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Email: cdiederichs@kba-bielefeld.de

Dietmar Müller
Circuit and System Design Group, Technical University of Chemnitz, 09107 Chemnitz, Germany
Email: d.mueller@infotech.tu-chemnitz.de

Received 27 August 2003; Revised 31 March 2004

Nonlinear spatial transforms and fuzzy pattern classification with unimodal potential functions are established in signal pro-
cessing. They have proved to be excellent tools in feature extraction and classification. In this paper, we will present a hardware-
accelerated image processing and classification system which is implemented on one field-programmable gate array (FPGA). Non-
linear discrete circular transforms generate a feature vector. The features are analyzed by a fuzzy classifier. This principle can be
used for feature extraction, pattern recognition, and classification tasks. Implementation in radix-2 structures is possible, allowing
fast calculations with a computational complexity ofO(N) up toO(N · ld(N)). Furthermore, the pattern separability properties of
these transforms are better than those achieved with the well-known method based on the power spectrum of the Fourier Trans-
form, or on several other transforms. Using different signal flow structures, the transforms can be adapted to different image and
signal processing applications.
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1. INTRODUCTION

Image retrieval, texture analysis and optical character recog-
nition, and general inspection tasks are of main interest in
the field of image processing and pattern recognition. Meth-
ods which operate automatically are of interest in the above-
mentioned areas. Automation is important if the amount
of data is too large to be handled manually or if the speed
of the image presentation is too fast for the human inspec-
tor. Reitboeck and Brody [1] were among the first who used
translation-invariant transforms for character recognition.
Wagh and Kanetkar [2] presented a general class of nonlinear
translation-invariant transforms, which were called circular
transforms (CTs). Burkhardt et al. [3] proposed a recursive
definition of the class CT, which can be used for a simple
mathematical description of the transform. The well-known
R(apid) and B(inary) transforms are members of the above-
mentioned class of transforms. The separability properties
of nonlinear transforms are generally speaking incomplete.
Therefore, it is obvious to use group-theory-based methods
to improve the separability properties [3, 4, 5].

For various practical image processing and pattern recog-
nition cases in an industrial environment, it is incidental
that different processes and signal distortions will occur. One
prominent process factor can be described, in general, as rel-
ative movements between an object and a camera system. It
is not relevant whether the object moves in front of a cam-
era or vice versa. In any case, a feature vector can be gener-
ated by means of invariant transforms. In some applications,
the process movement can be assumed as translation invari-
ant [1, 6]. Applications like printed product pattern recog-
nition which will be presented in this paper can be assumed
as translation invariant as well. Therefore, a special class of
nonlinear translation-invariant transforms proves to be ap-
propriate for feature generation. As mentioned, it is obvi-
ous that further different distortions can also occur which
in turn cannot be compensated. Accordingly, the feature vec-
tor has to be stabilized and correctly classified without ex-
act knowledge of different stochastic processes [7]. Bocklisch
and Priber [8] proposed a parametric fuzzy pattern classi-
fication (FPC) concept which was first applied for complex
linear and nonlinear control systems. Also Eichhorn [9] and
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others applied and modified the classification concept for
various pattern recognition and classification systems. One
advantage of the concept is the fact that a learning proce-
dure is inherently given by the parametric model. Therefore,
a new simplified classifier model will be presented in this pa-
per which is well suited for industrial applications.

In this paper, we propose a combined method for pat-
tern recognition and classification relying on a class of dis-
crete nonlinear translation-invariant CTs [6, 10, 11, 12] and a
modified FPC schemewhich is based on Bocklisch and Priber
[8] as well as on Eichhorn [9]. The algorithms are imple-
mented in one field programmable gate array (FPGA), which
operates at 40MHz.

The organization of the rest of this paper is as follows.
In Section 2, the properties of nonlinear CTs including a new
concept on fast transforms are described, along with a mod-
ified fuzzy pattern classifier (MFPC). Section 3 provides a
short survey on the features of the used FPGA, the imple-
mentation concept, and timing properties of the algorithms.
Section 4 describes various experimental results regarding
the separability properties of different CTs in the case of bi-
nary patterns. Section 5 discusses two possible applications,
and the conclusion is presented in Section 6.

2. PROPERTIES OF NONLINEAR
CIRCULAR TRANSFORMS

We now describe some properties of one-(1D) and two-
dimensional (2D) discrete nonlinear CTs and FPC. In the re-
mainder of the paper, the transforms are systematically as-
sumed to be discrete so that their discrete nature will not be
explicitly mentioned anymore.

