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A model of an angle-spread source is described, termed the “Gaussian channel model” (GCM). This model is used to represent
signals transmitted between a user equipment and a cellular base station. It assumes a Gaussian law of the scatterer occurrence
probability, depending upon the scatterer distance from the user. The probability density function of the angle of arrival (AoA)
of the multipath components is derived for an arbitrary angle spread. The “wandering” of the “centre of gravity” of the scattering
source realisation is investigated, which is in turn due to the nonergodicity of the angle-scatter process. Numerical results obtained
with the help of the sum-difference bearing method show the dependence of the AoA estimation accuracy on the spread-source
model.
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1. INTRODUCTION

The implementation of smart antennas at macrocellular base
stations (BSs) is expected significantly to enhance the capac-
ity of wireless networks [1, 2]. Various algorithms for adap-
tive array signal processing have been proposed and investi-
gated [2, 3, 4]. The effectiveness of these algorithms depends
on the behaviour of the fading channel and in particular on
the degree of azimuthal dispersion in the channel. Therefore,
accurate statistical channel models are required for the test-
ing of these adaptive algorithms. These models must be re-
alistic and close to real-life channels in order to replicate the
angle of arrival (AoA) distribution of the multipath compo-
nents.

The propagation channel between the BS and the user
equipment (UE) is generally held to be reciprocal in most
respects. However, the azimuthal angle dispersions seen at

the BS and UE antenna differ significantly from each other.
The classical Clarke channel model [5] assumes a uniform
probability density function (pdf) of the incoming rays at
the UE antenna. However, if the BS antenna array is ele-
vated above the surrounding scatterers, then the rays incom-
ing to the BS are concentrated in some smaller range of az-
imuth angles than those incoming to the UE. Note also that
Clarke’s model provides the well-known “rabbit-ear” charac-
teristic of the classical Doppler spectrum of signals seen both
at the BS and at the UE. Some statistical propagation mod-
els which include the azimuthal dispersion at the BS have
been developed in [6, 7, 8]. For example, the channel model
proposed in [7] is based on a geometrical construction, and
assumes that scatterers are uniformly distributed within the
area of a circle centred at the UE antenna. This means that
the AoA of the multipath components at the BS will be re-
stricted to an angular region dependent both upon the circle
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radius and upon the distance between BS and user. However,
in a real-life channel, the scatterer distribution around the
UE can differ significantly from uniform. Therefore, other
researchers [9, 10, 11] have proposed other more realistic
models based on a Gaussian distribution of scatterer loca-
tion.

The goal of this paper is to analyse further the Gaussian
proposal for the scatterer distribution. We assume that the
scatterers can be situated in any point in the horizontal plane.
In this model, the probability of occurrence of the scatterer
location decreases in accordance with a Gaussian law when
its distance from the UE antenna increases. Therefore, we call
this model the “Gaussian channel model (GCM).”We believe
that such an assumption about the scatterer location is closer
to the real-life environment than some of the other models
mentioned above. Therefore, as we will demonstrate later, the
comparison of the obtained pdf of AoA of the multipath for
the GCM with the measured results presented in [8] gives
very good agreement. Note also that, like Clarke’s model,
the proposed GCM also provides the classical Doppler sig-
nal spectrum.

It is a likely supplementary requirement for future cellu-
lar communication systems that they will be capable of de-
termining the user position within a cell site. One way of do-
ing this is via “triangulation,” whereby the angular bearing
of the user is estimated at multiple cellsites (this process is
also known as “direction finding”). UE position is estimated
as the point where these bearing lines intersect. Thus, in or-
der to carry out triangulation, an estimate of the AoA of the
UE signal is required. We consider the “sum-difference bear-
ing method” (SDBM) algorithm for AoA estimation. It was
selected from a number of techniques that had been investi-
gated (see, e.g., [12, 13, 14]). The SDBM algorithm is similar
to the principle used in monopulse tracking radars, wherein
a hybrid junction is used to extract the sum and difference
of a received pulse [12]. Note that the tracking radar is able
to serve just one user. However, the multibeam antenna ar-
rays at the BS can serve all the users located in the given
cell. More details of this SDBM algorithm will be provided
later.

