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Principal components analysis is an important and well-studied subject in statistics and signal processing. The literature has an
abundance of algorithms for solving this problem, where most of these algorithms could be grouped into one of the following
three approaches: adaptation based on Hebbian updates and deflation, optimization of a second-order statistical criterion (like
reconstruction error or output variance), and fixed point update rules with deflation. In this paper, we take a completely differ-
ent approach that avoids deflation and the optimization of a cost function using gradients. The proposed method updates the
eigenvector and eigenvalue matrices simultaneously with every new sample such that the estimates approximately track their true
values as would be calculated from the current sample estimate of the data covariance matrix. The performance of this algorithm is
compared with that of traditional methods like Sanger’s rule and APEX, as well as a structurally similar matrix perturbation-based
method.
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1. INTRODUCTION

Principal components analysis (PCA) is a well-known statis-
tical technique that has been widely applied to solve impor-
tant signal processing problems like feature extraction, sig-
nal estimation, detection, and speech separation [1, 2, 3, 4].
Many analytical techniques exist, which can solve PCA once
the entire input data is known [5]. However, most of the
analytical methods require extensive matrix operations and

hence they are unsuited for real-time applications. Further,
in many applications such as direction of arrival (DOA)
tracking, adaptive subspace estimation, and so forth, signal
statistics change over time rendering the block methods vir-
tually unacceptable. In such cases, fast, adaptive, on-line so-
lutions are desirable. Majority of the existing algorithms for
PCA are based on standard gradient procedures [2, 3, 6, 7,
8, 9], which are extremely slow converging, and their perfor-
mance depends heavily on step-sizes used. To alleviate this,
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subspace methods have been explored [10, 11, 12]. How-
ever, many of these subspace techniques are computation-
ally intensive. The recently proposed fixed-point PCA algo-
rithm [13] showed fast convergence with little or no change
in complexity compared with gradient methods. However,
this method and most of the existing methods in literature
rely on using the standard deflation technique, which brings
in sequential convergence of principal components that po-
tentially reduces the overall speed of convergence. We re-
cently explored a simultaneous principal component extrac-
tion algorithm called SIPEX [14] which reduced the gradient
search only to the space of orthonormal matrices by using
Givens rotations. Although SIPEX resulted in fast and simul-
taneous convergence of all principal components, the algo-
rithm suffered from high computational complexity due to
the involved trigonometric function evaluations. A recently
proposed alternative approach suggested iterating the eigen-
vector estimates using a first-order matrix perturbation for-
malism for the sample covariance estimate with every new
sample obtained in real time [15]. However, the performance
(speed and accuracy) of this algorithm is hindered by the
general Toeplitz structure of the perturbed covariance ma-
trix. In this paper, we will present an algorithm that under-
takes a similar perturbation approach, but in contrast, the
covariance matrix will be decomposed into its eigenvectors
and eigenvalues at all times, which will reduce the pertur-
bation step to be employed on the diagonal eigenvalue ma-
trix. This further restriction of structure, as expected, allevi-
ates the difficulties encountered in the operation of the pre-
vious first-order perturbation algorithm, resulting in a fast
converging and accurate subspace tracking algorithm.

This paper is organized as follows. First, we present a
brief definition of the PCA problem to have a self-contained
paper. Second, the proposed recursive PCA (RPCA) algo-
rithm is motivated, derived, and extended to non-stationary
and complex-valued signal situations. Next, a set of com-
puter experiments is presented to demonstrate the conver-
gence speed and accuracy characteristics of RPCA. Finally,
we conclude the paper with remarks and observations about
the algorithm.

2. PROBLEMDEFINITION

PCA is a well-known problem and is extensively studied in
the literature as we have pointed out in the introduction.
However, for the sake of completeness, we will provide a brief
definition of the problem in this section. For simplicity, and
without loss of generality, we will consider a real-valued zero-
mean, n-dimensional random vector x and its n projections
y1, . . . , yn such that yj = wT

j x, wherew j ’s are unit-norm vec-
tors defining the projection dimensions in the n-dimensional
input space.