2.1. Generalized nonlinear circular transform

Generalized nonlinear circular transforms (GNCTs) have
some properties which are useful for the analysis of transient
and periodic signals. The basic row vectors of the transform
matrix are periodic and can have local support. This prop-
erty indicates that on one hand, the basic row vectors behave
like wavelets. On the other hand, the periodic row vectors
structure is well suited for the periodic signal analysis. This
leads to the fact that wavelet and periodic transform con-
cepts have to be taken into account. It is well known that
generally speaking, wavelets are translation variant if they
are not redundant, but most of the power spectra of periodic
transforms are translation invariant. Therefore, the concept
of frames and biorthogonal vector bases have to be used for
the CTs.

In this section, we sum up the major properties of the
generalized circular transforms (GCTs). For details regard-
ing the generalized characteristic and generalized circular ma-
trices, we refer to other publications by the authors [6, 10, 11,
12]. Different transforms can be designed from a generalized
version [12]. All transforms have in common that they use
an amplitude spectrum G with ld(N) + 1 coefficients in the
1D case and (ld(N) + 1)2 coefficients in the 2D case. The co-
efficients are ordered in period groups similar to the power
spectrum of Walsh Hadamard transform (WHT) [13, 14].

Instead of the power spectrum of the WHT, we use an ab-
solute value determination to obtain a translation-invariant
spectrum. This spectrum is much easier to implement in FP-
GAs than power spectra based on quadratic functions. An
interesting fact is that other transforms offer this property as
well [14, 15], but this fact was to our knowledge not yet ex-
plicitly referred to in the literature.

Let xT = (x0, x1, . . . , xN−1), x ∈ RN , be an input vector
and XT = (X0,X1, . . . ,XN−1), X ∈ RN , its transformed out-
put vector. By AN and BN , we denote the CT matrix and its
inverse, respectively. AN and BN are quadratic (N × N) ma-
trices. IN is the unity matrix and diag (·, ·) defines a diagonal
matrix of two submatrices:

X = AN · x, x = 1
N
· BT

N ·X,
AN · BT

N = BT
N · AN = AT

N · BN = BN · AT
N = N · IN .

(1)

Given a (2× 2)-Hadamard matrix K =
[
+1 −1
+1 +1

]
, the trans-

form matrices can be expressed and evaluated recursively as

AN = diag
(
f TN/2,AN/2

) · [K⊗ IN/2
]
,

BN = diag
(
rTN/2,AN/2

) · [K⊗ IN/2
]
.

(2)

The generalized characteristic matrices f TN/2 and rTN/2 are
defined for the dimension (N/2×N/2). Using different trans-
form kernels f TN/2 and rTN/2, it is possible to assign vari-
ous properties to the transforms. The spectral coefficients of
all transforms AN and BN are grouped in the same way: the
first N/2 spectral coefficients featuring a period N , followed
by N/4 coefficients with period N/2. The last two coefficient
vectors are the vectors with the shortest possible period 2 and
the vector with the period 0.

2.1.1. Generalized characteristic matrices T

The coefficients of the matrix AN (or BN ) are determined
in such a way that the absolute value spectrum G remains
unchanged when the input vector x undergoes a translation
[12]. The transform matrix coefficients βi are defined as real
numbers. It has to be pointed out that complex numbers can
be applied as well, but in this paper, only real numbers will be
used. The definition of the generalized characteristic matrix
is as follows:

f TN/2 =


−βN/2−1 −βN/2−2 · · · −β0
−β0 −βN/2−1 · · · −β1
...

...
. . .

...
−βN/2−2 −βN/2−3 · · · −βN/2−1

 . (3)

The coefficient matrix AN can be defined in a sparse matrix
form:

AN =


f TN/2 · · · 0

f TN/4
...

. . .
...

0 · · · 1


·
 ld(N)−1∏

i=1
diag

(
IN−2i ,K⊗ I2i−1

) · [K⊗ IN/2
]
.

(4)
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The last two matrices represent the rationalized form of the
modified Walsh Hadamard transform (MWHT), which was
first introduced by Ahmed et al. [13, 14].

