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We propose the use of particle filtering techniques and Monte Carlo methods to tackle the in-line and blind equalization of a
satellite communication channel. The main difficulties encountered are the nonlinear distortions caused by the amplifier stage
in the satellite. Several processing methods manage to take into account these nonlinearities but they require the knowledge of a
training input sequence for updating the equalizer parameters. Blind equalization methods also exist but they require a Volterra
modelization of the system which is not suited for equalization purpose for the present model. The aim of the method proposed
in the paper is also to blindly restore the emitted message. To reach this goal, a Bayesian point of view is adopted. Prior knowledge
of the emitted symbols and of the nonlinear amplification model, as well as the information available from the received signal,
is jointly used by considering the posterior distribution of the input sequence. Such a probability distribution is very difficult to
study and thus motivates the implementation of Monte Carlo simulation methods. The presentation of the equalization method
is cut into two parts. The first part solves the problem for a simplified model, focusing on the nonlinearities of the model. The
second part deals with the complete model, using sampling approaches previously developed. The algorithms are illustrated and
their performance is evaluated using bit error rate versus signal-to-noise ratio curves.

Keywords andphrases: traveling-wave-tube amplifier, Bayesian inference,Monte Carlo estimationmethod, sequential simulation,
particle filtering.

1. INTRODUCTION

Telecommunication has been taking on increasing impor-
tance in the past decades and thus led to the use of satellite-
based means for transmitting information. A major imple-
mentation task to deal with such an approach is the atten-
uation of emitted communication signals during their trip
through the atmosphere. Indeed, one of the most important
roles devoted to telecommunication satellites is to amplify
the received signal before sending it back to Earth. Severe
technical constraints, due to the lack of space and energy
available on board, can be solved thanks to special devices,
namely, traveling-wave-tube (TWT) amplifiers [1]. A com-
monmodel for such a satellite transmission chain is depicted
in Figure 1.

Although efficient for amplifying tasks, TWT devices suf-
fer from nonlinear behaviors in their characteristics, thus im-
plying complex modeling and processing methods for equal-
izing the transmission channel.

The very first approaches for solving the equalization
problem of models similar to the one depicted in Figure 1
were developed in the framework of neural networks. These
methods are based on a modelization of the nonlinearities
using layers of perceptrons [2, 3, 4, 5, 6]. Most of these ap-
proaches require a learning or training input sequence for
adapting the parameters of the equalization algorithm. How-
ever, the knowledge or the use of such sequences is some-
times impossible: if the signal is intensely corrupted by noise
at the receiver stage or for noncooperative applications, for
instance.
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Figure 2: Identification of the model depicted in Figure 1 with a
Volterra filter.

Blind equalization methods have thus to be considered.
These methods often need precise hypothesis with the emit-
ted signals: Gaussianity or circularity properties of the proba-
bility density function of the signal, for instance [7]. Recently,
some methods make it possible to identify [8] or equalize
[9, 10, 11] blindly nonlinear communication channels un-
der general hypothesis. These blind equalization methods as-
sume that the transfer function of the system can be modeled
as a Volterra filter [12, 13].

However, for the transmission model considered here, a
Volterra modelization happens to be only suitable for the
task of identification and not for a direct equalization. For
instance, a method based on a Volterra modelization of the
TWT amplifier and a Viterbi algorithm at the receiver stage
is considered in [14]. Such an identification method can be
easily implemented through a recursive adaptation rule of
the filter parameters with a least mean squares approach (cf.
Figure 2). Themean of the quadratic error (straight line) and
its standard deviation (dotted lines) are depicted in Figure 3
for 100 realizations of binary phase shift keying (BPSK) sym-
bol sequences, each composed of 200 samples. Similarly, the
equalization problem of the transmission chain 1 can be con-
sidered with a Volterra filter scheme, adapted with a recursive
least squares algorithm as depicted in Figure 4. However, in
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Figure 3: Identification error, scheme of Figure 2.
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Figure 4: Equalization of the model depicted in Figure 1 with a
Volterra filter.

this case, the error function happens not to converge show-
ing that the Volterra filter is unstable and that the system is
not invertible with such modelization.

It is then necessary to consider a different approach
for realizing blindly the equalization of this communication
model. The aim of this paper is thus to introduce a blind
and sequential equalization method based on particle filter-
ing (sequential Monte Carlo techniques) [15, 16]. For re-
alizing the equalization of the communication channel, it
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seems interesting to fully exploit the analytical properties of
the nonlinearities induced by TWT amplifiers through para-
metric models of these devices [1]. Sequential Monte Carlo
methods, originally developed for the recursive estimation of
nonlinear and/or non-Gaussian state space models [17, 18],
are well suited for reaching this goal. The field of communi-
cation seems to be particularly propitious for applying par-
ticle filtering techniques, as shown in the recent literature of
the signal processing community [15, 19] and this issue and
of the statistics community (see [20, 21], [16, Section 4]).
Such Monte Carlo approaches were successfully applied to
blind deconvolution [22], equalization of flat-fading chan-
nels [23], and phase tracking problems [24], for instance.