One of the major aims of the BS is to achieve a high
capacity. To maximise the downlink capacity, it has been
proposed elsewhere to use multibeam or beamformed an-
tenna arrays to cover each sector of the cell handled by
the BS [15]. Such an antenna array could also be ap-
plied to estimate the AoA. Therefore, in this paper, the de-
pendence of the AoA estimation accuracy on the spread
source model is also considered for the BS using a multi-
beam antenna. In this configuration, the beamformer cre-
ates three fixed beams per 120◦-azimuth sector, generated
from a facet containing 6-off λ/2-spaced columns of dual-
polar antenna elements. These beams improve the cover-
age and capacity of the macrocell, and are expected to
have greatest application within the urban macrocellular en-
vironment, where the need for maximum capacity is the
greatest. Simulation results are presented for the case of
a Rayleigh fading channel and for this antenna configura-
tion.
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Figure 1: Illustration of the Gaussian channel model.

2. GAUSSIAN CHANNELMODEL AND THE PDF OF
THE AOAS OFMULTIPATH COMPONENTS SEEN AT
THE BASE STATION

The signal received by the BS is a sum of many signals re-
flected from different scatterers randomly situated around
the UE antenna. The AoAs of the multipath signal compo-
nents are thus various and random. Therefore, the set of the
scatterers can be considered collectively as a spread source,
and the angle spread is a measure used to determine the an-
gular dispersion of the channel.

Here we present the details of the GCM and derive an
analytical expression for the pdf of the AoAs of multipath
components as observed at the BS.

First of all, we list the initial assumptions used for creat-
ing the channel model. We assume that

(i) the scattered signals arrive at BS in the horizontal
plane, that is, the proposed GCM is two dimensional
and the elevation angle is not taken into account;

(ii) each scatterer is an omnidirectional reradiating ele-
ment and the plane wave is reflected directly to the BS
without influence from other scatterers (i.e., we have
only “single-bounce” scattering paths);

(iii) the direct path from the UE to BS antenna is infinitely
attenuated;

(iv) the reflection coefficient from each scatterer has unity
amplitude and random phase;

(v) the probability of the (random) scatterer location is in-
dependent of azimuth angle (from the UE), and de-
creases if its distance from the UE antenna increases.
This dependence has a Gaussian form.

The last of these assumptions distinguishes our channel
model from many of the other known models [5, 6, 7].

Thus we can write that

p(r,ϕ) = 1
πr2eff

exp

(
− r2

r2eff

)
, (1)

where (r,ϕ) is the polar coordinate system centred at the UE,
r is the distance to a given scatterer from the UE antenna, and
reff is the radius at which the pdf decreases by a factor of e,
that is, p(reff ,ϕ) = e−1p(0,ϕ). Figure 1 illustrates the GCM,
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whereD is the distance between the BS and UE antennas, and
(x, y) are the rectangular coordinates.

In [7], a uniform scatterer distribution within the cir-
cle of radius r0 around the UE was assumed. So for the
model of [7], this means that the AoAs of multipath com-
ponents seen at the BS are limited to the angular region
[−θmax · · · θmax], where θmax = sin−1(r0/D). However, for
our GCM model, the AoAs of scattered signals as received
at the BS are not restricted to any constrained angular re-
gion.

In order to derive the ensemble pdf of the AoA for
the GCM (i.e., averaged over many model realisations), we
choose the origin of the system coordinates (x′, y′) to be the
location of the BS. This means that x′ = x and y′ = y + D.
We then transform to the polar coordinates (R, θ), where
x′ = R sin θ, y′ = R cos θ, and the angle θ is measured rela-
tive to the line joining the BS and UE antennas. It is straight-
forward to show that the Jacobian of this transformation is
equal to R. Furthermore, we have

r2 = x2 + y2 = x′2 +
(
y′ −D

)2 = R2 − 2RD cos θ +D2. (2)

As a result of substituting (2) into (1), we obtain that

p(R, θ)

= R

πr2eff

· exp
(
− D2

r2eff

)
· exp

(
− R2 − 2RD cos θ

r2eff

)
.
(3)

In order to derive the one-dimensional pdf of the AoA
(i.e., the power angle density) of the multipath components
as seen at the BS, an integration over the radius R must be
carried out. Therefore, the pdf is expressed as the following
integral:

p(θ) =
∫∞
0

p(R, θ)dR

= 1
πr2eff

·exp
(
−D2

r2eff

)∫∞
0
exp

(
−R2 − 2RD cos θ

r2eff

)
RdR.

