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The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates sam-
ples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaus-
sian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman
filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a
newMonte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or
hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion,
beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly
drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can
be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel
mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading
channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

Keywords and phrases: sequential Monte Carlo, mixture Kalman filter, multilevel mixture Kalman filter, delayed-sample method.

1. INTRODUCTION

Recently there have been significant interests in the use of
the sequential Monte Carlo (SMC) methods to solve on-
line estimation and prediction problems in dynamic systems.
Compared with the traditional filtering methods, the sim-
ple, flexible—yet powerful—SMC provides effective means
to overcome the computational difficulties in dealing with
nonlinear dynamic models. The basic idea of the SMC tech-
nique is the recursive use of the sequential importance sam-
pling (SIS). There also have been many recent modifications
and improvements on the SMCmethodology [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12].

Among these SMC methods, the mixture Kalman filter
(MKF) [3] is a powerful tool to deal with conditional dy-
namic linear models (CDLMs) and finds important applica-
tions in digital wireless communications [3, 13, 14]. A sim-
ilar method is also discussed in [15] for CDLM system. The
CDLM is a direct generalization of the dynamic linear model

(DLM) [16] and it can be generally described as follows:

xt = Fλtxt−1 +Gλtut ,

yt = Hλtxt +Kλtvt,
(1)

where ut ∼ N (0, I) and vt ∼ N (0, I) are the state and ob-
servation noise, respectively, and λt is a sequence of random
indicator variables which may form a Markov chain, but are
independent of ut and vt and the past xs and ys, s < t. The
matrices Fλt , Gλt ,Hλt , and Kλt are known, given λt .

An important feature of CDLM is that, given the trajec-
tory of the indicator {λt}, the system becomes Gaussian and
linear, for which the Kalman filter can be used. Thus, by us-
ing themarginalization technique forMonte Carlo computa-
tion [17], the MKF focuses on the sampling of the indicator
variable λt other than the whole state variable {xt , λt}. This
method can drastically reduce Monte Carlo variances associ-
ated with a standard sequential importance sampler applied
directly to the space of the state variable.
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Figure 1: Themultilevel structure of the 16-QAMmodulation used
in digital communications. The set of transmitted symbol A1 =
{si, j , i = 1, . . . , 4, j = 1, . . . , 4} is the original sampling space, and
the centers A2 = {c1, c2, c3, c4} constitute a higher-level sampling
space.

However, the computational complexity of the MKF can
be quite high, especially in the case of high-dimensional in-
dicator space, due to the need of marginalizing out the indi-
cator variables. Fortunately, often the space from which the
indicator variables take values exhibits multilevel or hierar-
chical structures, which can be exploited to reduce the com-
putational complexity of the MKF. For example, a multilevel
structure of the 16-QAMmodulation used in digital commu-
nications is shown in Figure 1. The set of transmitted sym-
bolsA1 = {si, j , i = 1, . . . , 4, j = 1, . . . , 4} is the original sam-
pling space, and the centers A2 = {c1, c2, c3, c4} constitute
a higher-level sampling space. Thus, based on the observed
data, for every sample stream, we first draw a sample (say
c1) from the higher-level sampling spaceA2 and then draw a
new sample from the associated subspaces s1,1, s1,2, s1,3, s1,4 of
c1 in the original sampling spaceA1. In this way, we need not
sample from the entire original sampling space, and many
Kalman filter update steps associated with the standard MKF
can be saved.

This kind of hierarchical structure imposed on the in-
dicator space is also employed in the partitioned sampling
strategy [18], which greatly improved the efficiency and the
accuracy for multiple target tracking over the original SMC
methods. However, in this paper, the hierarchical structure is
employed to reduce the computational load associated with
MKF, especially for high-dimensional indicator space, while
retaining the desirable properties of MKF.

Dynamic systems often possess strong memories, that is,
future observations can reveal substantial information about
the current state. Therefore, it is often beneficial to make use
of these future observations in sampling the current state.
However, anMKFmethod usually does not go back to regen-
erate past samples in view of the new observations, although
the past estimation can be adjusted by using the new impor-
tance weights. To overcome this difficulty, a delayed-sample
method is developed [13]. It makes use of future observa-
tions in generating samples of the current state. It is seen
there that this method is especially effective in improving

the performance of the MKF. However, the computational
complexity of the delayed-sample method is very high. For
example, for a ∆-step delayed-sample method, the algorith-
mic complexity is O(|A1|∆), where |A1| is the cardinality of
the original sampling space. Here, we also provide a delayed
multilevel MKF by exploring the multilevel structure of the
indicator space. Instead of exploring the original entire space
of future states, we only sample the future states in a higher-
level sampling space, thus significantly reducing the dimen-
sion of the search space and the computational complexity.

In recent years, the SMC methods have been success-
fully employed in several important problems in communi-
cations, such as the detection in flat-fading channels [13, 19,
20], space-time coding [21, 22], OFDM system [23], and so
on. To show the good performance of the proposed novel re-
ceivers, we apply them into the problem of adaptive detection
in flat-fading channels in the presence of Gaussian noise.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the MKF algorithm and its variants.
In Section 3, we present the multilevel MKF algorithm. In
Section 4, we treat the delayed multilevel MKF algorithm.
In Section 5, we provide simulation examples. Section 6 con-
cludes the paper.

2. BACKGROUNDOFMIXTURE KALMAN FILTER

2.1. Mixture Kalman filter

Consider again the CDLMs defined by (1). TheMKF exploits
the conditional Gaussian property conditioned on the indi-
cator variable and utilizes a marginalization operation to im-
prove the algorithmic efficiency. Instead of dealing with both
xt and λt , the MKF draws Monte Carlo samples only in the
indicator space and uses a mixture of Gaussian distributions
to approximate the target distribution. Compared with the
generic SMCmethod, theMKF is substantially more efficient
(e.g., it produces more accurate results with the same com-
putational resources).