The paper is organized as follows. Firstly, models for the
emitted signal, the TWT amplification stage, and the other
parts of the transmission chain are introduced in Section 2. A
procedure for estimating the emitted signal is considered in
a Bayesian framework. Monte Carlo estimation techniques
are then proposed in Section 3 for implementing the com-
putation of the estimated signal under the assumption of a
simpler communication model, focusing on the nonlinear
part of the channel. This approach uses analytical formu-
lae of the TWT amplifier model described in Section 2 and
sampling methods for estimating integral expressions. The
method is then generalized in Section 4 for building a blind
and recursive equalization scheme of the complete transmis-
sion chain. The sequential simulation algorithm proposed is
based on particle filtering techniques. This approach makes
it possible to process the data in-line and without the help
of a learning input sequence. The performance of the algo-
rithm is illustrated by numerical experiments in Section 5.
Finally, some conclusions are drawn in Section 6. Details of
the Monte Carlo approach are given in Appendix A.

2. MODELING OF THE TRANSMISSIONMODEL

The model of the satellite communication channel depicted
in Figure 1 is roughly the same as the one considered for var-
ious problems dealing with TWT amplifiers devices (cf., e.g.,
[2]). The different stages of this communication channel are
detailed below.

2.1. Emission stage

The information signal to transmit is denoted by e(t). It is
usually a digital signal composed of a sequence ofNe symbols
(ek)1≤k≤Ne . The signal is transmitted under the analog form

e(t) =
Ne∑
k=1

ekI[(k−1)T ,kT[(t), (1)

where T denotes the symbol rate and IΩ(·) is the indicator
function of set Ω. Symbols ek are generated from classical
modulations used in the field of digital telecommunication,
like PSK or quadratic amplitude modulation (QAM), for in-
stance. In the following, the case of 4-QAM symbols is con-
sidered. Each symbol can be written as

ek = exp
(
ıφk
)
, (2)

where the sequence of samples (φk)1≤k≤Ne is independently
and identically distributed from

U{π/4,3π/4,5π/4,7π/4}, (3)

where UΩ denotes the uniform distribution on the set Ω.
The signal is emitted through the atmosphere to the satellite.
The emission process is modeled by a Chebyshev filter. This
class of filters admits an IIR representation and their param-
eters, particularly their cutoff frequency, depend on the value
of symbol rate T [2]. A detailed introduction to Chebyshev
filters is given in [25], for instance. In the present case, the
emission filter is assumed to be modeled with a 3 dB band-
width equal to 1.66/T . The emitted signal is altered during
its trip in the atmosphere by disturbance signals. These phe-
nomena are modeled by an additive corrupting noise ne(t),
which is assumed to be Gaussianly, independently, and iden-
tically distributed:

ne(t) ∼ NCC
(
0, σ2e

)
, (4)

where NCC
(
0, σ2e

)
is a complex circular Gaussian distribu-

tion, with zero-mean and variance equal to σ2.

Remark 1. The amplitude of signal (1) is adjusted in practice
at the emission stage in order to reach a signal-to-noise ratio
(SNR) roughly equal to 15 dB during the transmission.

2.2. Amplification

After being received by the satellite, the signal is amplified
and sent back to Earth. This amplification stage is processed
by a TWT device. A simple model for TWT amplifier is an
instantaneous nonlinear filter defined by

z = r exp(ıφ) �−→ Z = A(r) exp
(
ı
(
φ +Φ(r)

))
, (5)

where r denotes the modulus of input signal. Amplitude gain
and phase wrapping can be modeled by the following expres-
sions:

A(r) = αar

1 + βar2
, (6)

Φ(r) = αpr2

1 + βpr2
. (7)

These formulae have been shown to model various types of
TWT amplifier device with accuracy [1]. Figures 5 and 6 rep-
resent functions (6) and (7) for two sets of parameters esti-
mated in [1, Table 1] from real data and duplicated in Table 1.
Curves with straight lines represent functions obtained with
the set of parameters of the first row of Table 1. The ones with
dashed lines represent functions obtained with the other set
of parameters.

A drawback of model (5) is that it is not invertible in a
strict theoretical sense, as drawn in Figure 5. However, only
the amplificative and invertible part of the system, repre-
sented above the dotted line on Figure 5, will be considered.
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Figure 5: Amplitude gain (6) of TWT models.
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Figure 6: Phase wrapping (7) of TWT models.

Signal processing in the satellite also performs the task of
multiplexing. The devices used for this purpose are modeled
by Chebyshev filters. Tuning of their parameters is given in
[2], for instance. In the present case, filters at the input and at
the output of the amplifier are assumed to have bandwidths
equal, respectively, to 2/T and 3.3/T .

2.3. Reception

The transmission of the signal back to Earth is much less
powerful than at the emission stage. This is mainly due to se-
vere technical constraints because of the satellite design. The
influence of the atmospheric propagation medium is then
modeled by amultipath fading channel [26, Section 11], with
one reflected path representing an attenuation of 10 dB in
this case: z(t) → z(t) + αz(t − ∆). Moreover, the signal is
still corrupted by disturbance signals, modeled by an additive
noise signal nr(t), Gaussianly, independently, and identically

Table 1: Parameters of (6) and (7) measured in practice.

