-
pacity may be the most favorable.

3.4.3. 2-Bound

The Amax bound from (17) corresponds to the achieved peak
level when all tones are filled in order to reduce the largest
peak in xL. A similar bound can be computed after the ac-
tive set approach has already performed its first iteration. The
two balanced peaks can be reduced (without any regard for
the other samples, and thus making a bound) until all tones
meet the PSD constraint. This bound, which we refer to as
the 2-bound, is simple to simulate because α0 and α1 must be
of equal magnitude due to the symmetry of p.

4. SIMULATIONS

A DMT system with symbol length N = 512 is simulated
with tones 33–255 used for either data transmission or PAR
reduction (these system parameters are the same for down-
link ADSL transmission). Each of the data-carrying tones
uses a 1024-point QAM constellation. Before active set pro-
cessing, the signals have been oversampled by the factor
L = 4 to limit analog peak-regrowth effects upon digital-to-
analog conversion. It has been observed that operating on the
digital L = 1 signal does not provide any worthwhile PAR re-
duction performance at the analog signal [15]. Oversampling
to L = 4 makes the computational cost increase by a factor
of 4, although L = 2 could be employed for a performance
decrease which varies based upon the number of tones, their
locations, and PSD constraints.

As described in Section 2.3, the averaged PSD constraint
for the reduction tones could be set to about 1 dB above the
nominal PSD mask for the given example. We now use this
figure as a guideline for the instantaneous PSD mask in the
following simulations. To illustrate the effects when varying
the maximum reduction power per tone, the simulations will
first use a restrictive constraint set at the nominal PSD mask,
and then use a looser mask, where the magnitude is increased
by 50% (+3.5dB).

We view the forthcoming PAR results on a per-symbol
basis using the simulated probability that at least one sam-
ple in a symbol block exceeds a certain PAR level. This corre-
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Figure 4: Symbol clip probability for 12 PAR reduction tones, cho-
sen as a contiguous block of the highest tones. Up to four active set
iterations are applied, but the algorithm stops once any tone hits
the PSD constraint. The three leftmost curves represent optimal so-
lution bounds.

sponds to taking the maximum value over one symbol in (1),
thereby reflecting the probability that a symbol is transmitted
with distortion. This clip probability also is commonly used
in the literature. A viable alternative would be to evaluate the
clip probability of each individual sample, which reflects the
percentage of time the transmitted signal is clipped.

4.1. Block placed tones

4.1.1. Restrictive PSD constraint

Figure 4 shows simulations with the upper block of 12 tones
(number 244–255) used for PAR reduction and subjected to
an instantaneous PSD constraint equal to the nominal PSD
level for the data tones. The curves show the reduction per-
formance using the extended active set algorithm, stopping
as soon as any PSD constraint is reached. Shown on the verti-
cal axis is the probability that the time domain symbol block
x̄L would be clipped if subjected to a clip level γc on the x-
axis, that is,

Prob
(
PAR

{
x̄L
}
> γc

)
. (18)

Starting at the rightmost line, corresponding to the clip prob-
ability of an unreduced symbol, curves representing itera-
tions one through four are shown.

The two leftmost curves show the lower bounds from
Section 3.4 (Amax bound and 2-bound), which the simu-
lations cannot cross. The third lowest curve, dashed and
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Figure 5: Symbol clip probability for PAR reduction with the 12
highest tones. The PSD constraint allows 50% higher magnitude
per tone than in Figure 4. The reduction performance shows only a
small gain compared to Figure 4, showing that this placement can-
not take much advantage of the loosened PSD constraint.

ending at a clip probability of 3 · 10−4 is the PAR achieved by
finding the minimum value of (6) with linearized quadratic
constraints (a 32-sided polygon, cf. Figure 3) and using the
same upper block of 12 tones. This curve will also serve as
a bound for the suboptimal algorithm, but due to its much
larger complexity, this curve has not been simulated for the
lower clip probabilities.

Looking at the performance of the low complexity algo-
rithm, we see that for the higher clip probabilities, there is
a performance gain of about 0.15dB going beyond two iter-
ations, and an additional 0.1dB compared to the minimum
PAR bound (dashed line). At the lower clip probabilities, we
see that the curves converge towards the Amax bound from
(17).

Here we see a situation where a restrictive PSD constraint
and a small number of reduction tones set a limit on the
achievable PAR level. The reduction performance is limited
by the Amax bound, and not necessarily by the block place-
ment reduction performance. The low complexity algorithm
provides near-optimal performance at a very low cost for this
system.

4.1.2. Loosening the PSD constraint

In Figure 5, the PSD constraint is increased by 50% in mag-
nitude for each tone. Comparing the figures, we see that
the lower bound decreases due to an increase of the max-
imum reduction signal. However, the simulated reduction
performance, including the optimal solution, increases by
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Figure 6: Symbol clip probability for PAR reduction with the
24 highest tones with the same PSD constraint used in Figure 4.
The simulations indicate only a small reduction gain compared to
Figure 4, showing that adding extra tones to the reserved block does
not help PAR reduction much.

only about 0.3dB. The block placement simply cannot take
advantage of the increased reduction power, and is the real
limiting factor in this case. Looking at the performance of
the low complexity algorithm, we see that its loss compared
to the minimum PAR bound is about 0.2dB.