(4)

This integral can be calculated analytically and a closed-
form solution is obtained. To do this, take into account that
(see [16, equation 3.462.1])

∫∞
0
xv−1 exp

(− βx2 − γx
)
dx

= (2β)−v/2Γ(v) exp
(
γ2

8β

)
C−v

 γ√
2β

, (5)

where Re(v,β) > 0, Γ(v) is the gamma function, and Cp(z)
is the function of the parabolic cylinder. In our case, we have
v = 2, β = r−2eff , and γ = −2Dr−2eff cos θ. If v = 2, then the
function C−2(z) can be expressed in terms of the probability

integral Φ(z) (see [16, equation 9.254.2]1), that is,

C−2(z)

= − exp

(
z2

4

)√
π

2

{
z
[
1−Φ

(
z√
2

)]
−
√

2
π
exp

(
− z2

2

)}
,

(6)

where the probability integral Φ(x) = (2/
√
π)
∫ x
0 exp(−t2)dt.

Take into account that z = −√2Dr−1eff cos θ, Γ(2) = 1,
and Φ(z) is an odd function of its argument z. As a result of
straightforward transformations, we can obtain from (5) and
(6) that the desired one-dimensional pdf p(θ) of AoA of the
multipath components is given by

p(θ) = 1
2π
· exp

(
− D2

r2eff

)

×
{
1+
√
π
D

reff
cos θ·exp

(
D2

r2eff

cos2θ

)
·
[
1+Φ

(
D

reff
cos θ

)]}
.

(7)

It is convenient to introduce the angle θeff = sin−1(reff /
D). Then (7) can be rewritten as

p(θ) = 1
2π
· exp

(
− 1

sin2 θeff

)

×
{
1+
√
π

cos θ
sin θeff

·exp
(

cos2 θ

sin2 θeff

)
·
[
1+Φ

(
cos θ
sin θeff

)]}
.

(8)

Thus the pdf p(θ) depends only upon cos θ. The effective
angle spread for this pdf can be introduced as ∆ = 2θeff . The
pdf p(θ) is an even function of its argument θ.

The expression (8) is true in the general case. However,
this formula takes a very simple form for the case of small
angle spread θeff � π when sin θ ≈ θ. In this case, the pdf is
approximately given by

p(θ) ≈ 1√
πθ2eff

· exp
(
− θ2

θ2eff

)
(9)

and described by a (one-dimensional) Gaussian pdf with
zero mean and variance σ2 = 0.5θ2eff .

Figure 2 shows the pdf p(θ) of the AoA of the multi-
path components for the different values θeff = 10◦, 30◦, and
50◦. The solid and dashed curves correspond to the exact
formula (8) and to its Gaussian approximation (9), respec-
tively. We can see that the exact and Gaussian PDFs are very
close to each other for a large interval of θeff up to θeff ≤ 0.5
(or θeff ≤ 30◦). Actually, it is quite simple and intuitive to
see how the complex pdf of the exact formula (8) should

1N.B. There is a minor typographical error (a missing factor of −1) in
the version of this equation printed in [16], which is corrected within the
addenda of the original Russian version.
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Figure 2: The pdf of the AoA of the multipaths at the BS. The angle
spread is equal to 20, 60, and 100 degrees (curves 1, 2, 3, respec-
tively). The solid and dashed curves correspond to the exact formula
(8) and its Gaussian approximation (9), respectively.

equal a one-dimensional pdf for small angle spreads. At these
small angles, the lines bounding different small “slices” of
the two-dimensional pdf are nearly parallel, and so it is as if
we are calculating the marginal pdf of the two-dimensional
spatial pdf along the x-axis. Since the marginal pdf of a
two-dimensional Gaussian distribution is a one-dimensional
Gaussian distribution, our approximate result (9) is intu-
itively of the correct form.