First we define an important concept that is used
throughout the paper. A set of random samples and the
corresponding weights {(η(i),w(i))}mi=1 is said to be properly
weighted with respect to the distribution π(·) if, for any mea-
surable function h, we have∑m

j=1 h
(
η( j)
)
w( j)∑m

j=1w( j) −→ Eπ
{
h(η)

}
asm −→ ∞. (2)

In particular, if η( j) is sampled from a trial distribution
g(·) which has the same support as π, and if w( j) =
π(η( j))/g(η( j)), then {(η( j),w( j))}mj=1 is properly weighted
with respect to π(·).

Let Yt = (y0, y1, . . . , yt) and Λt = (λ0, λ1, . . . , λt). By re-
cursively generating a set of properly weighted random sam-

ples {(Λ( j)
t ,w

( j)
t )}mj=1 to represent p(Λt | Yt), the MKF ap-

proximates the target distribution p(xt | Yt) by a random
mixture of Gaussian distributions

m∑
j=1

w
( j)
t Nc

(
µ
( j)
t ,Σ

( j)
t

)
, (3)
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where

µ
( j)
t = µt

(
Λ
( j)
t

)
, Σ

( j)
t = Σt

(
Λ
( j)
t

)
(4)

are obtained with a Kalman filter on the system (1) for the

given indicator trajectory Λ
( j)
t . Denote

κ
( j)
t �

[
µ
( j)
t ,Σ

( j)
t

]
. (5)

Thus, a key step in the MKF is the production at time t of the

weighted samples of indicators {(Λ( j)
t , κ

( j)
t ,w

( j)
t )}mj=1 based

on the set of samples {(Λ( j)
t−1, κ

( j)
t−1,w

( j)
t−1)}mj=1 at the previous

time (t − 1). Suppose that the indicator λt takes values from
a finite setA1. The MKF algorithm is as follows.

Algorithm 1 (MKF). Suppose at time (t−1), a set of property
weighted samples {(Λ( j)

t−1, κ
( j)
t−1,w

( j)
t−1)}mj=1 is available with re-

spect to p(Λt−1 | Yt−1). Then at time t, as the new data yt
becomes available, the following steps are implemented to
update each weighted sample.

For j = 1, . . . ,m, the following steps are applied.

(i) Based on the new data yt , for each ai ∈A1, run a one-
step Kalman filter update assuming λt = ai to obtain

κ
( j)
t−1

yt , λt=ai−−−−−→ κ
( j)
t,i �

[
µt

(
Λ
( j)
t−1, λt = ai

)
,Σt

(
Λ
( j)
t−1, λt = ai

)]
.

(6)

(ii) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1,Yt

)
∝ p

(
yt | λt = ai,Λ

( j)
t−1,Yt−1

)
P
(
λt = ai | Λ( j)

t−1
)
.

(7)

Note that by the model (1), the first density in (7) is
Gaussian and can be computed based on the Kalman

filter update (6). Draw a sample λ
( j)
t according to the

above sampling density. Append λ
( j)
t to Λ

( j)
t−1 and ob-

tain Λ
( j)
t . If λ

( j)
t = ai, then set κ

( j)
t = κ

( j)
t,i .

(iii) Compute the importance weight

w
( j)
t = w

( j)
t−1 · p

(
yt | Λ( j)

t−1,Yt−1
)

∝ w
( j)
t−1 ·

|A1|∑
i=1

ρ
( j)
t,i .

(8)

The new sample {Λ( j)
t , κ

( j)
t ,w

( j)
t } is then properly

weighted with respect to p(Λt | Yt).
(iv) Perform a resampling step as discussed below.

2.2. Resampling procedure

The importance sampling weight w
( j)
t measures the “quality”

of the corresponding imputed indicator sequence Λ
( j)
t . A rel-

atively small weight implies that the sample is drawn far from
the main body of the posterior distribution and has a small
contribution in the final estimation. Such a sample is said

to be ineffective. If there are too many ineffective samples,
the Monte Carlo procedure becomes inefficient. To avoid the
degeneracy, a useful resampling procedure, which was sug-
gested in [7, 11], may be used. Roughly speaking, resampling
is tomultiply the streams with the larger importance weights,
while eliminating the ones with small importance weights.
A simple, but efficient, resampling procedure consists of the
following two steps.

(1) Sample a new set of streams {Λ̃( j)
t , µ̃( j)t , Σ̃

( j)
t }mj=1 from

{Λ( j)
t ,µ

( j)
t ,Σ

( j)
t }mj=1 with probability proportional to

the importance weights {w( j)
t }mj=1.

(2) To each stream in {Λ̃( j)
t , µ̃( j)t , Σ̃

( j)
t }mj=1, assign equal

weight, that is, w̃
( j)
t = 1/m, j = 1, . . . ,m.

Resampling can be done at every fixed-length time inter-
val (say, every five steps) or it can be conducted dynamically.
The effective sample size can be used to monitor the varia-
tion of the importance weights of the sample streams and to
decide when to resample as the system evolves. The effective
sample size is defined as in [13]:

m̄t � m

1 + υ2t
, (9)

where υt, the coefficient of variation, is given by

υ2t =
1
m

m∑
j=1

(
w
( j)
t

w̄t
− 1

)2

, (10)

with w̄t =
∑m

j=1w
( j)
t /m. In dynamic resampling, a resampling

step is performed once the effective sample size m̄t is below a
certain threshold.

Heuristically, resampling can provide chances for good
sample streams to amplify themselves and hence “rejuvenate”
the sampler to produce a better result for future states as
the system evolves. It can be shown that the samples drawn
by the above resampling procedure are also indeed properly
weighted with respect to p(Λt | Yt), provided that m is suf-
ficiently large. In practice, when small to modest m is used
(we use m = 50 in this paper), the resampling procedure
can be seen as a tradeoff between the bias and the variance.
That is, the new samples with their weights resulting from the
resampling procedure are only approximately proper, and
this introduces small bias in the Monte Carlo estimation. On
the other hand, however, resampling significantly reduces the
Monte Carlo variance for future samples.

2.3. Delayed estimation

Model (1) often exhibites strong memory. As a result, fu-
ture observations often contain information about the cur-
rent state. Hence a delayed estimate is usually more accurate
than the concurrent estimate. In delayed estimation, instead
of making inference on Λt instantaneously with the poste-
rior distribution p(Λt | Yt), we delay this inference to a later
time (t + ∆), ∆ > 0, with the distribution p(Λt | Yt+∆).
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As discussed in [13], there are primarily two approaches to
delayed estimation, namely, the delayed-weight method and
the delayed-sample method.