Equation (4) shows that it is possible to characterize the
CTs with only one characteristic coefficient vector:

cβ

=(βN/2−1,βN/2−2, . . . ,β0,β3N/4−1, . . . ,βN/2, . . . ,βN−2,βN−1)T .
(5)

The following example shows the transform matrix for N =
8:

A8 =



−β3 −β2 −β1 −β0 β3 β2 β1 β0
β0 −β3 −β2 −β1 −β0 β3 β2 β1
β1 β0 −β3 −β2 −β1 −β0 β3 β2
β2 β1 β0 −β3 −β2 −β1 −β0 β3
−β5 −β4 β5 β4 −β5 −β4 β5 β4
β4 −β5 −β4 β5 β4 −β5 −β4 β5
−β6 β6 −β6 β6 −β6 β6 −β6 β6
−β7 −β7 −β7 −β7 −β7 −β7 −β7 −β7


. (6)

2.1.2. Commutative circularmatrices

A subspace of all CTs (fast discrete CT) is defined by all trans-
forms which can be generated in a radix-2 structure. We now
present a strategy for the GCT sparse matrix decomposition
with the help of negacyclic circulant matrices. This procedure
leads to an approach which is much easier to calculate than
the approach in [10, 12]. The computational complexity is
O(N) up to O(N · ld(N)). The matrix topology is as fol-
lows: the coefficients in the main diagonal and in the codi-
agonals of each sparse matrix are expressed as a function of
so-called γ-coefficients and λ-coefficients, respectively [12].
The codiagonals are equipped with the λ-coefficients. The
coefficients βi are monoms in γ and λ. The monoms of
f TN/2 are defined as βN/2−1 = γ0 · γ1· · · · ·γld(N/2)−1 down
to βN/2−1 = λ0 · λ1· · · · ·λld(N/2)−1. The generalized circular
matrices f (l)gCm are used to generate the generalized charac-
teristic matrices in radix-2 structure. The generalized circular
matrix is defined as follows:

f (l)gCm = γld(m)−1−l · Im + λld(m)−1−l · η f (l)
m ,

0 ≤ l ≤ ld(m)− 1, γ(·) ∈ R, λ(·) ∈ R,
(7)

Im is an (m × m) unity matrix, and ηN denotes a negacyclic
commutative unity matrix of the size (N × N). Details re-
garding this type of matrix can be found elsewhere [16].

ηN =


0 1 0 · · · 0
0 0 1 · · · 0
... 0 0

. . .
...

0 0 0 · · · 1
−1 0 0 · · · 0

 =
[

0 IN−1
−I1 0

]
. (8)

The function f (l) defines the multiplicative structure of

the characteristic matrix (cf. (9)). In general, f (l) is set to
f (l) = l or f (l) = 2l, but also other settings are possi-
ble, depending on the above-mentioned monom equations.
Solutions can be found by solving the appropriate non-
linear system of monom equations. The solutions are not
unique, but this property provides an opportunity to select
the coefficients for optimal hardware implementation. With
the above-mentioned equation (7), the characteristic matrix
f TN/2 can be expressed as follows:

f TN/2 = −
ld(N/2)−1∏

l=0

(
f (l)gCN/2

)T
. (9)

The characteristic matrices f TN/4, f TN/8, and so on are calcu-
lated accordingly. The matrices f (l)gCN/k are obviously com-
mutative. This property leads to signal flow graphs which can
easily be implemented in hardware.

2.1.3. Absolute value spectrumG

We have used the well-known concept of a transform shift
matrix sSN = 1/N ·AN · sIN ·BT

N ,−(N−1) ≤ s ≤ (N−1). De-
tails can be found elsewhere [14]. AN and BN are the trans-
form matrices, whereas sIN is the permutation unity matrix
for cyclic shifts s. The spectrum sXN of a shifted input vector
sx is determined as follows:

sXN = AN · sx = sSN · AN · x = sSN ·XN . (10)

The symbol G denotes the translation-invariant absolute
value spectrum. It is defined by the above-mentioned period
groups. The matrix sIN can be written as follows:

sIN =
[
IaN/2 IbN/2
IbN/2 IaN/2

]
,

sIN/2 = sIaN/2 + sIbN/2, sηN/2 = sIaN/2 − sIbN/2.