The comparison of the theoretical pdf against real mea-
surement data is of course of interest in order both to val-
idate and to parameterise the GCM. Histograms of the es-
timated azimuthal power angle density and scatterer occur-
rence probabilities are presented by the authors of [8]. This
measurement data was obtained in Aarhus with a BS antenna
located 12m above the rooftop level. We wish to take this
measured data and compare it to the three proposed theoreti-
cal channel models: (1) our GCM of (8), (2) the geometrical-
based single-bounce model (GBSBM) developed in [7] (in
which the scatterers are assumed to be uniformly randomly
distributed within the area of a circle), and (3) Clarke’s model
[5, 17] (in which the scatterers are assumed to lie on the cir-
cumference of a circle).

It was derived in [7] that the pdf of the AOA of the mul-
tipath components for GBSBM is given by

p(θ) =


2 cos(θ)

√
sin2 θmax − sin2 θ

π sin2 θmax
, −θmax ≤ θ ≤ θmax,

0, otherwise,
(10)

where θmax = sin−1(r0/D) and r0 is the radius of the circle
within which all the scatterers are uniformly distributed.

Whilst we omit the derivation here, for reasons of brevity,
it can be shown that the pdf of the AOA of the multipath
components for Clarke’s model is equal to

p(θ) = 1
π

1
cos2 θ

1√
tan2 θmax − tan2 θ

, (11)

where in this case, when calculating θmax, r0 has the meaning
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Figure 3: The PDFs for the AoA of the multipath components at
the BS for GCM, GBSBM, Clarke’s models, and for the measured
histograms.

of the radius of the circle periphery on which the scatterers
are uniformly distributed.

Figure 3 shows the PDFs for the AoA of the multipath
components at the BS for GCM, GBSBM, Clarke’s mod-
els, and the measured scatterer occurrence probability his-
tograms taken from [8]. We have chosen the model param-
eters (θmax, θeff ) so that the best agreement was obtained for
each model. For both the GBSBM and Clarke’s models, the
value chosen was θmax = 10◦, and for GCM, θeff = 8.8◦. It
can be seen that the GCM ensures the best agreement with
real-life results for the whole angular region and especially
for the tails of histogram. Clarke’s model produces the worst
match to the real-life data.

The measured data and experimental models described
above discuss the “ensemble” statistics of the spread source.
By ensemble statistics, we mean that these statistics are aver-
aged over a large number of individual measurements or in-
dividual model realisations. However, in practice, we would
deal with single cases (i.e., in “real-life”) or single-model re-
alisations (i.e., during simulation). It seems reasonable to
postulate that the angle-spread behaviour of the source will
be nonergodic. That is to say, the statistics of any given re-
alisation (averaged over time) will, in general, be different
from the ensemble statistics (averaged over all realisations
and all time). So in practice, in any single realisation of the
angle-spread model, we will see a limited number of discrete
scattering centres creating a “lumpy” AoA distribution func-
tion, rather than an infinite number of scatterers creating a
continuous “smooth” distribution, as observed from the en-
semble statistics. If this limited number of discrete scatter-
ing centres is particularly small, then their “centre of grav-
ity (CofG)” may “wander” about the true bearing of the UE.
The CofG, to be defined in more detail below, is simply a
power-weighted average AoA. As an example, in one realisa-
tion of the scattering model, all of the scattering centres may,
purely by chance, be located on the left-hand side of the true
UE bearing, which would bias the apparent (i.e., estimated)
bearing of the UE to the left. Conversely, in another reali-
sation, all of the scattering centres may, again by chance, be
located on the right-hand side of the true UE bearing, which
would bias the apparent bearing of the UE to the right. So this
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apparent change of the UE bearing for different realisations
of the scattering model, which we term the “wandering” of
the “CofG” is a direct consequence of the nonergodicity of
the angle-scattering model. This wandering is more marked
when the mean number of scattering sources is low, because
if we have a large number of scattering sources, then it would
be extremely unlikely for all of them to be lying on the same
side of the UE (assuming that all scatterer locations are in-
dependent). In fact, we will show later that this “wandering
of the CofG” phenomenon is a significant contributor to the
overall estimation error of the UE bearing.

