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We present a method for sequentially estimating time-varying noise parameters. Noise parameters are sequences of time-varying
mean vectors representing the noise power in the log-spectral domain. The proposed sequential Monte Carlo method generates
a set of particles in compliance with the prior distribution given by clean speech models. The noise parameters in this model
evolve according to random walk functions and the model uses extended Kalman filters to update the weight of each particle as
a function of observed noisy speech signals, speech model parameters, and the evolved noise parameters in each particle. Finally,
the updated noise parameter is obtained by means of minimum mean square error (MMSE) estimation on these particles. For
efficient computations, the residual resampling and Metropolis-Hastings smoothing are used. The proposed sequential estimation
method is applied to noisy speech recognition and speech enhancement under strongly time-varying noise conditions. In both
scenarios, this method outperforms some alternative methods.
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1. INTRODUCTION

A speech processing system may be required to work in con-
ditions where the speech signals are distorted due to back-
ground noise. Those distortions can drastically drop the per-
formance of automatic speech recognition (ASR) systems,
which usually perform well in quiet environments. Similarly,
speech-coding systems spend much of their coding capacity
encoding additional noise information.

There have been great interests in developing algo-
rithms that achieve robustness to those distortions. In gen-
eral, the proposed methods can be grouped into two ap-
proaches. One approach is based on front-end process-
ing of speech signals, for example, speech enhancement.
Speech enhancement can be done either in time-domain,
for example, in [1, 2], or more widely used, in spectral
domain [3, 4, 5, 6, 7]. The objective of speech enhance-
ment is to increase signal-to-noise ratio (SNR) of the pro-
cessed speech with respect to the observed noisy speech
signal.

The second approach is based on statistical models of
speech and/or noise. For example, parallel model combina-
tion (PMC) [8] adapts speech mean vectors according to
the input noise power. In [9], code-dependent cepstral nor-
malization (CDCN) modifies speech signals based on prob-
abilities from speech models. Since methods in this model-
based approach are devised in a principled way, for example,
maximum likelihood estimation [9], they usually have bet-
ter performances than methods in the first approach, par-
ticularly in applications such as noisy speech recognition
[10].

However, a main shortcoming in some of the methods
described above lies in their assumption that the background
noise is stationary (noise statistics do not change in a given
utterance). Based on this assumption, noise is often esti-
mated from segmented noise-alone slices, for example, by
voice-activity detection (VAD) [7]. Such an assumption may
not hold in many real applications because the estimated
noise may not be pertinent to noise in speech intervals in
nonstationary environments.
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Recently, methods have been proposed for speech en-
hancement in nonstationary noise. For example, in [11],
a method based on sequential Monte Carlo method is ap-
plied to estimate time-varying autocorrelation coefficients of
speech models for speech enhancement. This algorithm is
more advanced in its assumption that autocorrelation coef-
ficients of speech models are time varying. In fact, sequen-
tial Monte Carlo method is also applied to estimate noise
parameters for robust speech recognition in nonstationary
noise [12] through a nonlinear model [8], which was re-
cently found to be effective for speech enhancement [13] as
well.

The purpose of this paper is to present a method based
on sequential Monte Carlo for estimation of noise parameter
(time-varying mean vector of a noise model) with its appli-
cation to speech enhancement and recognition. The method
is based on a nonlinear function that models noise effects on
speech [8, 12, 13]. Sequential Monte Carlo method generates
particles of parameters (including speech and noise parame-
ters) from a prior speech model that has been trained from a
clean speech database. These particles approximate posterior
distribution of speech and noise parameter sequences given
the observed noisy speech sequence. Minimum mean square
error (MMSE) estimation of the noise parameter is obtained
from these particles. Once the noise parameter has been es-
timated, it is used in subtraction-type speech enhancement
methods, for example, Wiener filter and perceptual filter,!
and adaptation of speech mean vectors for speech recogni-
tion.

The remainder of the paper is organized as follows. The
model specification and estimation objectives for the noise
parameters are stated in Section 2. In Section 3, the sequen-
tial Monte Carlo method is developed to solve the noise pa-
rameter estimation problem. Section 4.3 demonstrates appli-
cation of this method to speech recognition by modifying
speech model parameters. Application to speech enhance-
ment is shown in Section 4.4. Discussions and conclusions
are presented in Section 5.