αa βa αp βp

2 1 4 9.1

2.2 1.2 2.5 2.8

distributed:

nr(t) ∼ NCC
(
0, σ2r

)
. (8)

This noise is always much more intense than at the emission
stage. This is mainly due to the weak emission power avail-
able in the satellite. The received signal, denoted as r(t), is
sampled at rate Ts.

2.4. Equalization

The goal of equalization is to recover emitted sequence
(ek)1≤k≤Ne from the knowledge of sampled sequence
(r( jTs))1≤ j≤Nr . The equalization method proposed in this
paper consists in estimating symbol sequence (φk)1≤k≤Ne

by considering its posterior distribution conditionally to se-
quence (r( jTs))1≤ j≤Nr of samples of the received signal:

p
((
φk
)
1≤k≤Ne

∣∣(r( jTs
))

1≤ j≤Nr

)
. (9)

To reach this goal, a Bayesian estimation procedure is consid-
ered with the computation of maximum a posteriori (MAP)
estimates [27].

Remark 2. Bayesian approaches have already been success-
fully applied in digital signal processing in the field of mobile
communication. In [28], for instance, autoregressive models
and discrete-valued signals are considered.

The computation of the estimates is implemented via
Monte Carlo simulation methods [16, 29]. As the complete
transmission chain is a complex system, a simpler model fo-
cusing on the nonlinear part of the channel is considered
in the following section, where Monte Carlo estimation ap-
proaches are introduced. These estimation techniques will be
used in the equalization algorithm for the global transmis-
sion chain in Section 4.

3. MONTE CARLO ESTIMATIONMETHODS

As a first approximation, to focus on the nonlinearity of the
model, only a TWT amplifier is considered in a transmission
channel corrupted with noises at its input and output parts
as shown in Figure 7.

The received signal r(t) is assumed to be sampled at sym-
bol rate T . The problem is then to estimate a 4-QAM sym-
bol φ a priori distributed from (3) with the knowledge of the
model depicted in Figure 7 (cf. relations (4), (6), (7) and (8)),
and information of a received sample r. A Bayesian approach
is developed [27] by considering the posterior distribution

p(φ|r) (10)
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Figure 7: Simple communication channel with TWT amplifier.

and its classical MAP estimate. The method proposed in the
following consists in estimating values of distribution (10)
thanks to Monte Carlo simulation schemes [29] using re-
lations (6) and (7) which model nonlinearities of the TWT
amplifier in a parametric manner.

3.1. Estimationwith known parameters

In order to further simplify the study, parameters of the
transmission channel depicted in Figure 7 are firstly assumed
to be known. In the sequel, the coefficients of expressions (6)
and (7) are denoted by the symbol TWT. This information
is taken into account in the posterior distribution (10) thus
becoming

p
(
φ
∣∣A, σe, TWT, σr , r

)
, (11)

where A denotes the amplitude of the emitted signal. From
Bayes’ formula, the probability density function of this dis-
tribution is proportional to

p
(
r
∣∣A,φ, σe, TWT, σr

)× p
(
φ
∣∣A, σe, TWT, σr

)
. (12)

The prior distribution at the right-hand side of the above ex-
pression reduced to p(φ), which is given by (3). The problem
is then to compute the likelihood

p
(
r
∣∣A,φ, σe, TWT, σr

)
. (13)

Indeed, this formula can be viewed (cf. Appendix A) as the
following expectation:

E
{
exp

(
− 1

σ2r

∣∣r − TWT(x)
∣∣2)} (14)

with respect to the random variable x which is Gaussianly
distributed:

x ∼ NCC
(
A exp(ıφ), σ2e

)
. (15)

Considering a sequence of samples (x�)1≤�≤N independently
and identically distributed from (15), a Monte Carlo approx-
imation of (14) is given by

1
N

N∑
�=1

exp
(
− 1

σ2r

∣∣r − TWT
(
x�
)∣∣2) (16)

which is accurate for a number N of samples large enough.
References [29, 30] provide detailed ideas and references
about Monte Carlo methods. To illustrate such an approach,
approximation (16) is computed for the emitted symbol φ =
π/4 and the values of TWT amplifier parameters given by

Table 2: Estimates of (11), SNRe = 10 dB, SNRr = 3 dB, 100 real-
izations.

φ p̂(φ|r)
π

4
0.69± 0.28

3π
4

0.13± 0.21

5π
4

0.02± 0.05

7π
4

0.16± 0.24

the first row of Table 1. Amplitude A of the emitted signal
equals 0.5 and variances of transmission noises are such that
SNRe = 10 dB and SNRr = 3 dB. One hundred realizations
are simulated and, for each, a sequence (15) of 100 samples
is considered. Table 2 gives mean values obtained from (16)
and their standard deviations.

The error of the estimated values (16) of probabilities
(11) might seem quite large as the standard deviations can
be reduced providing a larger number of samples. In the se-
quel, we are only interested in obtaining rough estimates of
(11), enabling comparison of mean values for different φ as
shown in Table 2. Thus, even with a reduced number of sam-
ples (15), it is possible to estimate accurately the MAP esti-
mate of (11).