For reasons described above, the variance of the wander-
ing of the CofG depends on the number of scatterers situated
around the UE antenna. Let N be the number of scatterers
and θ1, θ2, . . . , θN some random values of AoAs of the signal
from these scatterers. Assume, for simplicity, that all of the
sources have equal power. Then the CofG of the received sig-
nal for this particular realisation is equal to

θ̃ = 1
N

(
θ1 + θ2 + · · · + θN

)
. (12)

The expectation of the random value θ̃ is equal to zero

(i.e., 〈θ̃〉 = 0) and its variance can be obtained from the in-
tegral

σ2Nθ =
∫∫
· · ·

∫
1
N2

(
θ1 + θ2 + · · · + θN

)2
× p

(
θ1, θ2, . . . , θN

)
dθ1dθ2 · · ·dθN ,

(13)

where p(θ1, θ2, . . . , θN ) is the joint pdf of the AoAs
θ1, θ2, . . . , θN . Since these AoAs are assumed to be inde-
pendent random values, the joint pdf can be presented as
the product of individual PDFs, that is, p(θ1, θ2, . . . , θN ) =
p(θ1)p(θ2) · · · p(θN ), where the function p(θi) (i =
1, 2, . . . ,N) is given by formula (8).

The expected azimuth angle of each angle-spread source
is equal to zero due to the symmetry of the pdf (8) of the
multipath component AoAs, that is, 〈θi〉 = 0. Thus the N-
dimensional integral (13) can be rewritten as the sum of N
identical one-dimensional integrals, that is,

σ2Nθ =
1
N2

N∑
i=1

∫
θ2i p

(
θi
)
dθi = σ21θ

N
, (14)

where σ21θ is the variance of the AoA of a single scatterer, equal
to

σ21θ =
∫
θ2p(θ)dθ (15)

and pdf p(θ) is defined by formula (8).
So (14) and (15) give the mean squared value for the

wandering of the CofG of the spread source when we assume
N scatterers of the same amplitude.

For small θeff � 1, the pdf p(θ) has Gaussian form (9).
Substituting (9) into (15) and carrying out the integration
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Figure 4: The source C of G wandering versus angle spread ∆ for
the different numbers of scatterers N = 1, 3, 12 (curves 1, 2, 3, re-
spectively). The solid and dashed curves correspond to the exact
formula (8) and its Gaussian approximation (9), respectively.

in (15), we obtain that σ1θ = θeff /
√
2. Hence it can be found

from (14) that the wandering of the CofG is equal to

σNθ = θeff√
2N

. (16)

Figure 4 shows the wandering σNθ of the CofG of the
source versus angle spread ∆ for different numbers of scatter-
ers N = 1, 3, 12 (curves 1, 2, 3). The solid and dashed curves
correspond to the exact formula (8) and its Gaussian approx-
imation (9), respectively. We can see that the exact and Gaus-
sian PDFs are very close to each other for a large interval of
θeff up to ≈ 40◦.

The CofG of the scattering sources gives the best unbi-
ased estimate of the true UE bearing, albeit that it is an esti-
mate with high variance (i.e., highmean squared error) when
the number of scattering centres is small. So the aim of our
AoA estimation processing is to estimate this CofG from a
limited-time snapshot of noisy received signal. The receiver
noise will add an additional error term to the final bearing
estimation error. However, it can be seen from the forego-
ing analysis that even using “perfect” CofG estimation algo-
rithms on long samples of high signal-to-noise-ratio (SNR)
received signal, there will still be a residual irreducible error
if the number of scattering centres is small. This is because
of the wandering of the CofG, which in turn is due to the
nonergodicity of the spread source.

3. AOA ESTIMATION INCORPORATING THE GCM

We have stated above that the best estimate of the true UE
bearing is given by estimating the CofG of the received signal
(i.e., for a given single realisation of the scattering). How-
ever, even using a “perfect” AoA estimation algorithm, we
would suffer from irreducible errors due to the “wandering”
of the scatterer CofG. For reasons of implementation sim-
plicity, wemay well in practice contemplate using a less-than-
perfect AoA estimation algorithm if (a) the implementation
of this less-than-perfect algorithm is simple, and hence cheap
to implement, and (b) the additional errors introduced by
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the less-than-perfect algorithm (compared to an optimal al-
gorithm) are small compared to the irreducible CofG wan-
dering error which we must allow for in any case. So in this
section, we consider just such a simplified AoA estimation
process, which we term SDBM. This method was selected
from a number of similar techniques which had been inves-
tigated because it was found to give the overall most accurate
and most robust performance. The mathematical details of
the SDBM technique will be presented later. However, the
essence of the technique is to measure, average, and com-
pare received signal powers (or amplitudes) received at the
BS, as measured in adjacent beams. We assume, for the use
of SDBM, that the BS already employs a multibeam antenna
(typically with three deep-cusp beams) in each 120◦-azimuth
sector. The scattered signal from the user is received by each
of the beams of the antenna, and the two adjacent beams
receiving the highest signal powers are selected. For these
beams, a set of functions, which we term “bearing curves,”
must be precalculated and stored. The exact form of these
bearing curves depends upon the multibeam antenna pat-
terns and upon the expected ensemble angle-spread distri-
bution (which we argued earlier tends to Gaussian form at
small angle spreads).