(11)

Furthermore [16],

sηN/2 = ηsN/2. (12)

The shift matrix sSN is now determined as a diagonal matrix:

sSN = 2
N
·
 f TN/2 · sηN/2 · rTT

N/2 0

0 f TN/2 · sIN/2 · rTT
N/2


= · · · = 2

N
·
 f TN/2 · sηN/2 · rTT

N/2 0

0
N

2
· sTN/2

 .
(13)

The product f TN/2 · sηN/2 is negacyclic and therefore com-
mutative [16]. It follows that

f TN/2 · sηN/2 · rTT
N/2 ≡ sηN/2 · f TN/2 · rTT

N/2,

f TN/2 · rTT
N/2 =

N

2
· IN/2.

(14)
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Figure 1: Signal flow graph of a 1D fast CT (N = 8).

The shift matrix is determined by

sSN =
[
sηN/2 0
0 sSN/2

]
=


sηN/2 · · · 0
... sηN/4

...
. . .

0 · · · 1

 ,

sSN =


[
1SN

]|s|
, s > 0,

IN , s = 0,[
1STN

]|s|
, s < 0.

(15)

The shift matrix has a block diagonal structure which cor-
relates with the above-mentioned period groups. Therefore,
it is sufficient to analyze the negacyclic unity matrix for one
period group. A property of negacyclic unity matrices is that
they remain negacyclic when they are raised to a power [16].
Consequently, the columns of the resulting matrix will per-
mute, and the sign of its components will change. It follows
that the columns will permute and the signs of the matrix
components will change but the sums of the spectrum’s ab-
solute values will not change. This leads to a translation-
invariant spectrum G. For example, Gk is determined as fol-
lows:

G0 =
N/2−1∑
j=0

∣∣sXj

∣∣ = N/2−1∑
j=0

∣∣Xj

∣∣,
G1 =

3N/4−1∑
j=N/2

∣∣sXj

∣∣ = 3N/4−1∑
j=N/2

∣∣Xj

∣∣,
(16)

and so forth. The coefficients Gk, k ∈ {2, . . . , ld(N)− 1}, are
determined accordingly (cf. Figure 1). This spectrum con-
tains ld(N)+1 coefficients in the 1D case and [ld(N)+1]2 co-
efficients in the 2D case. The spectrum G can be interpreted
as a feature vector [9, 14].

2.1.4. Mapping strategies for two-dimensional
processing

The well-known radix-2 decomposition approach is used for
the 2D transform. In general, a 2D transform Y of an (N×N)

image X is determined via Y = AN · X · AT
N , where AN is

the 1D transform coefficient matrix. Implementation strate-
gies for the above-mentioned 2D transform includes matrix
multiplication as well as matrix transposition which is time
and area consuming. However, images captured by cameras
are usually processed row-wise. Accordingly, we decompose
a 2D transform into a 1D transform with a data length of N2

with the help of Roth’s vec-operation [17], which is expressed
as follows:

vec(Y) = (AN ⊗ AN
) · vec(X). (17)

The vec-operation is defined as a row- or column-wise or-
ganized concatenation of a matrix. Equation (17) shows
that the 2D transform is calculated, operating on a 1D data
stream of pixels line-wise. Furthermore, the Kronecker ma-
trix (AN ⊗ AN ) is decomposed into a number of 2 · ld(N)
radix-2 sparse matrices A[·]

N . The Kronecker product can be
expressed as follows:(
AN ⊗ AN

) = (A[ld(N)−1]
N ⊗ A[ld(N)−1]

N

) · · · · · (A[0]
N ⊗ A[0]

N

)
= · · · = (IN ⊗ A[ld(N)−1]

N

) · (A[ld(N)−1]
N ⊗ IN

)
· · · · · (IN ⊗ A[0]

N

) · (A[0]
N ⊗ IN

)
,

(
AN ⊗ AN

) = ld(N)−1∏
i=0

(
IN ⊗ A[i]

N

) · (A[i]
N ⊗ IN

)
.

(18)

The 2D spectrum G2D is calculated as follows: the absolute
value vector vec(Ỹ) is generated by means of the absolute
value components |Yi|. It is defined as vec(Ỹ) = vec(|Yi|).
The spectrum is determined by

vec
(
G2D

) = (SN ⊗ SN
) · vec (Ỹ), (19)

with

SG =



1 · · · 1 0 · · · 0
0 · · · 1 · · · 1 0 · · · 0
...

...
. . .

...
...