The first principal component direction is defined as the
solution to the following constrained optimization problem,
where R is the input covariance matrix:

w1 = argmax
w

wTRw subject to wTw = 1. (1)

The subsequent principal components are defined by includ-
ing additional constraints to the problem that enforce the or-
thogonality of the sought component to the previously dis-
covered ones:

w j = argmax
w

wTRw, s.t. wTw = 1, wTwl = 0, l < j. (2)

The overall solution to this problem turns out to be
the eigenvector matrix of the input covariance R. In par-
ticular, the principal component directions are given by the
eigenvectors of R arranged according to their corresponding
eigenvalues (largest to smallest) [5].

In signal processing applications, the needs are differ-
ent. The input samples are usually acquired one at a time
(i.e., sequentially as opposed to in batches), which necessi-
tates sample-by-sample update rules for the covariance and
its eigenvector estimates. In this setting, this analytical solu-
tion is of little use, since it is not practical to update the in-
put covariance estimate and solve a full eigendecomposition
problem per sample. However, utilizing the recursive struc-
ture of the covariance estimate, it is possible to come up with
a recursive formula for the eigenvectors of the covariance as
well. This will be described in the next section.

3. RECURSIVE PCA DESCRIPTION

Suppose a sequence of n-dimensional zero-mean wide-sense
stationary input vectors xk are arriving, where k is the sample
(time) index. The sample covariance estimate at time k for
the input vector is1

Rk = 1
k

k∑
i=1

xixTi =
(k − 1)

k
Rk−1 +

1
k
xkxTk . (3)

Let Rk = QkΛkQT
k and Rk−1 = Qk−1Λk−1QT

k−1, where Q and
Λ denote the orthonormal eigenvector and diagonal eigen-
value matrices, respectively. Also define αk = QT

k−1xk. Substi-
tuting these definitions in (3), we obtain the following recur-
sive formula for the eigenvectors and eigenvalues:

Qk
(
kΛk

)
QT

k = Qk−1
[
(k − 1)Λk−1 + αkα

T
k

]
QT

k−1. (4)

Clearly, if we can determine the eigendecomposition of the
matrix [(k − 1)Λk−1 + αkα

T
k ], which is denoted by VkDkVT

k ,
where V is orthonormal andD is diagonal, then (4) becomes

Qk
(
kΛk

)
QT

k = Qk−1VkDkVT
kQ

T
k−1. (5)

1In practice, if the samples are not generated by a zero-mean process, a
running sample mean estimator could be employed to compensate for this
fact. Then this biased estimator can be replaced by the unbiased version and
the following derivations can be modified accordingly.
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By direct comparison, the recursive update rules for the
eigenvectors and the eigenvalues are determined to be

Qk = Qk−1Vk,

Λk = Dk

k
.

(6)

In spite of the fact that the matrix [(k− 1)Λk−1 +αkα
T
k ] has a

special structure much simpler than that of a general covari-
ance matrix, determining the eigendecomposition VkDkVT

k
analytically is difficult. However, especially if k is large, the
problem can be solved in a simpler way using a matrix per-
turbation analysis approach. This will be described next.

3.1. Perturbation analysis for rank-one update

When k is large, the matrix [(k − 1)Λk−1 + αkα
T
k ] is strongly

diagonally dominant; hence (due to the Gershgorin theorem)
its eigenvalues will be close to those of the diagonal portion
(k − 1)Λk−1. In addition, its eigenvectors will also be close to
identity (i.e., the eigenvectors of the diagonal portion of the
sum).

In summary, the problem reduces to finding the eigen-
decomposition of a matrix in the form (Λ + ααT), that is, a
rank-one update on a diagonal matrix Λ, using the following
approximations: D = Λ + PΛ and V = I + PV, where PΛ and
PV are small perturbationmatrices. The eigenvalue perturba-
tion matrix PΛ is naturally diagonal. With these definitions,
when VDVT is expanded, we get

VDVT = (I + PV
)(
Λ + PΛ

)(
I + PV

)T
= Λ +ΛPT

V + PΛ + PΛPT
V + PVΛ

+ PVΛPT
V + PVPΛ + PVPΛPT

V

= Λ + PΛ +DPT
V + PVD

+ PVΛPT
V + PVPΛPT

V.