Performance of the Monte Carlo estimation method is
then considered with respect to SNR at the input and out-
put of the amplifier (cf. Figure 7). The bit error rate (BER)
is computed by averaging the results obtained with a MAP
approach. Statistics of the Monte Carlo estimates (16) of dis-
tribution (11) are computed with 100 realizations of symbol
sequences composed of 1, 000 samples each. For each esti-
mate, sequences (15) composed of 100 samples are consid-
ered. The results of these simulations for SNRe taking val-
ues 10, 12, and 15 dB are depicted in Figure 8 and curves
from the bottom to the top are associated to decreasing
SNRe.

The Bayesian approach and its Monte Carlo implemen-
tation make it possible to estimate the emitted signal with
accuracy for a wide range of noise variances (cf. Figure 8).
However, the estimation method described previously re-
quires the knowledge of the model parameters. For many ap-
plications in the field of telecommunication, it is necessary
to assume these parameters unknown. It is the case for non-
stationary transmission models and for communication in
noncooperative contexts like passive listening, for instance.
The equalization problem of the simplified model depicted
in Figure 7 is now tackled in the case where the parameters
(A, σe, TWT, σr) of the transmission channel are assumed to
be unknown.

3.2. Estimationwith unknown parameters

If the parameters are unknown, there are, at least, two
Bayesian estimation approaches to be considered with re-
spect to posterior distribution (10). A first method consists
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Figure 8: Mean BER values for MAP estimates of signals ver-
sus SNRr in dB, model of Figure 7 with known parameters
(A, σe, TWT, σr), for various SNRe values.

in dealing with the joint distribution of all the parameters of
the model

p
(
φ,A, σe, TWT, σr

∣∣r). (17)

This method makes it possible theoretically to jointly esti-
mate the emitted symbols and the parameters of the trans-
mission channel by implementing MAP and/or posterior
mean approaches. The probability density function of dis-
tribution (17) being generally very complex, Markov chain
Monte Carlo (MCMC) simulation methods [29, 30] can be
used to perform these estimation tasks. Such an approach
is developed in [31] particularly for equalizing the complete
transmission chain depicted in Figure 1. However, results ob-
tained with this method happen not to give accurate esti-
mates of the model parameters in practice. Indeed, MCMC
methods are generally useful for estimating various models
in the field of telecommunication [28, 32].

Another approach consists in considering a marginalized
version of distribution (10) with respect to the parameters of
the model:

p(φ) =
∫
p
(
φ,A, σe, TWT, σr

∣∣r)d(A, σe, TWT, σr
)
. (18)

Such a technique, called Rao-Blackwellization in the statistics
literature, for example, [33, 34], makes it possible to improve
the efficiency of sampling schemes (see [20, 21], [16, Section
24]). From Bayes’ formula, the integrand of expression (18)
is proportional to

p
(
r
∣∣φ,A, σe, TWT, σr

)× p
(
φ,A, σe, TWT, σr

)
. (19)

Assuming that symbols and the model parameters are inde-
pendent, expression (18) is proportional to

p(φ)×
∫
p
(
r
∣∣φ,A, σe, TWT, σr

)
p
(
A, σe, TWT, σr

)
× d

(
A, σe, TWT, σr

)
.

(20)

From the study of the previous case, the likelihood term in
the integrand can be computed via a Monte Carlo estimate
of expression (14) with a sequence of samples (15). An ap-
proach to estimate (18) is then to consider the integral ex-
pression in (20) as the expectation

Ep(A,σe ,TWT,σr )
{
p
(
r
∣∣φ,A, σe, TWT, σr

)}
(21)

which is estimated via a Monte Carlo approximation of the
following form:

1
Np

Np∑
k=1

p
(
r
∣∣φ,Ak, σe(k), TWTk, σr(k)

)
, (22)

where (Ak, σe(k), TWTk, σr(k))k=1,...,Np is a sequence of sam-
ples independently and identically distributed from the prior
distribution

p
(
A, σe, TWT, σr

)
. (23)

Remark 3. The algorithm for sampling distribution (17) in-
troduced in [31] requires also the setting of prior distribution
(23).

The model of the parameters includes generally prior in-
formation thanks to physical constraints. For instance, the
TWT amplifier is assumed to work in the amplificative part
of its characteristic (cf. Figure 5). Thus, as a first rough ap-
proximation, it can be assumed that A ∼U[0,1] a priori. This
parameter is also tuned such that SNRe equals 15 dB during
the emission process (cf. Remark 1) implying the constraint
σe = 0.2A. In a less strict case, it is sufficient to assume that
σe ∼ U[0.01,0.5]. The parameters (αa,βa,αp,βp) of the TWT
amplifier are supposed to be independent of other variables
of the system and also to be mutually independent. From the
values introduced in Table 1, an adequate prior distribution
is

(
αa,βa,αp,βp

) ∼U[1,3] ×U[0,2] ×U[1,5] ×U[2,10]. (24)

The extremal values of the downlink transmission noise vari-
ance σr can be estimated with respect to prior ranges of values
defined above. A uniformU[0.1,1.1] prior distribution for σr is
thus chosen. Once all prior distributions have been defined,
it is possible to implement a Monte Carlo estimation proce-
dure for (20) with the help of approximations (22) and (16).
Such an approach is tested for the computation of values of
posterior distribution for an emitted symbol φ = π/4 consid-
ering that the values of the TWT amplifier are given by the
first row of Table 1, that the amplitude of the emitted signal
is given by A = 0.5, and that noise variances are such that
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Table 3: Estimates of (10), SNRe = 10 dB, SNRr = 3 dB, 100 real-
izations.