0 · · · 1 0
0 · · · 0 1

 . (20)

SG is a summatrix withN/2 ones in the first row,N/4 ones in
the second row, and so on. The Kronecker product will also
be decomposed into 2 · ld(N) radix-2 matrices. Each radix-
2 matrix (IN ⊗ A[i]

N ) and (A[i]
N ⊗ IN ), as well as the radix-2

matrices of the spectrum G2D are mapped into linear systolic
arrays (LSAs).

2.2. Fuzzy pattern classifier

The FPC is a useful approach for modeling complex systems
and classifying data [8]. It is based on a concept which allows
the simultaneous calculation and aggregation of distance
measures. FPC is based on membership functions µ(m;p).
They are modeled as unimodal potential functions [8]. The
behaviour of the feature m is described with the appropriate
parameter vector p.
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Figure 2: Prototype of a unimodal potential function.

A feature vector m is generated by a preprocessing unit,
which in our case computes a nonlinear CT, the transla-
tion invariant spectrum vec(G2D) derived thereof being in-
terpreted as a feature vector m. For each feature, a member-
ship function is determined. The membership function can
be described with 8 parameters which will be defined below.
The parameters are determined in a learning phase, or by
an expert, mixed strategies being also possible, finally result-
ing in a time-invariant classifier. Also a time-variant classifier
can be constructed [8]. In the working phase, a level of affin-
ity is calculated for every incoming set of data and used for
the classification. The prototype of a 1D potential function
µ(m;p) can be expressed as follows (Figure 2):

µ(m;p) = A · [1 + d(m;p)]−1, (21)

with the difference measure

d(m;p) =



(
1
Br
− 1
)
·
(∣∣m−m0

∣∣
Cr

)Dr

∀m < m0,(
1
Bf
− 1
)
·
(∣∣m−m0

∣∣
Cf

)Df

∀m ≥ m0.

(22)

This difference can be interpreted as a generalizedMinkowski
distance. The potential function gets comprehensively de-
termined by the parameter vector p = (m0,Br ,Bf ,Cr ,Cf ,
Dr ,Df )T . Referring to Figure 2, the elementary parameters
belonging to the vector p are defined as follows.

The parameter m0 corresponds to the average value of a
1D signal or feature, or the center of gravity in case of an
M-dimensional feature space. The value A denotes the maxi-
mum value of the function. In the hardware design described
in this paper, A = 1. The elements m0 and A are interrelated
by the formula A = µ(m0;p).

The parameters Br and Bf determine in turn the value
of the membership function on the boundaries m0 − Cr and
m0 + Cf . The membership values for the rising and falling
edges are given by the expressions µ(m0 − Cr ;p) = Br and
µ(m0 + Cf ;p) = Bf . The parameters Cr and Cf define the
maximum distance from the center of gravity. This value is
calculated from the maximum and minimum of the signal
amplitude of each feature.

The parameters Dr and Df are determined from each
feature’s amplitude distribution. They model the decrease in
membership with the increase of the distance from the center
of gravity. A detailed description of the parameters and their
calculations can be found in [8].

In an M-dimensional feature space, the membership
functions (equation (21)) are connected together in a con-
junctive way. All feature representatives mk, k ∈ {0, 1, . . . ,
M − 1}, exhibit their specific parameters kp = (m0k,Brk ,
Bfk ,Crk ,Cfk ,Drk ,Dfk )

T . The scalar function µ(m; kp) for M
features is described as follows:

µ
(
m; kp

) = A ·
[
1 +

M−1∑
i=0

d
(
mi; ip

)]−1
. (23)

All distance measures are summed up. The result is one
membership function for one class. Membership functions
for K classes are also constructed in the same way. The clas-
sification is generated with a disjunction/conjunction net-
work and argmin(·) and argmax(·) operations. The poten-
tial function is again mapped into an LSA. Furthermore, the
above-mentioned definition of a membership function is not
the only possible one. Different potential functions can be
defined [9]. The membership function which is used for the
hardware implementation is determined as follows:

µ
(
m; kp

) = 2−
∑M−1

i=0 d(mi;ip), Bfk = Brk =
1
2
. (24)

This concept has some advantages in implementation. The
membership function is calculated with logical shifts and
one multiplication is saved without loss of classification ac-
curacy, considering that (cf. (22), (24)) (1/Br − 1) = 1 and
(1/B f − 1) = 1.