First of all, we determine the dependence of the average
received power G at an arbitrary beam output on the angle
location of the source with an angle spread ∆. Let F(θ) be the
reception gain pattern of this beam and θ0 be the centre of the
spread source (i.e., the “true” UE bearing). Then the function
G(θ0) can be presented in form of a mathematical convolu-
tion of (i) a function representing the power beam pattern
|F(θ0)|2 of this beam as a function of the azimuth angle (θ)
and (ii) a function p(θ) representing the (ensemble) pdf of
the AoAs of signals received by the BS due to reflections from
scatterers as a function of azimuth angle (θ), that is,

G
(
θ0
) = ∫ π

0

∣∣F(θ)∣∣2p(θ − θ0
)
dθ. (17)

We can refer to the function (17) as a “beam pattern for
a spread source,” that is, what we call a “spread” beam pat-
tern. If the spread of signals is a negligibly small quantity
(θeff → 0), then we have a point source, and the pdf p(θ) in
(8) tends to a delta function (i.e., p(θ) → δ(θ − θ0)). In this
case, the function G(θ0) is given by G(θ0) = |F(θ0)|2, that is,
it is simply equal to the power gain pattern of the beam, or to
what we will term the “point source” beam pattern.

Now we provide the mathematical definition of what we
have termed earlier the “bearing curves.” If L is the number of
the beams generated by themultibeam antenna, then we have
a set of beam patterns Gi(θ) (i = 1, 2, . . . ,L) and each beam
pattern is oriented in a given direction. The bearing curves
bi+1,i (i = 1, 2, . . . ,L − 1) for each adjacent beam pair (i +
1, i) may be represented by a function bi+1,i(θ) of the azimuth
angle θ of the antenna according to the following equation:

bi+1,i(θ) =
√
Gi(θ)−

√
Gi+1(θ)√

Gi(θ) +
√
Gi+1(θ)

. (18)
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Figure 5: Applying the SDBM algorithm.

These bearing curves are precalculated and stored by the
network. The precalculation takes place based on equation
(17), and hence takes into account both the known multi-
beam patterns and the expected angle-spread distribution of
the scattering channel (which we model as Gaussian with a
given θeff ). There is more discussion later about how we de-
termine the expected angle spread.

To estimate the bearing of any given source, the received
power from each beam of the antenna is measured over a
predetermined observation interval by averaging over a large
number of samples. The observation interval should be cho-
sen to be long enough so that the effects of Doppler signal
fading do not significantly impact the measured power.

The application of SDBM algorithm is shown in Figure 5.
Let pi = |si(t) + ni(t)|2 be the mean power measured at the
output of the ith (i = 1, 2, . . . ,L) antenna beam, where si(t)
and ni(t) are the useful signal and additive white Gaussian
noise (AWGN), respectively. The AWGN variance σ20 is as-
sumed to be the same for all of the different antenna beams.
The bearing curves, per (18), are produced without regard
to AWGN. That is to say, they only take into account ratios
of sums and differences of expected signal amplitudes (with-
out including noise or interference contributions). There-
fore, for a more accurate estimation of AoA based on mea-
sured noisy samples, we need to take into account an expected
noise power contribution for the measured signal, the value
of which we subtract from themeasured power signal of each
beam after the averaging. In practice, this means that we use
an estimated output signal power equal to p̃i = |pi − σ20 |.
The estimates p̃i for all i = 1, 2, . . . ,L are compared with
each other and the two adjacent beams receiving the high-
est signal powers are selected. If the jth and ( j + 1)th beams
have the highest output powers, then the sum-difference ra-

tio b̂ j+1, j = (
√
p̃ j−

√
p̃ j+1)/(

√
p̃ j+

√
p̃ j+1) is calculated and the

AoA is estimated by looking up the bearing θ corresponding
to this ratio from the corresponding bearing curve bj+1, j(θ)
of (18).