Notation

Sets are denoted as {-,-}. Vectors and sequences of vec-
tors are denoted by uppercased letters. Time index is in the
parenthesis of vectors. For example, a sequence Y(1 : T) =
(Y(1) Y(2) --- Y(T)) consists of vector Y(¢) at time t,
where its ith element is y;(¢). The distribution of the vector
Y () is p(Y (t)). Superscript T denotes transpose.

The symbol X (or x) is exclusively used for original
speech and Y (or y) is used for noisy speech in testing en-
vironments. N (or n) is used to denote noise.

By default, observation (or feature) vectors are in log-
spectral domain. Superscripts lin, I, ¢ denote linear spec-
tral domain, log-spectral domain, and cepstral domain. The
symbol * denotes convolution.

A model for frequency masking [14, 15] is applied.

2. PROBLEM DEFINITION
2.1. Model definitions

Consider a clean speech signal x(t) at time ¢ that is corrupted
by additive background noise n(t).? In time domain, the re-
ceived speech signal y(t) can be written as

y(t) = x(t) + n(t). (1)

Assume that the speech signal x(t) and noise n(t) are un-
correlated. Hence, the power spectrum of the input noisy sig-
nal is the summation of the power spectra of clean speech sig-
nal and those of the noise. The output at filter bank j can be

described by yi" () = 3, b(m)| 12 v(1)y(t — e 12mmL |2,
summing the power spectra of the windowed signal v(¢) *
y(t) with length L at each frequency m with binning weight
b(m). v(t) is a window function (usually a Hamming win-
dow) and b(m) is a triangle window.? Similarly, we denote
the filter bank output for clean speech signal x(¢) and noise
n(t) as x?“(t) and n?n(t) for jth filter bank, respectively. They
are related as

YIn(E) = K0 () + (), )

where j is from 1 to J, and J is the number of filter banks.

The filter bank output exhibits a large variance. In order
to achieve an accurate statistical model, in some applications,
for example, speech recognition, logarithm compression of
y;i"(t) is used instead. The corresponding compressed power
spectrum is called log-spectral power, which has the follow-
ing relationship (derived in Appendix A) with noisy signal,
clean speech signal, and noise:

() = xj(t) +log (1 +exp (nf(1) = x}(1))).  (3)

The function is plotted in Figure 1. We observed that this
function is convex and continuous. For noise log-spectral
power nﬂ»(t) that is much smaller than clean speech log-

spectral power xﬁ(t), the function outputs xﬁ(t). This shows
that the function is not “sensitive” to noise log-spectral
power that is much smaller than clean speech log-spectral
power.*

We consider the vector for clean speech log-spectral
power X/(t) = (4 (1),... ,x}(t))T. Suppose that the statistics
of the log-spectral power sequence X'(1: T) can be modeled
by a hidden Markov model (HMM) with output density at
each state s; (1 < s; < S) represented by mixtures of Gaussian
2%:1 Mok, N (X! (£); ‘uilkt, Zit x,)>» where M denotes the number

2Channel distortion and reverberation are not considered in this pa-
per. In this paper, x(¢) can be considered as a speech signal received by a
close-talking microphone, and n(t) is the background noise picked up by
the microphone.

3In Mel-scaled filter bank analysis [16], b(m) is a triangle window cen-
tered in the Mel scale.

4We will discuss later in Sections 3.5 and 4.2 that such property may
result in larger-than-necessary estimation of the noise log-spectral power.
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10 Furthermore, to model time-varying noise statistics, we
9l assume that the noise parameter y/,(t) follows a random walk
function; that is,
St
= 7t
= U (D) ~ p (D)1 (£ = 1)
% °f I I 1 (8)
2 4| = N (p, (1); (= 1), V).
.2
g 4
_“2 51 We collectively denote these parameters {//‘i,k,(t))st) ks,
© uitsul, () eER, 1<s <8 1<k <M, p(t) € Rl}as
2r 0(t). It is clearly seen from (4)—(8) that they have the follow-
1 ing prior distribution and likelihood at each time ¢:
0

-0 -8 -6 -4 -2 0 2 4 6 8 10

Noise power n§ (1)

FiGure 1: Plot of function y}(t) = xﬁ-(t)+10g(1 +exp(n§-(t) —xﬁ-(t))).
xﬂ(t) = 1.0 nﬁ(t) ranges from —10.0 to 10.0.

of Gaussian densities in each state. To model the statistics of
noise log-spectral power N'(1 : T), we use a single Gaussian
density with a time-varying mean vector 4/, (t) and a constant
diagonal variance matrix V.