Basically translation-invariant output spectra are suffi-
cient in order to describe image contents. In real-image
scenes and applications however, a simple comparison of in-
variant spectra is not easy to achieve. In practice, situations
can occur which prevent the performing of simple compar-
isons due to, for example, object shifts under the camera sys-
tem, noncyclic shifts, aliasing effects during the digitization
and further effects induced by different backgrounds, and so
forth [7]. Therefore, nonlinear CTs should be used in con-
junction with postprocessing units such as FPC.

In our approach, the MFPC performs this task. In the
learning phase, a certain number of image samples is used
to create a minimum and maximum master spectrum. The
minimum and maximum of each feature are determined for
the creation of the distance Ck measured along the dimen-
sion k:

Ck = 1
2
· [max

(
mk
)−min

(
mk
)]
. (25)

For each feature, a potential function is defined. All out-
puts of the functions are aggregated with a fuzzy AND func-
tion network (cf. (24)), resulting in a single membership
value µ(m; kp) per image. This value is then compared with
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Figure 3: Signal flow.

a threshold µt to produce the decision c defined as follows:

c =
1, µ

(
m; kp

) ≥ µt,

0, µ
(
m; kp

)
< µt,

(26)

with acceptance value c = 1. The threshold is adjusted man-
ually by an operator at system installation and exploitation
time.

3. IMPLEMENTATION ON FPGA

The 2D CT and the FPC are implemented on a single FPGA
[18]. Figure 3 shows the signal flow of the processing unit.
The signal flow indicates how a complete image is analyzed
by the system. The data input and output accesses are de-
signed formonochrome images of a size of (2048×2048) pix-
els. The features are calculated and classified within (N ×N)
windows of the typical size of (8 × 8) pixels whereas other
window sizes can be used as well.

We use an Altera Apex EP20K600E FPGA device [18],
counting 24 320 logic elements (LEs). The decision for se-
lecting the above-mentioned FPGA was motivated by the in-
ternal structure of the FPGA. In this paper, we propose a con-
cept to circumvent the drawbacks affecting the clock skew in
application specific integrated circuits in the case of systolic
array implementation.

The main unit is the LE. One LE consists mainly of a
register, a 4-input lookup table, preset and reset logic, and
a clock distribution unit. Indeed, 10 LEs get grouped to com-
pose so-called logic array blocks (LABs) benefiting from lo-
cal interconnections. Furthermore, LABs are in turn grouped
by a number of 16 to form so-called MegaLABs. Accordingly,
the latter operates with up to 160 LEs interconnected by short
data and clock signals.

One general challenge we have to cope with is the clock
distribution scheme. It is a known fact that the design of
clock trees in application specific integrated circuits is not an
easy task [18]. One main problem is the fact that clock lines
have different lengths and therefore the clock signals will be

differently delayed. This effect is called clock skew. Insertion
of a so-called balanced clock tree has to take account of layout
so that the tree is balanced not only in terms of the number
of flip-flops attached, but also of clock drivers fan-out and
especially of the wire lengths. The clock delay and clock skew
parameters account for a significant portion of the total setup
time and clock-to-output delay in larger devices.

As clock skew depends heavily on the placement of the
macrofunctions in gate arrays, special care has to be taken
in the placement of these elements. Therefore, macros, such
as local systolic arrays, have to be placed on the chip while
making sure that the clock distribution is perfectly designed.
In general, using phase-locked loops (PLLs) during the clock
synthesis helps improve the clock jitter and clock phase per-
formance [18]. Indeed, PLLs can be tuned to produce out-
put clock signals performing at different low jitter levels and
predefined phase. The PLLs are able to perform different
low jitter and defined phase clock output. Assuming the use
of some PLLs for different macrofunctions, which are con-
trolled for proper clock skew, opens one opportunity to in-
crease the system performance. One drawback of gate array
design is that a major part (up to 50%) of the development
time has to be reserved for the clock tree and PLL design.

Systolic arrays are usually stretched over several thousand
LEs, so clock skew can become a major issue. Taking into ac-
count the clock scheme principles, it is obvious that the im-
plementation of systolic arrays on application specific inte-
grated circuits is not easy to achieve.