2.3.1. Delayed-weightmethod

In the concurrent MKF algorithm, if the set {(Λ( j)
t+δ ,w

( j)
t+δ)}mj=1

is properly weighted with respect to p(Λt+δ | Yt+δ), then
when we focus our attention on λt at time (t + δ), we have

that {(λ( j)t ,w
( j)
t+δ)}mj=1 is properly weighted with respect to

p(λt | Yt+δ). Then any inference about the indicator λt,
E{h(λt) | Yt+δ}, can be approximated by

E
{
h
(
λt
) | Yt+δ

}
∼= 1

Wt+δ

m∑
j=1

h
(
λ
( j)
t

)
w
( j)
t+δ , Wt+δ =

m∑
j=1

w
( j)
t+δ.

(11)

Since the weights {w( j)
t+δ}mj=1 contain information about the

future observations (yt+1, . . . , yt+δ), the estimate in (11) is
usually more accurate than the concurrent estimate. Note
that such a delayed estimation method incurs no additional
computational cost (i.e., CPU time), but it requires some ex-
tra memory for storing {λ( j)t , . . . , λ

( j)
t+δ}mj=1. For most systems,

this simple delayed-weight method is quite effective for im-
proving the performance over the concurrent method. How-
ever, if this method is not sufficient for exploiting the con-
straint structures of the indicator variable, we must resort to
the delayed-sample method, which is described next.

2.3.2. Delayed-samplemethod

An alternative method of delayed estimation is to generate

both the delayed samples and the weights {(λ( j)t ,w
( j)
t )}mj=1

based on the observations Yt+∆, hence making p(Λt | Yt+∆)
the target distribution at time (t + ∆). The procedure will
provide better Monte Carlo samples since it utilizes the fu-
ture observations (yt+1, . . . , yt+∆) in generating the current
samples of λt . But the algorithm is also more demanding
both analytically and computationally because of the need
of marginalizing out λt+1, . . . , λt+∆.

For each possible “future” (relative to time t − 1) symbol
sequence at time (t + ∆− 1), that is,

(
λt, λt+1, . . . , λt+∆−1

) ∈A∆
1 , (12)

we keep the value of a ∆-step Kalman filter {κ( j)t+τ(λ
t+τ
t )}∆−1τ=0 ,

where

κ
( j)
t+τ
(
λt+τt

)
�
[
µt+τ

(
Λ
( j)
t−1, λ

t+τ
t

)
,Σt+τ

(
Λ
( j)
t−1, λ

t+τ
t

)]
, τ = 0, . . . ,∆−1,

(13)

with λba � (λa, λa+1, . . . , λb). Denote

κ
( j)
t−1 �

{
κ
( j)
t−1,

{
κ
( j)
t+τ
(
λt+τt

)}∆−1
τ=0 : λt+τt ∈Aτ+1

1

}
. (14)

The delayed-sample MKF algorithm recursively propagates
the samples properly weighted for p(Λt−1 | Yt+∆−1) to those
for p(Λt | Yt+∆) and is summarized as follows.

Algorithm 2 (delayed-sampleMKF). Suppose, at time (t+∆−
1), a set of properly weighted samples {(Λ( j)

t−1, κ
( j)
t−1,w

( j)
t−1)}mj=1

is available with respect to p(Λt−1 | Yt+∆−1). Then at time
(t + ∆) as the new data yt+∆ becomes available, the following
steps are implemented to update each weighted sample.

For j = 1, 2, . . . ,m, the following steps are performed.

(i) For each λt+∆=ai∈A1, and for each λt+∆−1t ∈A∆
1 , per-

form a one-step update on the corresponding Kalman

filter κ
( j)
t+∆−1(λ

t+∆−1
t ), that is,

κ
( j)
t+∆−1

(
λt+∆−1t

) yt+∆ , λt+∆=ai−−−−−−−→ κ
( j)
t+∆

(
λt+∆−1t , λt+∆ = ai

)
. (15)

(ii) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1,Yt+∆

)
= P

(
λt = ai | Λ( j)

t−1
)

×
∑

λt+∆t+1∈A∆
1

[ ∆∏
τ=0

p
(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λt = ai, λt+τt+1

)

×
∆∏

τ=1
P
(
λt+τ | Λ( j)

t−1, λt = ai, λt+τ−1t+1

)]
.

(16)

Note that the second density in (16) is Gaussian and
can be computed based on the results of the Kalman

filter updates in (15). Draw a sample λ
( j)
t according to

the above sampling density. Append λ
( j)
t to Λ

( j)
t−1 and

obtain Λ
( j)
t . Based on this sample, form κ

( j)
t using the

results from the previous step.

(iii) Compute the importance weight. If λ
( j)
t−1 = ak and

λ
( j)
t = ai, then

w
( j)
t = w

( j)
t−1

p
(
Λ
( j)
t | Yt+∆

)
p
(
Λ
( j)
t−1 | Yt+∆−1

)
P
(
λ
( j)
t | Λ( j)

t−1,Yt+∆

)

∝ w
( j)
t−1

∑
λt+∆t ∈A∆+1

1

[∏∆
τ=0 p

(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λ

t+τ
t

)
∑

λt+∆−1t ∈A∆
1

[∏∆−1
τ=0 p

(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λ

t+τ
t

)

×
∏∆

τ=0 P
(
λt+τ | Λ( j)

t−1, λ
t+τ−1
t

)]
∏∆−1

τ=0 P
(
λt+τ | Λ( j)

t−1, λ
t+τ−1
t

)]
∝ w

( j)
t−1

ρ
( j)
t−1,k

p
(
yt−1 | Yt−2,Λ

( j)
t−1
)

× P
(
λt−1 = ak | Λ( j)

t−2
) |A1|∑

i=1
ρ
( j)
t,i .

(17)
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(iv) Resample if the effective sample size is below a certain
threshold, as discussed in Section 2.2.