φ p̂(φ|r)
π

4
0.61± 0.21

3π
4

0.23± 0.20

5π
4

0.05± 0.03

7π
4

0.12± 0.14

SNRe = 10 dB and SNRr = 3 dB. One hundred estimations
are simulated and for each realization, sequences of 100 sam-
ples (

Ak, σe(k), TWTk, σr(k)
)
1≤k≤Np

(25)

are drawn from distribution (23). For each sequence, as in
the case where the model parameters are known, approxima-
tions (16) are computed from sequences (25) composed of
100 samples each. Table 3 shows the mean values of the es-
timated (22) and their standard deviations computed from
these simulations.

As for the previous case, where parameters (A, σe, TWT,
σr) are known, we are only interested in obtaining rough
mean values of Monte Carlo estimates of the MAP expres-
sion (10) and thus do not consider larger sample sizes for
reducing the standard deviation of these estimates.

Performance of this Monte Carlo estimation method is
now considered with respect to uplink and downlink SNR.
As previously, BERs are computed by averaging results ob-
tained with a MAP approach for the Monte Carlo estimate
(22) of posterior distribution (10). One hundred realizations
of 1 000-symbol sequences are considered for each value of
SNR. For every Monte Carlo estimate, sequences (25) and
(15) are composed of 100 samples. The results of simulations
for SNRe equal to 10, 12, and 15 dB are depicted in Figure 9.
Curves from the bottom to the top are associated to a de-
creasing uplink SNR. As a comparison, the estimated mean
values of BER in the case where the parameters of the TWT
amplifier are known are represented with dashed lines.

Performance is not much corrupted in the case where
model parameters are unknown. Thus, considering the poste-
rior distribution of interest (18), marginalized with respect to
these parameters, seems to be a good strategy for tackling the
equalization problem. An in-line simulation method based
on the Monte Carlo estimation techniques previously devel-
oped is proposed hereinafter for realizing the equalization of
the complete transmission chain depicted in Figure 1.

4. PARTICLE FILTERING EQUALIZATIONMETHOD

4.1. Transmissionmodel

Equalizing the complete satellite communication channel de-
picted in Figure 1 is a difficult problem as it requires taking

10−1

10−2

B
E
R

3 4 5 6 7 8 9 10

SNR (dB)

SNRe=10 dB

SNRe=12 dB

SNRe=15 dB

Figure 9: Mean BER values for MAP estimates of signals versus
SNRr in dB, model of Figure 7 with unknown/known parameters
(A, σe, TWT, σr) (straight/dashed lines), for various SNRe values.

into account several phenomena:

(1) effects of the filters modeling, emission, and multi-
plexing stages;

(2) attenuation of the received signal mainly due to multi-
ple paths during the downlink transmission;

(3) correlation induced by filters and emission and fading
models.

An equalization method is proposed for this model
within a Bayesian estimation framework [27]. It consists in
considering the posterior distribution of the sampled sym-
bols conditionally to the sequence of the received samples:

p
((
e
(
jTs
))

1≤ j≤Nr

∣∣(r( jTs
))

1≤ j≤Nr

)
. (26)

An estimation procedure is then implemented by computing
the MAP estimate of distribution (26). Monte Carlo estima-
tion methods developed in the previous paragraphs can be
slightly modified in order to take into account the parame-
ters of the complete transmission chain (cf. points (1) and
(2) above).

The correlation of the samples at the receiver stage
mainly comes from the linear filters in the channel. In fact,
this problem yields to the estimation of parameter p: the
number of received samples per symbol rate p = T/Ts, as
parameters of Chebyshev filters at the emission and multi-
plexing stages depend on its value.

Computing the correlation of the received samples makes
it possible to give an estimate of p [31] in the case where this
quantity is an integer, and thus to estimate the parameters
of the filters. In the sequel, we consider that this is the case,
assuming that a proper synchronization processing has been
performed at the receiver stage. This task can also be achieved
via Monte Carlo simulation methods [24]. This parameter p
will be used in an explicit manner in the recursive equaliza-
tion algorithm introduced in Section 4.3.
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An MCMC simulation scheme [29, 30], for the batch
processing of received data, was studied in [31]. A sequen-
tial simulation method for sampling the distribution (26) is
now introduced, as many applications in the field of telecom-
munication require in-line processing methods when data is
available sequentially.

4.2. Sequential simulationmethod

A sequential method for sampling distribution (26) can be
implemented via particle filtering techniques [15, 16]. The
wide scope of this approach, originally developed for the re-
cursive estimation of nonlinear state space models [17, 18,
20, 21], is well suited for the sampling task of this equaliza-
tion problem. The basic idea of particle filtering is to generate
iteratively sequences of the variables of interest, each of them
denoted as a “particle,” here written as

(
x0(i), x1(i), . . . , xt(i)

)
1≤i≤M (27)

such that particles (xt(1), . . . , xt(M)) at time t are distributed
from the desired distribution, denoted as pt(x). This goal can
be reached with the use of two “tuning factors” in the algo-
rithm:

(i) the way the particles are propagated or diffused,
xt(i) → xt+1(i), in the sampling space, namely, the
choice of a proposal or candidate distribution;

(ii) the way the distribution of particles (xt(1), . . . , xt(M))
approximates the target distribution pt(x): by affecting
a weight wt(i) to each particle depending on the pro-
posal distribution, and updating these weights with an
appropriate recursive scheme.