(7)

Equating (7) toΛ+ααT , and assuming that the terms PVΛPT
V

and PVPΛPT
V are negligible, we get

ααT = PΛ +DPT
V + PVD. (8)

The orthonormality of V brings an additional equation that
characterizes PV. Substituting V = I + PV in VVT = I, and
assuming that PVPT

V ≈ 0, we have PV = −PT
V.

Combining the fact that the eigenvector perturbation
matrix PV is antisymmetric with the fact that PΛ and D
are diagonal, the solutions for the perturbation matrices are
found from (8) as follows: the ith diagonal entry of PΛ is α2i
and the (i, j)th entry of PV is αiαj/(λj + α2j − λi − α2i ) if j �= i,
and 0 if j = i.

3.2. The recursive PCA algorithm

The RPCA algorithm is summarized in Algorithm 1. There
are a few practical issues regarding the operation of the algo-
rithm, which will be addressed in this subsection.

(1) Initialize Q0 and Λ0.
(2) At each time instant k do the following.

(a) Get input sample xk .
(b) Set memory depth parameter λk .
(c) Calculate αk = QT

k−1xk .
(d) Find perturbations PV and PΛ corresponding

to (
1− λk

)
Λk−1 + λkαkα

T
k .

(e) Update eigenvector and eigenvalue matrices:
Q̃k = Qk−1

(
I + PV

)
Λ̃k =

(
1− λk

)
Λk−1 + PΛ.

(f) Normalize the norms of eigenvector estimates
by Qk = Q̃kTk , where Tk is a diagonal matrix
containing the inverses of the norms of each
column of Q̃k .

(g) Correct eigenvalue estimates by Λk = Λ̃kT−2k ,
where T−2k is a diagonal matrix containing the
squared norms of the columns of Q̃k .

Algorithm 1: The recursive PCA algorithm outline.

Selecting thememory depth parameter

In a stationary situation, where we would like to weight
each individual sample equally, this parameter must be set to
λk = 1/k. In this case, the recursive update for the covariance
matrix is as shown in (3). In a nonstationary environment, a
first-order dynamical forgetting strategy could be employed
by selecting a fixed decay rate. Setting λk = λ corresponds to
the following recursive covariance update equation:

Rk = (1− λ)Rk + λxkxTk . (9)

Typically, in this forgetting scheme, λ ∈ (0, 1) is selected to
be very small. Considering that the average memory depth of
this recursion is 1/λ samples, the selection of this parameter
presents a trade-off between tracking capability and estima-
tion variance.

Initializing the eigenvectors and the eigenvalues

The natural way to initialize the eigenvector matrix Q0 and
the eigenvalue matrix Λ0 is to use the first N0 samples to ob-
tain an unbiased estimate of the covariance matrix and de-
termine its eigendecomposition (N0 > n). The iterations in
step (2) can then be applied to the following samples. This
means in step (2) k = N0 + 1, . . . ,N . In the stationary case
(λk = 1/k), this means in the first few iterations of step (2)
the perturbation approximations will be least accurate (com-
pared to the subsequent iterations). This is simply due to
(1 − λk)Λk−1 + λkαkα

T
k not being strongly diagonally dom-

inant for small values of k. Compensating the errors induced
in the estimations at this stage might require a large number
of samples later on.

This problem could be avoided if in the iteration stage
(step (2)) the index k could be started from a large initial
value. In order to achieve this without introducing any bias
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to the estimates, one needs to use a large number of sam-
ples in the initialization (i.e., choose a large N0). In prac-
tice, however, this is undesirable. The alternative is to per-
form the initialization still using a small number of samples
(i.e., a smallN0), but setting the memory depth parameter to
λk = 1/(k + (τ − 1)N0). This way, when the iterations start
at sample k = N0 + 1, the algorithm thinks that the initializa-
tion is actually performed using γ = τN0 samples. Therefore,
from the point of view of the algorithm, the data set looks
like

{
x1, . . . , xN0

}
, . . . ,

{
x1, . . . , xN0

}
︸ ︷︷ ︸

repeated τ times

,
{
xN0+1, . . . , xN

}
. (10)

The corresponding covariance estimator is then naturally bi-
ased. At the end of the iterations, the estimated covariance
matrix is

RN ,biased = N

N + (τ − 1)N0
RN +

(τ − 1)N0

N + (τ − 1)N0
RN0 , (11)

where RM = (1/M)
∑M

j=1 x jxTj . Consequently, we conclude
that the bias introduced to the estimation by tricking the al-
gorithm can be asymptotically diminished (as N →∞).