Finally, as noted in [13], we can use the above delayed-
sample method in conjunction with the delayed-weight
method. For example, using the delayed-sample method, we

generate delayed samples and weights {(Λ( j)
t ,w

( j)
t )}mj=1 based

on observations Yt+∆. Then with an additional delay δ, we
can use the following delayed-weight method to approximate
any inference about the indicator λt:

E
{
h
(
λt
) | Yt+∆+δ

}
∼= 1

Wt+δ

m∑
j=1

h
(
λ
( j)
t

)
w
( j)
t+δ , Wt+δ =

m∑
j=1

w
( j)
t+δ.

(18)

3. MULTILEVELMIXTURE KALMAN FILTER

Suppose that the indicator space has a multilevel structure.
For example, consider the following scenario of a two-level
sampling space. The first level is the original sampling space
Ω with Ω = {λi, i = 1, 2, . . . ,N}. We also have a higher-level
sampling space Ω̃ with Ω̃ = {ci, i = 1, 2, . . . , Ñ}. The higher-
level sampling space can be obtained as follows. Define the
elements (say ci) in the higher-level sampling space as the
centers of subset ωi in the original sampling space. That is,

ci = 1∣∣ωi

∣∣ ∑
j

λ jI
(
λj ∈ ωi

)
i = 1, 2, . . . , Ñ , (19)

where ωi, i = 1, 2, . . . , Ñ , is the subset in the original sam-
pling space

Ω =
Ñ⋃
i

ωi, ωi

⋂
ωj = ∅, i, j = 1, . . . , Ñ , i �= j. (20)

We call ci the parent of the elements in subset ωi and ωi the
child set of ci. We can also iterate the above merging proce-
dure on the newly created higher-level sampling space to get
an even higher-level sampling space.

For example, we consider the 16-QAM modulation sys-
tem often used in digital communications. The values of the
symbols are taken from the set

Ω = {(a, b) : a, b = ±0.5,±2.5}. (21)

As shown in Figure 1, the sampling space Ω can be divided
into four disjoint subsets:

ω1=
{
(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)

}
,

ω2=
{
(−0.5, 0.5), (−0.5, 2.5), (−2.5, 0.5), (−2.5, 2.5)},

ω3=
{
(−0.5,−0.5), (−0.5,−2.5), (−2.5,−0.5), (−2.5,−2.5)},

ω4=
{
(0.5,−0.5), (0.5,−2.5), (2.5,−0.5), (2.5,−2.5)}.

(22)

Moreover, the centers of these four subspaces are c1 =
(1.5, 1.5), c2 = (−1.5, 1.5), c3 = (−1.5,−1.5), and c4 =
(1.5,−1.5). Thus, we have obtained a higher-level sampling
space composed of four elements. Then the MKF can draw
samples first from the highest-level sampling space and then
from the associated child set in the next lower-level sampling
space. The procedure is iterated until reaching the original
sampling space.

For simplicity, we will use ci,l to represent the ith symbol
value in the lth-level sampling space. Assume that there are,
in total, L levels of sampling space and the number of ele-
ments at the lth level is |Al|. The original sampling space is
defined as the first level. Then the multilevel MKF is summa-
rized as follows.

Algorithm 3 (multilevel MKF). Suppose, at time (t− 1), a set

of properly weighted samples {(Λ( j)
t−1, κ

( j)
t−1,w

( j)
t−1)}mj=1 is avail-

able with respect to p(Λt−1 | Yt−1). Then at time t, as the
new data yt becomes available, the following steps are imple-
mented to update each weighted sample.

For j = 1, . . . ,m, perform the following steps.

(A1) Draw the sample c
( j)
t,L in the Lth-level sampling space.

(a) Based on the new data yt, for each ci,L ∈ AL,
perform a one-step update on the corresponding

Kalman filter κ
( j)
t−1(λt−1) assuming ct,L = ci,L to ob-

tain

κ
( j)
t−1
(
λt−1

) yt , ci,L−−−→ κ
( j)
t,i

(
λt−1, ci,L

)
. (23)

(b) For each ci,L ∈ AL, compute the Lth-level sam-
pling density

ρ
(i, j)
t,L � P

(
ct,L = ci,L | Λ( j)

t−1,Yt

)
= p

(
yt | ci,L,Λ( j)

t−1,Yt−1
)
P
(
ci,L | Λ( j)

t−1,Yt−1
)
.

(24)

Note that by the model (1), the first density in (24)
is Gaussian and can be computed based on the
Kalman filter update (23).

(c) Draw a sample c
( j)
t,L from the Lth-level sampling

spaceAL according to the above sampling density,
that is,

P
(
c
( j)
t,L = ci,L

)
∝ ρ

(i, j)
t,L , ci,L ∈AL. (25)

(A2) Draw the sample c
( j)
t,l in the lth-level sampling space.

First, find the child setω
( j)
l in the current lth-level sam-

pling space for the drawn sample c
( j)
t,l+1 in the (l + 1)th-

level sampling space, then proceed with three more
steps.

(a) For each c
( j)
i,l , i = 1, 2, . . . , |ω( j)

l | in the child setω( j)
l ,

perform a one-step update on the corresponding

Kalman filter κ
( j)
t−1(λt−1) to obtain

κ
( j)
t−1
(
λt−1

) yt , c
( j)
i,l−−−→ κ

( j)
t,i

(
λt−1, c

( j)
i,l

)
. (26)
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(b) For each c
( j)
i,l , compute the sampling density

ρ
(i, j)
t,l � P

(
ct,l = c

( j)
i,l | Λ( j)

t−1,Yt

)
= p

(
yt | c( j)i,l ,Λ

( j)
t−1,Yt−1

)
P
(
c
( j)
i,l | Λ( j)

t−1,Yt−1
)
.

(27)

Note that the first density in (27) is also Gaussian
and can be computed based on the Kalman filter
update (26).

(c) Draw a sample c
( j)
t,l according to the sampling den-

sity, that is,

P
(
c
( j)
t,l = c

( j)
i,l

)
∝ ρ

(i, j)
t,l , c

( j)
i,l ∈ ω

( j)
l . (28)

Repeat the above steps for the next level until we draw

a sample λ
( j)
t = c

( j)
t,1 from the original sampling space.

(A3) Append the symbol λ
( j)
t to Λ

( j)
t−1 and obtain Λ

( j)
t .