These two tasks are illustrated in Figure 10, where each “ball”
stands for a particule xt(i) whose weight is represented by the
length of an associated arrow.

Such recursive simulation algorithm is referred to as se-
quential importance sampling or particle filtering in the liter-
ature [16, 18, 20, 21] of Monte Carlo methods. A good choice
of the candidate distribution generally makes it possible to
reduce the computational time of the sampling scheme, as

(1) Initialization. Sample φ0(i) ∼U{π/4,3π/4,5π/4,7π/4},
set the weights w0(i) = 1/M for i = 1, . . . ,M, set
j = 1.

(2) Importance sampling. Diffuse, propagate the
particles by drawing

φ̃ j(i) ∼ p
(
φj

∣∣φj−1(i)
)

(28)

for i = 1, . . . ,M, and actualize the paths[
φ̃0(i), . . . , φ̃ j(i)

] = [φ0(i), . . . ,φj−1(i), φ̃ j(i)
]
.

(3) Compute, update the weights

w̃ j(i) = p
(
r
(
jTech

)∣∣φ̃ j(i)
)×wj−1(i), (29)

and normalize them: wj(i) = w̃ j(i)/
∑M

k=1 w̃ j(k).
(4) Selection/actualization of particles. ResampleM

particles (φ0(i), . . . ,φj(i)) from the set

(φ̃0(i), . . . , φ̃ j(i))1≤i≤M according to their weights
(wj(i))1≤i≤M and set the weights equal to 1/M.

(5) j ← j + 1 and go to (2).

Algorithm 1: Equalization algorithm.

explained in the next paragraph. Such Monte Carlo simula-
tion scheme is now proposed to tackle the sequential sam-
pling of distribution (26).

4.3. Equalization algorithm

In the present case, phase samples φj = φ( jTs) of the emitted
signal are directly sampled. The simulation scheme which is
considered is the bootstrap filter [15, 16, 17, 18] and is given
in Algorithm 1.

The important sampling and computation steps (28) and
(29) are detailed hereinafter.

The information brought by parameter p, number of re-
ceived samples per symbol duration, is taken into account
via the proposal distribution (28). Indeed, candidates for
particles φ̃ j(i) can be naturally sampled from the following
scheme:

(i) Set φ̃ j(i) = φ̃ j−1(i) with probability 1− 1/p;

(ii) Sample φ̃ j(i)∼U{π/4,3π/4,5π/4,7π/4} with probability 1/p.

This sampling scheme is very simple and can easily be
improved by considering φ̃kp(i) ∼ U{π/4,3π/4,5π/4,7π/4} and

φ̃kp+s(i) = φ̃kp(i) for 1 ≤ k ≤ p − 1, for instance. How-
ever, the scheme above gives sufficiently accurate results as a
first approximation, due to its flexibility (if a false symbol is
chosen, there is probability to switch to other symbols again)
and its ability to deal with possible uncertainty on the value
of parameter p. This scheme is also efficient to limit the neg-
ative effect of sample impoverishment due to the resampling
step, as detailed hereinafter. The proposed scheme, however,
does not take into account completely the information com-
ing from emission and received signals and if some coding
techniques are used to generate the symbols, this knowledge
should be introduced in the sampling scheme (28) if possible.
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The computation of weights (29) is realized by using sim-
ilar Monte Carlo approaches to the ones introduced previ-
ously, including filters and their parameters in expressions
(14) and (18). In this respect, Algorithm 1 can be seen as a
Rao-Blackwellized particle filter [20, 21] where the parame-
ters of the channel, considered here as nuisance parameters,
are integrated out. This generally helps to lead tomore robust
estimates in practice [16, 33, 34].

A crucial point in the implementation of particle fil-
tering techniques lies in the resampling stage, step (4) in
Algorithm 1. As the computations for sampling the candi-
dates (28) and updating the weights (29) can be performed
in parallel, the resampling step gives the main contribu-
tion in the computing time of the algorithm as its achieve-
ment needs the interaction of all the particles. This stage is
compulsory in practice if one wants the sampler to work
efficiently. This is mainly due to the fact that the sequen-
tial importance sampling algorithm without resampling in-
creases naturally the variance of the weights (wj(i))1≤i≤M
with time [20, 22, 35]. In such case, only a few particles are af-
fected nonnegligible weights after several iterations, implying
a poor approximation of the target distribution and a waste
of computation.