In practice, we actually do not want to solve for an eigen-
decomposition problem at all. Therefore, one could simply
initialize the estimated eigenvector to identity (Q0 = I) and
the eigenvalues to the sample variances of each input entry
overN0 samples (Λ0 = diagRN0 ). We then start the iterations
over the samples k = 1, . . . ,N and set the memory depth pa-
rameter to λk = 1/(k − 1 + γ). Effectively this corresponds to
the following biased (but asymptotically unbiased asN →∞)
covariance estimate:

RN ,biased = N

N + γ
RN +

γ

N + γ
Λ0. (12)

This latter initialization strategy is utilized in all the com-
puter experiments that are presented in the following sec-
tions.2

In the case of a forgetting covariance estimator (i.e., λk =
λ), the initialization bias is not a problem, since its effect
will diminish in accordance with the forgetting time constant
any way. Therefore, in the nonstationary case, once again, we
suggest using the latter initialization strategy: Q0 = I and
Λ0 = diagRN0 . In this case, in order to guarantee the accu-
racy of the first order perturbation approximation, we need
to choose the forgetting factor λ such that the ratio (1− λ)/λ
is large. Typically, a forgetting factor λ < 10−2 will yield ac-
curate results, although if necessary values up to λ = 10−1

could be utilized.

2A further modification that might be installed is to use a time-varying
γ value. In the experiments, we used an exponentially decaying profile for
γ, γ = γ0 exp(−k/τ). This forces the covariance estimation bias to diminish
even faster.

3.3. Extension to complex-valued PCA

The extension of RPCA to complex-valued signals is triv-
ial. Basically, all matrix-transpose operations need to be re-
placed by Hermitian (conjugate-transpose) operators. Be-
low, we briefly discuss the derivation of the complex-valued
RPCA algorithm following the steps of the real-valued ver-
sion.

The sample covariance estimate for zero-mean complex
data is given by

Rk = 1
k

k∑
i=1

xixHi =
(k − 1)

k
Rk−1 +

1
k
xkxHk , (13)

where the eigendecomposition is Rk = QkΛkQH
k . Note that

the eigenvalues are still real-valued in this case, but the eigen-
vectors are complex vectors. Defining αk = QH

k−1xk and fol-
lowing the same steps as in (4) to (8), we determine that
PV = −PH

V . Therefore, as opposed to the expressions de-
rived in Section 3.1, here the complex conjugation ∗ and
magnitude | · | operations are utilized. The ith diagonal en-
try of PΛ is found to be |αi|2 and the (i, j)th entry of PV is
αiα

∗
j /(λj + |αj|2− λi− |αi|2) if j �= i, and 0 if j = i. The algo-

rithm in Algorithm 1 is utilized as it is except for the modifi-
cations mentioned in this section.

4. NUMERICAL EXPERIMENTS

The PCA problem is extensively studied in the literature and
there exist an excessive variety of algorithms to solve this
problem. Therefore, an exhaustive comparison of the pro-
posed method with existing algorithms is not practical. In-
stead, a comparison with a structurally similar algorithm
(which is also based on first-order matrix perturbations)
will be presented [15]. We will also comment on the per-
formances of traditional benchmark algorithms like Sanger’s
rule and APEX in similar setups, although no explicit de-
tailed numerical results will be provided.

4.1. Convergence speed analysis

In the first experimental setup, the goal is to investigate the
convergence speed and accuracy of the RPCA algorithm. For
this, n-dimensional random vectors are drawn from a nor-
mal distribution with an arbitrary covariance matrix. In par-
ticular, the theoretical covariance matrix of the data is given
by AAT , where A is an n × n real-valued matrix whose en-
tries are drawn from a zero-mean unit-variance Gaussian
distribution. This process results in a wide range of eigen-
spreads (as shown in Figure 1), therefore the convergence re-
sults shown here encompass such effects.