(A4) Compute the trial sampling probability. Assuming the

drawn sample c
( j)
t,l = c

i, j
t,l in the lth-level sampling space

and the associated sampling probability is ρ
(i, j)
t,l , then

the effective sampling probability P̃(λ
( j)
t | Λ( j)

t−1,Yt) can
be computed as follows:

P̃
(
λ
( j)
t | Λ( j)

t−1,Yt

)
=

L∏
l=1

ρ
(i, j)
t,l . (29)

(A5) Compute the importance weight

w
( j)
t = w

( j)
t−1

p
(
Λ
( j)
t−1, λ

( j)
t | Yt

)
p
(
Λ
( j)
t−1 | Yt−1

)
P̃
(
λ
( j)
t | Λ( j)

t−1,Yt

)
= w

( j)
t−1

p
(
yt | λ( j)t ,Yt−1

)
P
(
λ
( j)
t | Λ( j)

t−1,Yt−1
)

∏L
l=1 ρ

(i, j)
t,l

.

(30)

(A6) Resample if the effective sample size is below a certain
threshold, as discussed in Section 2.2.

Remark 1 (complexity). Note that the dominant computa-
tion required for the above multilevel MKF is the update of
the Kalman filter in (23) and (26). Denote J � |A1| and
Kl � |ωl|. The number of one-step Kalman filter updates
in the multilevel MKF is N = ∑L

l=1 Kl. Consider the 16-
QAM and its corresponding two-level sampling space shown
in Figure 1. There are N = 8 one-step Kalman filter updates
needed by the multilevel MKF, whereas, the original MKF
requires J = 16 Kalman updates for each Markov stream.
Hence, the computation complexity is reduced by half by the
multilevel MKF.

Remark 2 (properties of the weighted samples). From (30),
we have

w
( j)
t−1 = w

( j)
t−2

p
(
Λ
( j)
t−2, λ

( j)
t−1 | Yt−1

)
p
(
Λ
( j)
t−2 | Yt−2

)
P̃
(
λ
( j)
t−1 | Λ( j)

t−2,Yt−1
) . (31)

Substituting it into (30), and repeating the procedure with

w
( j)
t−2, . . . ,w

( j)
1 , respectively, we finally have

w
( j)
t

=
p
(
Λ
( j)
t−1, λ

( j)
t | Yt

)
P̃
(
λ
( j)
1 | Λ( j)

0 ,Y1

)
· · · P̃

(
λ
( j)
t−1 | Λ( j)

t−2,Yt−1
)
P̃
(
λ
( j)
t | Λ( j)

t−1,Yt

) .
(32)

Consequently, the samples {Λ( j)
t ,w

( j)
t }mj=1 drawn by the above

procedure are properly weighted with respect to p(Λt | Yt)

provided that {Λ( j)
t−1,w

( j)
t−1}mj=1 are properly weighted with re-

spect to p(Λt−1 | Yt−1).

4. DELAYEDMULTILEVELMIXTURE
KALMAN FILTER

The delayed-sample method is used to generate samples

{(λ( j)t ,ω
( j)
t )}mj=1 based on the observations Yt+∆, hence mak-

ing p(Λt | Yt+∆) the target distribution at time (t + ∆). The
procedure will provide better Monte Carlo samples since it
utilizes the future observations (yt+1, . . . , yt+∆) in generating
the current samples of λt . But the algorithm is also more de-
manding both analytically and computationally because of
the need of marginalizing out λt+1, . . . , λt+∆.

Instead of exploring the “future” symbol sequences in
the original sampling space, our proposed delayed multilevel
MKF will marginalize out the future symbols in a higher-
level sampling space. That is, for each possible “future” (rel-
ative to time t − 1) symbol sequence at time (t + ∆), that is,

(
λt , ct+1,l, . . . , ct+∆,l

) ∈A1 ×A∆
l (l > 1), (33)

where ct,l is the symbol in the lth-level sampling space,

we compute the value of a ∆-step Kalman filter {κ( j)t+τ(λt,
ct+τt+1,l)}∆τ=1, where

κ
( j)
t+τ
(
λt , ct+τt+1,l

)
�
[
µt+τ

(
Λ
( j)
t−1, λt, c

t+τ
t+1,l

)
,Σt+τ

(
Λ
( j)
t−1, λt, c

t+τ
t+1,l

)]
, τ=1, . . . ,∆,

(34)

with cba,l � (ca,l, ca+1,l, . . . , cb,l). The delayed multilevel MKF
recursively propagates the samples properly weighted for
p(Λt−1 | Yt+∆−1) to those for p(Λt | Yt+∆) and is summa-
rized as follows.

Algorithm 4 (delayed multilevel MKF). Suppose, at time (t−
1), a set of properly weighted samples {(Λ( j)

t−1, κ
( j)
t−1,w

( j)
t−1)}mj=1

is available with respect to p(Λt−1 | Yt+∆−1). Then at time t,
as the new data yt+∆ becomes available, the following steps
are implemented to update each weighted sample.

For j = 1, . . . ,m, apply the following steps.
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(A1) For each λt = ai ∈ A1, and for each ct+∆t+1,l ∈ A∆
l , per-

form the update on the corresponding Kalman filter

κ
( j)
t+∆−1(λt, c

t+∆−1
t+1,l ), that is,

κ
( j)
t+τ−1

(
λt , ct+τ−1t+1,l

) yt+τ , ct+τ,l−−−−−→ κ
( j)
t+τ
(
λt, ct+τt+1,l

)
. (35)

(A2) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1, yt+∆
)

=
∑

ct+∆t+1,l∈A∆
l

p
(
yt+∆t , λt, ct+∆t+1,l | Λ( j)

t−1,Y
( j)
t−1
)

∝ P
(
λt = ai | Λ( j)

t−1
)

×
∑

ct+∆t+1,l∈A∆
l

[ ∆∏
τ=0

p
(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λt = ai, ct+τt+1,l

)

×
∆∏

τ=1
P
(
ct+τ,l | ct+τ−1t+1,l , λt = ai,Λ

( j)
t−1
)]

.