Now we present simulation results for the SDBM tech-
nique in order to estimate the accuracy which can be
achieved. Any one of a number of possible multibeam an-
tenna designs could have been assumed for this simulation,
but for this work, we have used the “deep-cusp” multibeam
antenna design of [15]. The deep-cusp beamformer cre-
ates three fixed beams per each 120◦-azimuth sector, gen-
erated from a facet containing 6-off λ/2-spaced columns of
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Figure 6: Bearing curves b21(θ) (left-hand curves) and b32(θ)
(right-hand curves) for the point (∆ = 0◦) and spread (∆ = 17◦)
sources (thin and thick curves, respectively).

dual-polar antenna elements (although only a single polari-
sation is considered here). The angular spread of the source
will be assumed to be equal to 17◦, which corresponds to ex-
perimental results obtained in [8]. Two representative cases,
for which the number of scatterers is specified as N = 3 and
N = 12, will be simulated. There are two bearing curves
b21(θ) and b32(θ) for the antenna configuration with three
beams.

The bearing curves b21(θ) and b32(θ) for the point (∆ =
0◦) and spread (∆ = 17◦) sources are presented in Figure 6
(thin and thick curves, respectively). The left-hand curves
are b21(θ) and the right-hand curves are b32(θ). It can be
seen that these bearing curves have the steepest slope at the
points where the beams cross. Estimation of the bearing of
the point source is possible only in the angle intervals [−30◦,
−10◦] and [10◦, 30◦]. For the spread source, estimation of
the bearing is possible over wider angle intervals [−35◦, 35◦].
It is assumed, of course, that to estimate the bearing of UEs
for angles outside this range, we would construct additional
bearing curves relating to the beam at the edge of this sector
and its neighbour at the edge of the adjacent sector.

When estimating the AoA, the estimates p̃1, p̃2, and p̃3 of
the mean signal power at the output of the ith (i = 1, 2, 3)
antenna beam are compared with each other. If p̃1 > p̃3, then
the ratio b̂21 is calculated and the AoA is estimated using the
bearing curve b21(θ). If p̃1 < p̃3, then the value b̂32 is calcu-
lated and the AoA is estimated according to the bearing curve
b32(θ).

Within the simulations, the samples of the complex sig-
nals were generated with a sampling period equal to 1 mil-
lisecond for three antenna beams. The maximum Doppler
frequency fd was set equal to 50Hz. The observation inter-
val was chosen to be 400 milliseconds, that is, approximately
50 times longer than the fading correlation interval. Various
SNRs equal to 30, 20, 10 and 0 dB were simulated, where
the SNR is defined by what the received SNR is for a point
source located at the peak of the central beam. In order to
average the results over all source directions, the true source
angle θtrue was varied from −40◦ to +40◦ with a step size
equal to 0.5◦. A thousand experiments were carried out for
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Figure 7: The rms of bearing estimation error for various SNRs and
for the number of scatterers N = 3.

each source direction, and different realisations of the (non-
ergodic) source model were applied for each of these experi-
ments. For each source position, the root-mean-square (rms)
∆θ of the bearing estimation error and the cumulative den-
sity function (CDF) of absolute value of AoA estimation er-
ror |θ̂ j − θtrue| were calculated.