Specifically, the results of the 3-dimensional case study
are presented here, where the data is generated by 3-
dimensional normal distributions with randomly selected
covariance matrices. A total of 1000 simulations (Monte
Carlo runs) are carried out for each of the three target eigen-
vector estimation accuracies (measured in terms of degrees
between the estimated and actual eigenvectors): 10◦, 5◦, and
2◦. The convergence time is measured in terms of the number
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Figure 1: Distribution of eigenspread values for AAT , where A3×3
is generated to have Gaussian distributed random entries.

of iterations it takes the algorithm to converge to the target
eigenvector accuracy in all eigenvectors (not just the princi-
pal component). The histograms of convergence times (up to
10000 samples) for these three target accuracies are shown in
Figure 2, where everything above 10000 is also lumped into
the last bin. In theseMonte Carlo runs, the initial eigenvector
estimates were set to the identity matrix and the randomly
selected data covariance matrices were forced to have eigen-
vectors such that all the initial eigenvector estimation errors
were at least 25◦. The initial γ value was set to 400 and the
decay time constant was selected to be 50 samples. Values in
this range were found to work best in terms of final accuracy
and convergence speed in extensive Monte Carlo runs.

It is expected that there are some cases, especially those
with high eigenspreads, which require a very large number
of samples to achieve very accurate eigenvector estimations,
especially for the minor components. The number of iter-
ations required for convergence to a certain accuracy level is
also expected to increase with the dimensionality of the prob-
lem. For example, in the 3-dimensional case, about 2% of the
simulations failed to converge within 10◦ in 10000 on-line it-
erations, whereas this ratio is about 17% for 5 dimensions.
The failure to converge within the given number of iterations
is observed for eigenspreads over 5× 104.

In a similar setup, Sanger’s rule achieves a mean conver-
gence speed of 8400 iterations with a standard deviation of
2600 iterations. This results in an average eigenvector direc-
tion error of about 9◦ with a standard deviation of 8◦. APEX
on the other hand converges rarely to within 10◦. Its aver-
age eigenvector direction error is about 30◦ with a standard
deviation of 15◦.

4.2. Comparisonwith first-order perturbation PCA

The first-order perturbation PCA algorithm [15] is struc-
turally similar to the RPCA algorithm presented here. The
main difference is the nature of the perturbed matrix: the
former works on a perturbation approximation for the com-

plete covariance matrix, whereas the latter considers the per-
turbation of a diagonal matrix. We expect this structural re-
striction to improve performance in terms of overall algo-
rithm performance. To test this hypothesis, an experimental
setup similar to the one in Section 4.1 is utilized. This time,
however, the data is generated by a colored time series us-
ing a time-delay line (making the procedure a temporal PCA
case study). Gaussian white noise is colored using a two-pole
filter whose poles are selected from a random uniform distri-
bution on the interval (0, 1). A set of 15 Monte Carlo simula-
tions was run on 3-dimensional data generated according to
this procedure. The two parameters of the first-order pertur-
bation method were set to ε = 10−3/6.5 and δ = 10−2. The
parameters of RPCA were set to γ0 = 300 and τ = 100. The
average eigenvector direction estimation convergence curves
are shown in Figure 3.

Often, signal subspace tracking is necessary in signal pro-
cessing applications dealing with nonstationary signals. To
illustrate the performance of RPCA for such cases, a piece-
wise stationary colored noise sequence is generated by filter-
ing white Gaussian noise with single-pole filters with the fol-
lowing poles: 0.5, 0.7, 0.3, 0.9 (in order of appearance). The
forgetting factor is set to a constant λ = 10−3. The two pa-
rameters of the first-order perturbation method were again
set to ε = 10−3/6.5 and δ = 10−2. The results of 30 Monte
Carlo runs were averaged to obtain Figure 4.

4.3. Direction of arrival estimation

The use of subspace methods for DOA estimation in sensor
arrays has been extensively studied (see [14] and the refer-
ences therein). In Figure 5, a sample run from a computer
simulation of DOA according to the experimental setup de-
scribed in [14] is presented to illustrate the performance of
the complex-valued RPCA algorithm. To provide a bench-
mark (and an upper limit in convergence speed), we also
performed this simulation usingMatlab’s eig function several
times on the sample covariance estimate. The latter typically
converged to the final accuracy demonstrated here within
10–20 samples. The RPCA estimates on the other hand take
a few hundred samples due to the transient in the γ value.
Themain difference in the application of RPCA is that typical
DOA algorithmwill convert the complex PCA problem into a
structured PCA problem with double the number of dimen-
sions, whereas the RPCA algorithm works directly with the
complex-valued input vectors to solve the original complex
PCA problem.