(36)

(A3) Draw a sample λ
( j)
t according to the above sampling

density, that is,

P
(
λ
( j)
t = λi

)
∝ ρ

( j)
t,i . (37)

(A4) Append the sample λ
( j)
t to Λ

( j)
t−1 and obtain Λ

( j)
t .

(A5) Compute the importance weight

w
( j)
t = w

( j)
t−1

p
(
Λ
( j)
t−1, λ

( j)
t | Yt+∆

)
p
(
Λ
( j)
t−1 | Yt+∆−1

)
P
(
λ
( j)
t | Λ( j)

t−1,Yt+∆

)
∝ w

( j)
t−1

∑
Ct+∆
t+1,l∈A∆

l
p
(
yt+∆t , ct+∆t+1,l, λ

( j)
t | Λ( j)

t−1,Yt−1
)

∑
Ct+∆−1
t,l ∈A∆

l
p
(
yt+∆−1t , ct+∆−1t,l | Λ( j)

t−1,Yt−1
)
ρ
( j)
t,i

= w
( j)
t−1

∑
Ct+∆
t+1,l∈A∆

l

[∏∆
τ=1 p

(
yt+τ |Yt+τ−1,Ct+τ

t+1,l, λ
( j)
t ,Λ

( j)
t−1
)

∑
ct+∆−1t,l ∈A∆

l

[∏∆−1
τ=0 p

(
yt+τ | Yt+τ−1,Ct+τ

t,l ,Λ
( j)
t−1
)

×
P
(
λ
( j)
t | Λ( j)

t−1,Yt−1
)∏∆

τ=1 P
(
ct+τ,l | ct+τ−1t+1,l ,Λ

( j)
t

)]
∏∆−1

τ=0 P
(
ct+τ,l | Ct+τ−1

t,l ,Λ
( j)
t−1
)
ρ
( j)
t,i

] .

(38)
(A6) Do resampling if the effective sample size is below a

certain threshold, as discussed in Section 2.2.

Remark 3 (properties of the weighted samples). Similar to
the multilevel sampling algorithm in Section 3, it can be

shown that the samples {Λ( j)
t ,w

( j)
t }mj=1 drawn by the above

procedure are properly weighted with respect to p(Λt | Yt+∆)

provided that {Λ( j)
t−1,w

( j)
t−1}mj=1 are properly weighted with re-

spect to p(Λt−1 | Yt+∆−1). However, the likelihood function

p(yt+τ | Yt+τ−1,Ct+τ
t,l ,Λ

( j)
t−1) is not simply a Gaussian distri-

bution any more, but a mixture of Gaussian components.
Since the mixture of Gaussian distribution is implausible to
be achieved within the rough sampling space, it has to be ap-
proximated with a Gaussian distribution computed by the

Kalman filter assuming that the elements in the higher-level
sampling space are transmitted. Therefore, some bias will be
introduced into the computation of the weight. On the other
hand, we make use of more information in the approxima-

tion of better distribution p(Λ
( j)
t−1, λ

( j)
t | Yt+∆), which makes

the algorithm more efficient than the original MKF.

Remark 4 (properly weighted samples). To mitigate the bias
problem introduced in the weight computation, instead of
(38), we can use the following importance weight:

w
( j)
t = w

( j)
t−1

p
(
Λ
( j)
t−1, λ

( j)
t | Yt

)
p
(
Λ
( j)
t−1 | Yt−1

)
P̃
(
λ
( j)
t | Λ( j)

t−1,Yt+∆

)
= w

( j)
t−1

p
(
yt | λ( j)t ,Yt−1

)
P
(
λ
( j)
t | Λ( j)

t−1,Yt−1
)

ρ
( j)
t,i

.

(39)

Similar to the multilevel sampling algorithm in Section 3, it

is easily seen that the samples {Λ( j)
t ,w

( j)
t }mj=1 drawn by the

above procedure are properly weighted with respect to p(Λt |
Yt) provided that {Λ( j)

t−1,w
( j)
t−1}mj=1 are properly weighted with

respect to p(Λt−1 | Yt−1). Since the whole procedure is just
to get better samples based on the future information, de-
layed weight may be very effective. Furthermore, there is no
bias anymore in the weight computation although we still ap-
proximate themixture Gaussian distribution with a Gaussian
distribution as in Remark 3.

Remark 5 (complexity). Note that the dominant computa-
tion required for the above delayed multilevel MKF is mainly
in the first step. Denote J � |A1| andM � |Al|. The number
of one-step Kalman filter updates in the delayed multilevel
MKF can be computed as follows:

N = J + JM + · · · + JM∆ = J
M∆+1 − 1
M − 1

. (40)

Note that the delayed-sample MKF requires J∆+1 Kalman up-
dates at each time. Since usually M � J , compared with the
delayed-sample MKF, the computational complexity of the
delayed multilevel MKF is significantly reduced.

Remark 6 (alternative sampling method). To further reduce
the computational complexity in the first step, we can take
the alternative sampling method composed of the following
steps.

Algorithm 5 (alternative sampling method). (1) At time t+∆,
for each ct+∆t,l ∈ A∆

l , perform the update on the correspond-

ing Kalman filter κ
( j)
t+∆−1(c

t+∆−1
t,l ), that is,

κ
( j)
t+τ−1

(
ct+τ−1t,l

) yt+τ , ct+τ,l−−−−−→ κ
( j)
t+τ
(
ct+τt,l

)
. (41)

(2) Select K paths from ct+∆t+1,l based on the computed
weight

∆∏
τ=0

p
(
yt+τ | Yt+τ−1,Λ

( j)
t−1, c

t+τ
t,l

)
P
(
ct+τ,l | ct+τ−1t,l ,Λ

( j)
t−1
)
. (42)
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(3) For each λt = ai ∈ A1, and for each path k in the
selected K paths, perform the update on the corresponding

Kalman filter κ
( j)
t+∆−1(λt, c

t+∆−1,k
t+1,l ), that is,

κ
( j)
t+τ−1

(
λt, c

t+τ−1,k
t+1,l

) yt+τ , ct+τ,lk−−−−−−→ κ
( j)
t+τ
(
λt, c

t+τ,k
t+1,l

)
. (43)

(4) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1
)

×
K∑
k=1

[ ∆∏
τ=0

p
(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λt = ai, c

t+τ,k
t+1,l

)

×
∆∏

τ=1
P
(
ckt+τ,l | ct+τ−1,kt+1,l , λt = ai,Λ

( j)
t−1
)]

.