To limit this effect, several approaches can be considered
[15]. One consists in using very large numbers of particlesM
and/or in performing the resampling step for each iteration
[17, 18]. However, resampling too many times often leads
to severe sample impoverishment [16, 20, 21]. Other meth-
ods, also aiming at minimizing computational and memory
costs, consist in using efficient sampling schemes for diffus-
ing the particles [20] and performing occasionally the resam-
pling stage when it seems to be needed [15, 21]. When to
perform resampling can be decided by measuring the vari-
ance of weights via the computation of the effective sam-
ple size M/(1 + var(w̃ j(i))), whose one estimate is given by

1/
∑M

i=1w
2
j (i) [15, 16, 21, 35]. In this case, the resampling

stage can be performed each time the estimated effective
sample size is small, measuring how the propagation of the
particles in the sampling space is efficient. This quantity
equals M for uniformly weighted particles and equals 1 for
degenerated cases where all the particles have zero weights
except one.

It is also possible to compute the entropy of the weights,
describing “how far” the distribution of the weights is from
the uniform distribution. Indeed, the entropy is maximized
for uniform weights andminimized for the degenerated con-
figurations as mentioned above. In this sense, the entropy
of weights quantifies the information of the samples and
measures the efficiency of representation for a given popu-
lation of particles. This approach is adopted in [24, 36], for
instance, and also in our algorithm as follows. Step (4) of
Algorithm 1 is therefore replaced by the computing of en-
tropy of the weights

H
(
wt(1), . . . ,wt(M)

) = − M∑
i=1

wt(i) log
(
wt(i)

)
(30)

and a resampling/selection step is processed only if the con-
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Figure 11: (a) Estimated effective sample size (ESS) and (b) entropy
(H) of the weights for one realization of the particle filtering algo-
rithm, M=100 particles, resampling performed when ESS ≤ M/10
or H ≤ logM/2.

dition

H
(
wt(1), . . . ,wt(M)

)
≤ λ× max

w(1),...,w(M)
H
(
w(1), . . . ,w(M)

) = λ logM
(31)

holds, assuming that λ is a threshold value set by the user.
To show that the estimated effective sample size and en-
tropy lead to similar results for the resampling task, their
values for one realization of the algorithm are depicted in
Figure 11.

Also, the resampling step can be performed via different
techniques [18, 21]. In the sequel, we use the general multi-
nomial sampling procedure [16, 18].

As the variable of interest φ is distributed from a set of
discrete values, using large numbers of particlesM happened
to be unnecessary. Simulations have shown that several
dozens are sufficient for the problem considered here. This
is also the case for other Monte Carlo simulation methods
used for estimating telecommunication models [37]. More-
over, the degeneracy phenomenon is not really a nuisance in
the present case as the simulation algorithm Algorithm 1 is
only used in a MAP estimation purpose and not for com-
puting mean integral estimates as (18) and (A.4), for in-
stance.

Some simulations concerning performance of the equal-
ization algorithm with this sequential sampling scheme are
now presented.
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Figure 12: Mean± standard deviation (straight/dotted lines) of the
BER values for MAP estimates of signals versus SNRr in dB, model
of Figure 1 for SNRe= 12 dB.

5. NUMERICAL EXPERIMENTS

The equalization method was run for 100 realizations of se-
quences of 1 000 samples for each value of SNR at the receiver
stage and for SNR equal to 12 dB at the emission stage. The
number of received samples per symbol rate is p = 8. The
channel model is depicted in Figure 1.

(a) The amplifier model is described in Section 2.2 where
parameters are set as the first row of Table 1.

(b) The fading channel is composed of one delayed traject
of 3 samples (∆ = 3Ts; cf. Section 2.3) and 10 dB at-
tenuated in comparison with the principal trajectory.

For each realization, the emitted symbol sequence is esti-
mated by considering the MAP trajectory computed from
a Monte Carlo approximation of the distribution (26) with
M = 50 particles (27). Weights (29) are computed with
the help of Monte Carlo estimation techniques introduced
in Section 3.2, considering sequences of 100 samples. In our
simulations, the value for threshold (31) λ = 0.1 gave accept-
able estimation results. The mean values (straight lines) and
their associated variances (dotted lines) of the BER of MAP
estimates are depicted in Figure 12.

The equalization algorithm was also run for different val-
ues of uplink SNR: 10 dB and 15 dB. The mean values of the
BER computed from the estimated phases are depicted in
Figure 13. Curves from the bottom to the top are associated
to a decreasing SNRe.

One of the advantages of the proposed equalization
method is its robustness with respect to nonstationarities
of the transmission channel. This property comes from the
MAP estimation procedure considering the distribution (18)
marginalized with respect to channel parameters. Simula-
tions including perturbations of the parameters of the trans-
mission chain lead to similar results to those presented in
Figures 12 and 13. On the other hand, in case of dysfunc-
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Figure 13: Mean BER values for MAP estimates of signals versus
SNRr in dB, model of Figure 1 for various SNRe values.

tion in devices of the amplifier and/or of the filters or if sud-
den change of noise intensities happens during the trans-
mission, the estimation method remains almost insensitive
to these changes. The approach currently developed cannot
thus be used for diagnostic purposes, as it is the case for cer-
tain methods based on neural networks [4]. An interesting
hybrid approach is proposed in the conclusion to cope with
this task.