4.1.3. Increasing the number of tones

Figure 6 shows results for when the upper block of 24 tones
are used for PAR reduction along with the same PSD con-
straint as in Figure 4. Looking at the figure, we see that
the gain from 12 to 24 tones is only about 0.4dB, which is
small considering that the maximum reduction magnitude
has been doubled (the Amax bound is significantly lower). In
this situation, however, we see that after 4 active set itera-
tions, we are about 0.2dB from the minimum PAR bound at
higher probabilities, thus telling us that further iterations are
likely not worth the significant cost to achieve it.

4.2. Randomly chosen tones

We have seen that even when constraints (PSD limit or num-
ber of tones) are loosened, a bad tone set selection can still be
a limiting factor. Now a more “spread-out” toneset is evalu-
ated, where the reserved tones are randomly selected in the
interval from 33 to 255 inclusive.

4.2.1. Restrictive PSD constraint

Figure 7 shows similar simulations as Figure 4, using the re-
strictive instantaneous PSD constraint, equal to the average
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Figure 7: Symbol clip probability for 12 randomly chosen PAR re-
duction tones. The three lowest curves show bounds on the achiev-
able performance as in previous simulations.
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Figure 8: Symbol clip probability for PAR reduction with 12 ran-
dom tones. The PSD constraint allows 50% higher magnitude per
tone than in Figure 7.

power mask for the data tones. Looking at the figure, the iter-
ations quickly converge to within 0.1dB of the Amax bound,
and the performance is only slightly better than for block
placed tones. Here the Amax bound effectively sets the limi-
tation on system performance [20, 21].
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Figure 9: Symbol clip probability for PAR reduction with 24 ran-
dom tones with the same PSD constraint used in Figure 7.

4.2.2. Loosening the PSD constraint

Figure 8 shows the performance when the PSD constraint is
set to allow for a tone magnitude 50% higher than before.
The reduction performance has increased thanks to more al-
lowed power. At the lower clip probabilities, the gains are
close to 1 dB compared to Figure 7, and the active set re-
sults are very close to the performance bounds. At higher clip
probabilities, the gains are close to 0.5dB, but are a noticeable
distance from the very tight minimum-PAR bound. This is
only a minor issue, since in these regions, the PAR level after
3 or 4 iterations is already rather low.

4.2.3. Increasing the number of tones

Finally, Figure 9 shows simulations using 24 randomly cho-
sen tones, with the restrictive PSD constraint. Due to the su-
perior reduction ability for this placement type, the resulting
PAR level is clearly lower than in the previous simulation.
The allowed Amax is 100% higher here than with half the
number of tones, and we see that a larger number of active
set iterations may be needed to achieve PAR levels very close
to the optimal solution. However, when considering lower
clip probabilities, the 4th active set iteration is not very far
from the 2-bound.

5. CONCLUSIONS

Introducing PSD constraints into tone reservation affects the
achievable PAR reduction and significantly alters the comp-
lexity-versus-performance tradeoff for practical algorithms.
The results in this paper show the impact that PSD con-
straints have on tone reservation performance, and it is clear
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that the effect when using randomly chosen tone sets is more
severe than for contiguous tone sets.

A low complexity suboptimal solution has been pre-
sented, and results show that its performance is close to opti-
mal solution bounds. Since small performance increases in-
cur a major computation cost (greater than the low complex-
ity algorithm itself), we assert that our proposed approach
gives a very good tradeoff of complexity and PAR reduction.

To evaluate whether the oversampling of L = 4 is suffi-
cient, the signals were oversampled by an additional factor
of 4 after reduction. The peak regrowth has been observed
to be less than 0.2dB. Further studies could also include the
effect on peak regrowth after the filter chain present in the
transmitter [16, 17, 18].

An important special case results when a nonuniform
PSD constraint is given, that is, more power is allowed on
some reserved tones than others. In this case, certain tones
may reach their PSD constraint much sooner than the rest,
and sizeable performance gains beyond this stoppage point
may still exist. An intelligent approach may be to modify the
formation of p by weighting the impulse projection onto the
tones according to the nonuniformity of the PSD mask. In
this way, the more restricted tones do not reach their PSD
constraint with greater ease than the others.

Although the real baseband DMT case is the main focus
of this paper, the principles can also be applied to the com-
plex baseband case (for wireless OFDM systems), as an ac-
tive set approach for this case has already been developed in
[14, 16]. The problem with tone reservation in wireless sys-
tems is that it may not be desirable to sacrifice data tones in a
fading channel. However, it is possible that in a fixed wireless
scenario (with a slowly varying channel), channel state feed-
back could be employed and certain subchannels with low
SNRs could be used for tone reservation.
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performance bound on PSD-constrained PAR reduction,” in
Proc. IEEE International Conference on Communications, pp.
3498–3502, Anchorage, Alaska, USA, May 2003.

[21] N. Petersson, Peak and power reduction inmulticarrier systems,
Licentiate thesis, Lund University, Lund, Sweden, November
2002.
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