The rms of the bearing estimation error is shown in
Figure 7 for the number of scatterers N = 3 and for the given
SNRs. We can see that, as expected, the rms of the bearing
estimation error decreases when the SNR increases. For large
SNRs (20 and 30 dB), the bearing estimation error lies within
the range 2◦ to 6◦ (depending on the true source bearing)
and is solely due to the randomwandering of the CofG of the
angle-spread source. For the lower SNRs, the bearing estima-
tion error is larger, and depends also on AWGN power. The
corresponding CDFs are presented in Figure 8. The CDFs in
Figure 8 can be approximated by the CDF of a Gaussian func-
tion. Using this Gaussian approximation, we obtain that the
standard deviation of the bearing estimation error is≈ 4◦ for
high SNRs and N = 3. As can be seen from Figure 4 (curves
2), this standard deviation is approximately equal to the stan-
dard deviation of the wandering of the CofG of the source
with an angle spread ∆ = 2θeff = 17◦ (θeff = 8.5◦). Thus
we can see that the bearing estimation error for high SNRs is
conditioned by the nonergodicity of the source model. The
highest bearing estimation errors are observed in the cross-
ing area of the antenna beam patterns. This is because the
beam gains are lower in this angular region, and so the ef-
fective received SNR is also lower in this region compared to
what it would be for a source located close to the peak of the
central beam. The CDF of the bearing estimation error for a
larger number of scatterers N = 12 is also shown in Figure 8.
Compared to the results for N = 3, the standard deviation
of the bearing estimation error has decreased by a factor of
approximately two for high SNRs, from ≈ 4◦ to ≈ 2◦. Like
the results for N = 3, this also corresponds to Figure 4 and
(14).

As is evident from the earlier discussion, the form of the
bearing curves is different for different assumed channel an-
gle spreads. This is because the first stage of the generation
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Figure 8: The CDFs of the bearing estimation error for various
SNRs. The number of scatterers is N = 12 (solid curves) and N = 3
(dashed curves).

of the bearing curves involves a convolution of the actual
beam pattern with the assumed angle-spread ensemble pdf.
What if we didn’t apply the preconvolution in the genera-
tion of the bearing curves, but simply used the bearing curve
corresponding to “point source” beam patterns, even when
the channel itself does exhibit angle spread? To answer this,
it is interesting to examine the bearing errors when bearing
curves generated for the point source are actually used for es-
timating AoA in a channel with angle spreading. Such com-
parative simulation results for the CDF of the bearing error
are presented in Figure 9 for SNR = 30dB and number of
scatterers N = 12. The angle spread in the channel is equal
to 17◦. We can see that the bearing error has increased sig-
nificantly due to the use of “nonmatched” bearing curves. In
order to generate “matched” bearing curves, we need at least
to have a reasonable estimate of the (ensemble) angle spread
of the channel. In practice, this would be obtained through
examination of published measured angle-spread data such
as [8], and by matching the environment in which the multi-
beam BS is deployed (e.g., urban, suburban, rural) to the ex-
pected angle spread of the channel.

4. CONCLUSIONS

In this paper, we have developed a model for an angle-spread
source which we term the Gaussian channel model (GCM).
This model is suitable for representing the signal seen at the
base station (BS) antenna, and assumes that the probabil-
ity of the scatterer occurrence decreases in accordance with
a Gaussian law when its distance from the user equipment
(UE) antenna increases. Such an assumption about the scat-
terer location is closer to the real-life environment than some
of the other known models. An analytical expression for the
probability density function (pdf) of the multipath angle of
arrival (AoA) at the BS has been derived for the general case
of an arbitrary angle spread. It is shown that this pdf can be
approximated by a Gaussian curve for sources with a small
spread. The comparison of the obtained pdf of AoA of the
multipath for the GCM with the published experimental re-
sults gives a better agreement than for some other known
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Figure 9: The CDF of the bearing estimation error using the
“spread” bearing curve (thick curve) and “point source” bearing
curve (thin curve) for SNR = 30dB, angle spread ∆ = 17◦, and
number of scatterers N = 12.

angle scattering models. However, in a real-life situation, we
deal with a single realisation of the angle-spread source, that
is, with a fixed finite number of discrete scattering centres. If
this number is particularly small, then their center of grav-
ity (CofG), defined as a power-weighted average AoA, may
“wander” about the true bearing of the UE. The variance of
this wandering of the CofG has been obtained. The depen-
dence of the AoA estimation accuracy on the parameters of
the spread sourcemodel has also been considered for a BS us-
ing a multibeam antenna, by carrying out simulations of the
so-called sum-difference bearing method (SDBM) AoA esti-
mation algorithm. It has been shown that for high SNRs, the
bearing estimation errors are dominated by the wandering
of the CofG of the spread source. This wandering is a con-
sequence of the nonergodicity of the angle scattering process
and is greater when the number of scattering sources is small.
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