(44)

The weight calculation can be computed by (40) for the
target distribution p(λt | Yt) or (45) for the target distri-
bution p(λt | Yt+∆). Besides the bias that resulted from the
Gaussian approximation in Remark 3, the latter also intro-
duces new bias because of the summation over K selected
paths, other than the whole sampling space in higher level.
However, the first one does not introduce any bias as in
Remark 4. Denote J � |A1| and M � |Al|. The number
of one-step Kalman filter updates in the delayed multilevel
MKF can be computed as N = JK +M∆.

Remark 7 (the choice of the parameters). Note that the per-
formance of the delayedmultilevelMKF ismainly dominated
by the two important parameters: the number of prediction
steps ∆ and the specific level of the sampling space Al. With
the same computation, the delayed multilevel MKF can see
further “future” steps (larger∆) with a coarser-level sampling
space (larger l), whereas it can see the “future” samples in a
finer sampling space (smaller l), but with smaller ∆ steps.

Remark 8 (multiple sampling space). In Algorithm 5, we can
also use different sampling spaces for different delay steps.
That is, we can gradually increase the sampling space from
the lower level to the higher level with an increase in the delay
step.

5. SIMULATIONS

We consider the problem of adaptive detection in flat-fading
channels in the presence of Gaussian noise. This problem is
of fundamental importance in communication theory and
an array of methodologies have been developed to tackle
this problem. Specifically, the optimal detector for flat-fading
channels with known channel statistics is studied in [24, 25],
which has a prohibitively high complexity. Suboptimal re-
ceivers in flat-fading channels employ a two-stage structure,
with a channel estimation stage followed by a sequence de-
tection stage. Channel estimation is typically implemented
by a Kalman filter or a linear predictor, and is facilitated by
per-survivor processing (PSP) [26], decision feedback [27],
pilot symbols [28], or a combination of the above [29].

Other suboptimal receivers for flat-fading channels include
the method based on a combination of a hidden Markov
model and a Kalman filtering [30], and the approach based
on the expectation-maximization (EM) algorithm [31].

In the communication system, the transmitted data sym-
bols {st} take values from a finite alphabet set A1 = {a1,
. . . , a|A1|}, and each symbol is transmitted over a Rayleigh
fading channel. As shown in [32, 33], the fading process is
adequately represented by an ARMA model, whose param-
eters are chosen to match the spectral characteristics of the
fading process. That is, the fading process is modelled by the
output of a lowpass Butterworth filter of order r driven by
white Gaussian noise

{
αt
} = Θ(D)

Φ(D)

{
ut
}
, (45)

where D is the back-shift operator Dk, ut � ut−k; Φ(z) �
φrzr + · · ·+φ1z+1;Θ(z) � θrzr + · · ·+θ1z+θ0; and {ut} is
a white complex Gaussian noise sequence with unit variance
and independent real and complex components. The coef-
ficients {φi} and {θi}, as well as the order r of the Butter-
worth filter, are chosen so that the transfer function of the
filter matches the power spectral density of the fading pro-
cess, which in turn is determined by the channel Doppler
frequency. On the other hand, a simpler method, which uses
a two-path model to build ARMA process, can be found
in [34]; the results there closely approximate more complex
pathmodels. Then such a communication system has the fol-
lowing state-space model form:

xt = Fxt−1 + gut , (46)

yt = sthHxt + σvt, (47)

where

F �



−φ1 −φ2 · · · −φr 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , g �


1
0
...
0

 . (48)

The fading coefficient sequence {αt} can then be written as

αt = hHxt , h �
[
θ0 θ1 · · · θr

]
. (49)

In the state-space model, {ut} in (46) and {vt} in (47) are the
white complex Gaussian noise sequences with unit variance
and independent real and imaginary components:

ut
i.i.d.∼ Nc(0, 1), vt

i.i.d.∼ Nc(0, 1). (50)

In our simulations, the fading process is specifically mod-
eled by the output of a Butterworth filter of order r = 3
driven by a complex white Gaussian noise process. The cut-
off frequency of this filter is 0.05, corresponding to a normal-
ized Doppler frequency (with respect to the symbol rate 1/T)
fdT = 0.05, which is a fast-fading scenario. That is, the fading
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coefficients {αt} are modeled by the following ARMA(3,3)
process:

αt − 2.37409αt−1 + 1.92936αt−2 − 0.53208αt−3
= 10−2

(
0.89409ut + 2.68227ut−1 + 2.68227ut−2
+ 0.89409ut−3

)
,

(51)

where ut ∼ Nc(0, 1). The filter coefficients in (51) are chosen
such that Var{αt} = 1. However, a simpler method, which
uses a two-path model to build ARMA process, can be found
in [34].

We then apply the proposed multilevel MKF methods to
the problem of online estimation of the a posteriori probabil-
ity of the symbol st based on the received signals up to time
t. That is, at time t, we need to estimate

P
(
st = ai | Yt

)
, ai ∈A1. (52)

Then a hard maximum a posteriori (MAP) decision on sym-
bol st is given by

ŝt = arg max
ai∈A1

P
(
st = ai | Yt

)
. (53)

If we obtain a set of Monte Carlo samples of the transmitted

symbols {(S( j)t ,w
( j)
t )}mj=1, properly weighted with respect to

p(St | Yt), then the a posteriori symbol probability in (52) is
approximated by

p
(
st = ai | Yt

) ∼= 1
Wt

m∑
j=1

1
(
s
( j)
t = ai

)
w
( j)
t , ai ∈A1, (54)

withWt �∑m
j=1w

( j)
t .

In this paper, we use the 16-QAMmodulation. Note that
the 16-QAM modulation has much more phase ambiguities
than the BPSK in [13]. We have provided the following two
schemes to resolve phase ambiguities.

Scheme 1 (pilot-assisted). Pilot symbols are inserted period-
ically every fixed length of symbols; the similar scheme was
used in [20]. In this paper, 10% and 20% pilot symbols are
studied.