The used FPGA is equipped with 4 programmable PLLs
and a clock network which is connected to all MegaLAB
structures. The integrated analogue PLL circuit enables a
chip design with phase alignment capability. Phase shifting
is used to minimize the clock skew between different system
clock domains. The clock network consists of 4 global clock-
buffers with very high fan-out count. The clock distribution
networks inside the MegaLAB structure guarantee low clock
skew distribution to each LE. All clock lines feature equal
lengths. Compared to a gate array implementation, there is
no need to generate a complex clock tree.
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Table 1: Number of FPGA-LEs used for the implementation of the
functional blocks. All local interconnections related to the systolic
arrays are included in the listed number of LEs. External input and
output data busses are counted separately.

Implementation LEs Utilization (%)

GCT 4149 17.1

Translation-invariant spectrum G 1 465 6.0

FPC 9944 41.0

Min/max network 268 1.1

Control and glue logic, data busses 4 964 20.4

Total 20 790 85.6

Referring to the above-mentioned remarks, a positive co-
incidence appears when implementing the systolic arrays in
FPGAs with the above-mentioned clock network properties.
Each PLL is used for one of the systolic arrays (cf. Table 1)
and adjusted for minimum clock skew. An increase of per-
formance in maximum clock frequency is achievable. Mini-
mizing the clock skew with 4 PLLs, the clock frequency per-
formance increases from approximately 34MHz to 40MHz
(> 17%). The phase shift is implemented within a step reso-
lution lower than 1 nanosecond.

The transform and the invariant spectrum G2D as well as
the FPC and the min/max determination are based on LSAs.
Most of the processing elements are designed as 16 bit inner
product step processors, which correspond to a multiplier
and accumulator cell (MAC). In general, one cell is designed
with one MegaLAB structure. Of course, the divider and po-
tential networks, which were both designed for 32 bit data,
operates with up to 6 MegaLAB structures but in a straight-
forward design. Therefore, it is possible to operate each sys-
tolic array with a serial clock distribution scheme. Care has to
be taken at the interconnections between the arrays. It is ab-
solutely necessary to synchronize the data flow and the clock
with a set of registers. A proper cut-set retiming was used to
achieve the processing times which are mentioned in the fol-
lowing section.

Approximately 20% of all LEs are foreseen for the control
and glue logic as well as for the input and output data busses.
The control unit is equipped with RAM controllers and a
VMEbus interface. Table 1 shows the percentage of utilized
LEs for the 2D transform, the translation-invariant spectrum
G2D, the FPC, the min/max unit, and the RAM controllers,
glue logic, and timing control. It has to be pointed out that
all necessary local connections within the units are included
in the LE count.

Table 1 shows a total amount of 20 790 LEs, which is
equivalent to a factor of approximately 85.6% chip utiliza-
tion. The overall latency time (defined as the time interval
between the application of specific input data and delivery of
corresponding results at the output) per block is calculated
with 249 clock cycles before the first result leaves the classi-
fier. The FPGA operates with a maximum clock frequency of
40MHz. Therefore, a processing time of 6.23 microseconds
per block is achieved, if an (8 × 8) window is used. Table 2

Table 2: Latency times.

Spectrum G2D Fuzzy pattern classifier

Clock cycles 132 117

Time (µs) 3.3 2.93

presents an overview of different latency times of the com-
ponents.

4. EXPERIMENTAL RESULTS

In this section, we present some experimental results using
the transforms for pattern separability tests. The results were
previously published in [12]. However, applying the new
monoms resolution strategy based on (9), it is possible to
find fast transforms for all mentioned CTs. We used binary
test patterns as input vectors. Binary numbers can be inter-
preted as patterns under cyclic permutation. Thus, if a left (or
right) shift is used with a particular number, a new number
in the class will be generated. We compared our results with
the results given by the well-known Fourier transform power
spectrum and the rapid transform spectrum. Three CTs were
defined (example for N = 16):

(1) CT1: cβ1=(27, 26, . . . , 20, 23, 22, . . . , 20, 0,−1,−1,−1)T .
This CT has a computational complexity of N · ld(N).
All computations can be processed with integers;

(2) CT2: cβ2 = −k · cos(π · (i + 1/2)/N) with i =
1, 2, . . . ,N−1. A radix-2 structure with real numbers is
possible. The factor k is chosen such that the last spec-
tral coefficient represents the average value of the input
vector;

(3) CT3: cβ3 = (r0, r1, . . . , rN−1)T . The CT3 coefficients are
defined as a Gaussian noise signal with variance σ = 1
and average = 0. Calculations in radix-2 structure are
also possible with a proper radix-2 decomposition.