With the above-defined statistical models, we may plot
the dependence among their parameters and observation se-
quence Y/ (1 : t) by a graphical model [17] in Figure 2.
In this figure, the rectangular boxes correspond to discrete
state/mixture indexes, and the round circles correspond to
continuous-valued vectors. Shaded circles denote observed
noisy speech log-spectral power.

The state s; € {1,...,S} gives the current state index at
frame t. State sequence is a Markovian sequence with state
transition probability p(s¢|s;—1) = as,_,5,. At state sy, an index
ky € {1,...,M} assigns a Gaussian density "v('3l";k,’2i,k1)
with prior probability p(k¢|s;) = . Speech parameter
‘uirkl(t) is thus distributed in Gaussian given s, and k;; that
is,

st~ plselse-1) = as s (4)
ki ~ p(kels) = mo, (5)
Ul (8) ~ N (5l gr Zhi)- (6)

Assuming that the variances of X'(¢) and N'(t) are very
small (as done in [8]) for each filter bank j, given s; and k;, we
may relate the observed signal Y'(t) to speech mean vector
l/’i,k[(t) and time-varying noise mean vector u/,(t) with the
function

Y'(#) = il (1) +log (1+exp (4 (1) — ! 1 (1)) +weu, (1), (7)

where wy, (t) is distributed in N (-3 0, EQ x,)> representing the
possible modeling error and measurement noise in the above
equation.

p(6()16(t - 1))
= a5, Tk, 9)
XN (g, (D)3 g T ) N (uh (83 1 (£ = 1), V),
p(YH(1)16(1))
= W (Y03, (1) (10)
+log (1+exp (ul () — 1 ())), 2L ).

Remark 1. In comparison with the traditional HMM, the
new model shown in Figure 2 may provide more robustness
to contaminating noise, because it includes explicit modeling
of the time-varying noise parameters. However, probabilistic
inference in the new model can no longer be done by the ef-
ficient Viterbi algorithm [18].

2.2, Estimation objective

The objective of this method is to estimate, up to time t, a
sequence of noise parameters y,(1 : t) given the observed
noisy speech log-spectral sequence Y'(1 : t) and the above
defined graphical model, in which speech models are trained
from clean speech signals. Formally, g/, (1 : t) is calculated by
the MMSE estimation

L1 1) = j WL (A1 DY ) dh (1 ),
wh (1:t) ()

where p(ul(1 : £)|Y!(1 : t)) is the posterior distribution of
ph(1:t) given YH(1 : t).

Based on the graphical model shown in Figure 2,
Bayesian estimation of the time-varying noise parameter
(1 : t) involves construction of a likelihood function of
observation sequence Y/(1 : t) given parameter sequence
O(1:1t) = (0(1),...,0(t)) and prior probability p(®(1 : t))
fort = 1,..., T. The posterior distribution of @(1 : t) given
observation sequence Y'(1 : t) is

(O :)Y(1:1) < p(YI(1:8)|@(1:1)p(O(1 : 1)).
(12)
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St —>

o St-1
k() kt—l
Y!(0) Yi(t—1)
—

kt kT

Yl(t) = Yi(T)

FiGURE 2: The graphical model representation of the dependence of the speech and noise model parameters. s; and k; denote the state and
Gaussian mixture at frame ¢ in speech model. ¢, () and y} () denote the speech and noise parameters. Y'(¢) is the observed noisy speech

signal at frame ¢.

Due to the Markovian property shown in (9) and (10),
the above posterior distribution can be written as

p(@(1:0)|Y(1:1))
o [T p(Y!(2)16()) p(8()10(z—1)) p(Y'(1)16(1)) p(B(1)).
=2
(13)

Based on this posterior distribution, MMSE estimation
in (11) can be achieved by

[fté(l:t):Jl

Hin

XZL

Suekia © Psnki I:

1 .
(I:t)‘ulm(l . t)
p(O(1:0)Y(1:1) (14)

d/‘imkw(l : t)d‘uL(I :1).