Scheme 2 (differential 16-QAM). We view the 16-QAM as
a pair of QPSK symbols. Then two differential QPSKs will
be used to resolve the phase ambiguity. Given the trans-
mitted symbol st−1 and information symbol dt , they can
be represented by the QPSK symbol pair as (rst−1,1, rst−1,2)
and (rdt ,1, rdt ,2), respectively. Then the differential modula-
tion scheme is given by

rst ,1 = rst−1,1 · rdt ,1, rst ,2 = rst−1,2 · rdt ,2. (55)

The two-QPSK symbol pair (rst ,1, rst ,2) will be mapped to the
16-QAM symbols and then transmitted through the fading
channel. The traditional differential receiver performs the
following steps:

rdt ,1 = rdt ,1 · r∗st−1,1, rdt ,2 = rst ,2 · r∗st−1,2. (56)
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Figure 2: The BER performance of the PSP, MKF, and multilevel
MKF for pilot-aided 16-QAM over flat-fading channels.

We next show the performance of the multilevel MKF
algorithm for detecting 16-QAM over flat-fading channels.
The receiver implements the decoding algorithms discussed
in Section 3 in combination with the delayed-weight method
under Schemes 1 and 2 discussed above. In our simulations,
we take m = 50 Markov streams. The length of the symbol
sequence is 256. We first show the bit error rate (BER) per-
formance versus the signal-to-noise (SNR) by the PSP, the
multilevel MKF, and the MKF receiver under different pilot
schemes without delayed weight in Figure 2 and with delayed
weight in Figure 3. The numbers of bit errors were collected
over 50 independent simulations at low SNR or more at high
SNR. In these figures, we also plotted the “genie-aided lower
bound.”1 The BER performance of PSP is far from the ge-
nie bound at SNR higher than 10 dB. But the performance
of the multilevel MKF with 20% pilot symbol is very close
to the genie bound. Furthermore, with the delayed-weight
method, the performance of the multilevel MKF can be sig-
nificantly improved. We next show the BER performance in
Figure 4 under the differential coding scheme. As in the pilot-
assisted scheme, the BER performance of PSP is far from the
genie bound at SNR higher than 15 dB. On the contrary, the

1The genie-aided lower bound is obtained as follows. We assume that
at each time t, a genie provides the receiver with an observation of the
modulation-free channel coefficient corrupted by additive white Gaussian
noise with the same variance, that is, ỹt = αt + ñt , where ñt ∼ Nc(0, σ2).
The receiver employs a Kalman filter to track the fading process based on
the information provided by the genie, that is, it computes α̂t = E{αt | ỹt}.
An estimate of the transmitted 16-QAM is obtained by slicing (yt α̂�t ).
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Figure 3: The BER performance of the PSP, the MKF with delayed
weight (δ = 10), and the multilevel MKF with delayed weight (δ =
10) for pilot-aided 16-QAM over flat-fading channels.

performance of the multilevel MKF is very close to that of the
original MKF although there is a 5 dB gap between the genie
bound and the performance of the multilevel MKF.

The BER performance of the MKF and the multilevel
MKF with or without delayed weight versus the number of
Markov streams is shown in Figure 5 under the differential
coding scheme. The BER is gradually improved from the
value 0.16 to the value about 0.08 for multilevel MKF, 0.07
for MKF, 0.065 for multilevel MKF with delayed weight, and
0.062 for MKF with delayed weight with 25 Markov streams.
However, the BER performance can not be improved any-
more with more than 25 streams. Therefore, the optimal
number of Markov streams will be 25 in this example.

Next, we illustrate the performance of the delayed multi-
level MKF. The receiver implements the decoding algorithms
discussed in Section 4. We show the BER performance ver-
sus SNR in Figure 6, computed by the delayed-sample or
the delayed multilevel MKF with one delayed step (∆ = 1).
The BER performance of the MKF and the MKF with de-
layed weight is also plotted in the same figure. In the de-
layed multilevel MKF, we implement two schemes for choos-
ing the sampling space for the “future” symbols. In the first
scheme, we choose the second-level (l = 2) sampling space
A2 = {c1, c2, c3, c4}, where ci, i = 1, . . . , 4, are the solid circles
shown in Figure 1; and in the second scheme, we choose the
third-level (l = 3) sampling space A3 = {c1 + c2, c3 + c4}. It
is seen that the BER of the multilevel MKF is very close to
that of the delayed-sample algorithm. It is also seen that the
performance of the multilevel MKF method is conditioned
on the specific level sampling space. The performance of the
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Figure 4: The BER performance of the PSP, the MKF, and the mul-
tilevel MKF for differential 16-QAM over flat-fading channels. The
delayed-weight method is used with δ = 10.
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Figure 5: The BER performance of the MKF, and the multilevel
MKF for differential 16-QAM over flat-fading channels versus the
number of Markov streams. The delayed-weight method is used
with δ = 10.

delayed multilevel MKF based on the second-level sampling
space A2 is nearly 2 dB better than that based on the third-
level sampling spaceA3.
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Figure 6: The BER performance of the delayedmultilevelMKFwith
the second (l = 2)-level or the third (l = 3)-level sampling space for
the differential 16-QAM system over flat-fading channels. The BER
performance of the delayed-sample method is also shown.

6. CONCLUSION

In this paper, we have developed a new sequential Monte
Carlo (SMC) sampling method—the multilevel mixture
Kalman filter (MKF)—under the framework of MKF for
conditional dynamic linear systems. This new scheme gener-
ates random streams using sequential importance sampling
(SIS), based on the multilevel or hierarchical structure of the
indicator random variables. This technique can also be used
in conjunction with the delayed estimation methods, result-
ing in a delayed multilevel MKF. Moreover, the performance
of both the multilevel MKF and the delayed multilevel MKF
can be further enhanced when employed in conjunction with
the delayed-weight method.

We have also applied the multilevel MKF algorithm and
the delayed multilevel MKF algorithm to solve the problem
of adaptive detection in flat-fading communication channels.
It is seen that compared with the receiver algorithm based on
the original MKF, the proposed multilevel MKF techniques
offer very good performance. It is also seen that the receivers
based on the delayedmultilevel MKF can achieve similar per-
formance as that based on the delayed-sample MKF, but with
a much lower computational complexity.
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