Table 3 shows the results of the separability test. It is obvi-
ous that the proposed CTs are superior in comparison to the
Fourier power spectrum and the rapid transform for N > 4.

5. APPLICATIONS

5.1. Printed image inspection and image retrieval

Our approach is effective for inspection of printed or hard-
copy images, especially in areas with high contrast differ-
ences, for example, edges. It is well known that concepts
of iconic image processing are weak in these areas. The
above-mentioned concepts remain at level of pixel-based al-
gorithms like pixel differences, pixel thresholds, min/max
operations, and so on. The algorithms tend to generate areas
of massive deviations from an average area gray value when
applied to printed contrast differences. Because of the local
movement provoked naturally by various printing processes
which are in most practical cases translative, the spectrum G
of the CT is able to stabilize the unknown local dynamics.
As the printed format (sheet) moves under a camera, the
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Table 3: Separability properties of binary pattern. The amount of separable patterns is processed by Polya’s counting theory (cf. [3]). The
number in column 3 indicates the maximum translation-invariant patterns which is achievable for binary patterns. All data in the columns
4 to 10 indicate the number of separable patterns under different transforms.

N 2N Amount of separable patterns Rapid transform Fourier power spectrum CT1 CT2 CT3 RMWHT [6] SWT [15]

2 4 3 3 3 3 3 3 3 3

4 16 6 6 6 6 6 6 6 6

8 256 36 21 31 31 31 33 21 29

16 65536 4116 225 1876 3245 3496 3527 208 668

(a) (b)

Figure 4: (a) Cutout of a reference image. (b) Cutout of an error
image; the errors are marked with circles.

Figure 5: Zoomed error cutouts.

image has to be triggered for a stable image representation.
Under practical considerations, slight object movements will
always occur, which causes slight changes in the image rep-
resentation. These changes are detectable as amplitude noise
in the spectral amplitude of each coefficient. The spectrum
G2D has to be characterized as translation tolerant. Therefore,
the FPC has to cope with these spectral dynamics. Further-
more, a dichotomic decision such as “good/bad” and so forth
is in most cases sufficient. A further advantage is that the sys-
tem operates in real time because of the above-mentioned
latency times. As an illustrative example, we present an anal-
ysis of test prints with typical printing flaws. Figure 4 shows
a (740× 780)-pixel cutout of a (2048× 1536)-pixel image as
a reference and an error image. Approximately 100 reference
sheets are used for the classifier training. Following, differ-
ent sheets, which were not trained, were inspected. Typical
errors which were detected are shown in Figure 5. The first
error consists of two missing dots above the letter “ü” and
the second error of a missing letter “C”.

The approach can be used for image retrieval as well.
It has to be pointed out that the window size depends on
the application. In the case of image retrieval, the windows

are placed over the image in form of a grid pattern. Within
each window, the calculated spectral coefficients can be con-
sidered as local. Different CTs and potential functions were
examined. Transforms with good separation characteristics
work favorably with (16×16) windows. For (8×8) windows,
too many details were mapped. For (8 × 8) windows, trans-
forms with low separation characteristics are optimal (e.g.,
RMWHT [6], SWT [15]).

5.2. Character recognition

The algorithms can also be used in the area of handwriting
or printed character recognition. The procedure is sketched
as follows: on the basis of scanned characters (A, B, . . . , Z),
which are stored for example as (8 × 8)-or (16 × 16)-pixel
data fields, prototypes of handwritten characters are trained.
A parameter field, consisting of M · p items, is then deter-
mined for each character. This data matrix represents the
trained parameters. In the test phase, a learned CT feature
matrix of a test character is compared with the trained data
set in the classifier system. For each character, a membership
value is generated regarding the test character. This means
that a membership value vector Z = (µA,µB, . . . ,µZ)T can be
checked for the value with the maximum membership am-
plitude (max of height). The position of the maximum value
is defined as a certain character c = argmax(Zi).

6. CONCLUSION

We have presented algorithms and a corresponding FPGA
implementation, which are suitable for image processing ap-
plications based on an FPGA Altera Apex EP20K600E. The
FPGA operates with a clock frequency of 40MHz. Different
nonlinear CTs and an FPC are implemented as feature gen-
erators and classifier, respectively. The combination of both
modules leads to a flexible pattern recognition approach,
which is adaptable to the application tasks. Typical applica-
tions are image retrieval, texture and image analysis, similar-
ity detection, and character recognition.
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