In order to compare the performance of the equaliza-
tion method, BERs computed from theMAP estimates of the
symbols are compared with ones obtained with signals esti-
mated by an equalizer built from a 2-10-4 multilayer neural
network, using hyperbolic tangents as activation functions
[3]. The mean values (straight lines) and standard deviations
(dotted lines) of BER computed from Monte Carlo MAP es-
timates are represented in Figures 14 and 15. The mean val-
ues of BER computed from signals estimated with the neural
network method are depicted in dashed lines.

The two methods give similar results for this configura-
tion. Nevertheless, an important and interesting characteris-
tic of the sequential Monte Carlo estimation method is that
it does not require any learning sequence for equalizing the
transmission chain, contrary to approaches based on neu-
ral networks. The proposed method is thus efficient in the
context of blind communication. A calibration step is at least
necessary in order to estimate the number of received sam-
ples per symbol rate. This tuning can be realized in a simple
manner by computing the correlation of the received sam-
ples.

6. CONCLUSION

The particle filtering equalization method proposed in this
papermakes it possible to estimate sequentially digital signals
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Figure 14: Mean± standard deviation (straight/dotted lines) of the
BER values for MAP estimates of signals versus SNRr in dB, model
of Figure 1 for SNRe= 15 dB.Means of the BER values for the signals
estimated with neural networks are depicted in dashed lines.

transmitted through a satellite communication channel. The
approach takes explicitly into account the nonlinearities in-
duced by the amplification stage in the satellite thanks to
a Bayesian estimation framework implemented via Monte
Carlo simulationmethods. This approach enables to estimate
recursively the distribution of interest, namely, the posterior
distribution of the variables, marginalized with respect to the
parameters of the transmission chain.

An advantage of this approach is that it is robust to non-
stationarities of the channel. On the contrary, the method
cannot detect these nonstationarities and thus be employed
to predict some dysfunction of transmission devices, as it
is the case for certain neural networks approach. Therefore,
it seems interesting to use Markov chain and/or sequential
Monte Carlo methods to train appropriate neural networks
models. This approach was successfully applied in the field of
statistical learning, for instance [16, Section 17].

As for many particle-filtering-based methods, the imple-
mentation of the sampling algorithm is generally demanding
in terms of computing time, if compared to classical nonsim-
ulation approaches, especially for tackling problems arising
in the field of digital communication [19].

However, an advantage of the proposed Monte Carlo
equalization method is that it does not require the knowl-
edge of any learning input sequence in order to update
the equalizer parameters. To the best of our knowledge, it
seems at the moment the only method for achieving di-
rectly the blind equalization task of such transmission chan-
nel. This blind property can be of premium importance in
the framework of communication in noncooperative con-
text. This is the case in passive listening, for instance, or
when transmission of learning sequences cannot be com-
pleted correctly because of intense noises during the trans-
mission.
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Figure 15: Mean± standard deviation (straight/dotted lines) of the
BER values for MAP estimates of signals versus SNRr in dB, model
of Figure 1 for SNRe= 15 dB.Means of the BER values for the signals
estimated with neural networks are depicted in dashed lines.

APPENDICES

A. MONTE CARLO ESTIMATIONOF POSTERIOR
DISTRIBUTION p(φ|A, σe, TWT, σr , r)

As stated in Section 3.1, the problem is to compute likelihood
(13). A solution consists in integrating this expression with
respect to y, the amplified signal (cf. Figure 7):

∫
p
(
r, y
∣∣A,φ, σe, TWT, σr

)
dy. (A.1)

From Bayes’ formula, this expression is proportional to∫
p
(
r
∣∣y,A,φ, σe, TWT, σr

)
p
(
y
∣∣A,φ, σe, TWT, σr

)
dy.

(A.2)

As downlink transmission noise is assumed to be Gaussian
(cf. (8)), the likelihood is yielding

p
(
r
∣∣y, σr)∝ exp

(
− |r − y|2

σ2r

)
. (A.3)

The right probability density function in integral (A.2) can
be computed by marginalizing it with respect to x, the signal
to amplify (cf. Figure 7):

p
(
y
∣∣A,φ, σe, TWT, σr

)
=
∫
p
(
y, x
∣∣A,φ, σe, TWT, σr

)
dx

∝
∫
p
(
y
∣∣x,A,φ, σe, TWT, σr

)
× p

(
x
∣∣A,φ, σe, TWT, σr

)
dx.

(A.4)
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The signal y is entirely determined by the signal x from re-
lations (6) and (7). The left probability density function in
integral (A.4) thus equals

p
(
y
∣∣x,A,φ, σe, TWT, σr

) = δ
(
y − TWT(x)

)
. (A.5)

The right probability density function in expression (A.4)
yields

p
(
x
∣∣A,φ, σe)∝ exp

(
−
∣∣x − A exp(ıφ)

∣∣2
σ2e

)
(A.6)

as the uplink transmission noise is assumed to be Gaussian
(cf. (4)). Expression (13) is thus proportional to

∫
exp

(
− 1

σ2r

∣∣r−TWT(x)
∣∣2) exp(− ∣∣x−A exp(ıφ)

∣∣2
σ2e

)
dx

(A.7)

and the above formula can be viewed as an expectation

E
{
exp

(
− 1

σ2r

∣∣r − TWT(x)
∣∣2)}, (A.8)

where

x ∼ NCC
(
A exp(ıφ), σ2e

)
. (A.9)
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