4.4. An example with 20 dimensions

The numerical examples considered in the previous exam-
ples were 3-dimensional and 12-dimensional (6 dimensions
in complex variables). The latter did not require all the
eigenvectors to converge since only the 6-dimensional sig-
nal subspace was necessary to estimate the source directions;
hence the problem was actually easier than 12 dimensions.
To demonstrate the applicability to higher-dimensional sit-
uations, an example with 20 dimensions is presented here.
The PCA algorithms generally cannot cope well with higher-
dimensional problems because the interplay between two
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Figure 2: The convergence time histograms for RPCA in the 3-dimensional case for three different target accuracy levels: (a) target error
= 10◦, (b) target error = 5◦, and (c) target error = 2◦.
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Figure 3: The average eigenvector direction estimation errors, de-
fined as the angle between the actual and the estimated eigenvectors,
versus iterations are shown for the first-order perturbation method
(thin dotted lines) and for RPCA (thick solid lines).

competing structural properties of the eigenspace makes a
compromise from one or the other increasingly difficult.
Specifically, these two characteristics are the eigenspread
(max λi/min λi) and the distribution of ratios of consecutive
eigenvalues (λn/λn−1, . . . , λ2/λ1) when they are ordered from
largest to smallest (where λn > · · · > λ1 are the ordered
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Figure 4: The average eigenvector direction estimation errors, de-
fined as the angle between the actual and the estimated eigenvectors,
versus iterations for the first-order perturbation method (thin dot-
ted lines) and for RPCA (thick solid lines) in a piecewise station-
ary situation are shown. The eigenstructure of the input abruptly
changes every 5000 samples.

eigenvalues). Large eigenspreads lead to slow convergence
due to the scarcity of samples representing the minor com-
ponents. In small-dimensional problems, this is typically the
dominant issue that controls the convergence speeds of PCA
algorithms. On the other hand, as the dimensionality in-
creases, while very large eigenspreads are still undesirable due
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Figure 5: Direction of arrival estimation in a linear sensor array
using complex-valued RPCA in a 3-source 6-sensor case.

to the same reason, smaller and previously acceptable eigen-
spread values too become undesirable because consecutive
eigenvalues approach each other. This causes the discrim-
inability of the eigenvectors corresponding to these eigen-
values diminish as their ratio approaches unity. Therefore,
the trade-off between small and large eigenspreads becomes
significantly difficult. Ideally, the ratios between consecutive
eigenvalues must be identical for equal discriminability of all
subspace components. Variations from this uniformity will
result in faster convergence in some eigenvectors, while oth-
ers will suffer from almost spherical subspaces indiscrim-
inability.

In Figure 6, the convergence of the 20 estimated eigenvec-
tors to their corresponding true values is illustrated in terms
of the angle between them (in degrees) versus the number of
on-line iterations. The data is generated by a 20-dimensional
jointly Gaussian distribution with zero mean, and a covari-
ance matrix with eigenvalues equal to the powers (from 0
to 19) of 1.5 and eigenvectors selected randomly.3 This re-
sult is typical of higher-dimensional cases where major com-
ponents converge relatively fast and minor components take
much longer (in terms of samples and iterations) to reach the
same level of accuracy.

5. CONCLUSIONS

In this paper, a novel approximate fixed-point algorithm for
subspace tracking is presented. The fast tracking capability
is enabled by the recursive nature of the complete eigenvec-
tor matrix updates. The proposed algorithm is feasible for
real-time implementation since the recursions are based on
well-structured matrix multiplications that are the conse-
quences of the rank-one perturbation updates exploited in

3This corresponds to an eigenspread of 1.519 ≈ 2217.
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Figure 6: The convergence of the angle error between the estimated
eigenvectors (using RPCA) and their corresponding true eigenvec-
tors in a 20-dimensional PCA problem is shown versus on-line iter-
ations.

the derivation of the algorithm. Performance comparisons
with traditional algorithms as well as a structurally simi-
lar perturbation-based approach demonstrated the advan-
tages of the recursive PCA algorithm in terms of convergence
speed and accuracy.
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