Note that there are difficulties in evaluating the MMSE
estimation. The first relates to the nonlinear function in (10),
and the second arises from the unseen state sequence s
and mixture sequence ki.;. These unseen sequences, together
with nodes {‘uitkt(t)}, {Y'(t)}, and {g},(¢)}, form loops in the
graphical model. These loops in Figure 2 make exact infer-
ences on posterior probabilities of unseen sequences s;.; and
ki, computationally intractable. In the following section, we
devise a sequential Monte Carlo method to tackle these prob-
lems.

3. SEQUENTIAL MONTE CARLO METHOD
FOR NOISE PARAMETER ESTIMATION

This section presents a sequential Monte Carlo method for
estimating noise parameters from observed noisy signals and
pretrained clean speech models. This method applies se-
quential Bayesian importance sampling (BIS) in order to
generate particles of speech and noise parameters from a pro-
posal distribution. These particles are selected according to
their weights calculated with a function of their likelihood.
It should be noted that the application here is one particular
case of a more general sequential BIS method [19, 20].

3.1. Importance sampling

Suppose that there are N particles O9(1:1);i=1,...,N}.
Each particle is denoted as

‘ o ‘
O0(1: 1) = {sihkih il o (1: 0, (1L 0f. (15)

These particles are generated according to p(@(1 : )| Y!(1 :
t)). Then, these particles form an empirical distribution of
O(1:t), given by

N
(O : DIV (1 1) = %Z(S@m(l;t)(d@(l 1), (16)

i=1

where 8,(-) is the Dirac delta measure concentrated on x.
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Using this distribution, an estimate of the parameters of
interests fg(1 : t) can be obtained by

Foll:t) = Jf@(l ) pn (01 B YU(1: £)dO(1 : 1)

may (17)
- N Zf(’)(l t),
where, for example, function fo(1 : t) is ®(1 : t) and

f(f)’)(l 1) = @D(1:¢)if fo(1:t)is used for estimating pos-
terior mean of (1 : ). As the number of particles N goes
to infinity, this estimate approaches the true estimate under
mild conditions [21].

It is common to encounter the situation that the poste-
rior distribution p(®(1: ¢)|Y!(1 : ¢)) cannot be sampled di-
rectly. Alternatively, importance sampling (IS) method [22]
implements the empirical estimate in (17) by sampling from
an easier distribution q(®(1 : t)|Y(1 : t)), whose support
includes that of p(®(1:¢)| Y/ (1 : t)); that is,

(O :1)|Y'(1:1)
q(O(1:1)|Y(1:1))

Joll: t)—jf@u n?
q(@(l:t)lYl(l:t))d(*D(l:t) (18)

S 0w
SE wi(1:t)

>

where ®(1 : t) is sampled from distribution q(@(1 :
t)|Y!(1: 1)), and each particle (i) has a weight given by

p(OI(1:1)[Y!(1:1))

D(1:4) =
Wi = q(O@O(1:6)|Y(1:1) (19)
Equation (18) can be written as
- N ;
fol:t) =3 £ (0w (1: 1), (20)
i=1

where the normalized weight is given as w®(1 : t) =

wid(1 t)/Z?]:l wll(1: 1),

3.2. Sequential Bayesian importance sampling

Making use of the Markovian property in (13), we can have
the following sequential BIS method to approximate the pos-
terior distribution p(@(1 : t)|Y'(1 : t)). Basically, given an
estimate of the posterior distribution at the previous time
t — 1, the method updates estimate of p(®(1:¢)|Y!(1: ¢)) by
combining a prediction step from a proposal sampling dis-
tribution in (24) and (25), and a sampling weight updating
step in (26).

Suppose that a sequence of parameters @(1 : t — 1) up
to the previous time t — 1 is given. By Markovian property

in (13), the posterior distribution of @(1 : t) = O :t -

1)6(t)) given Y'(1 : t) can be written as
p(O1: 1) Y!(1:8)) oc p(Y!(1)I6() p(6(1)10(t — 1))
xip(Y’wé(r))p(é(r)|é(r—1))
x p(Y'(1)I6(1)) p(6(1)).

21)

We assume that the proposal distribution is in fact given
as

q(®(1:0)Y'(1:1))

= q(Y'(1)10(t)q(0(t)18(t - 1))

e ) (22)
x [1q(6(0)16(x — 1))q(Y'(2)16(x))
=2

x q(Y'(1)16(1))q(6(1)).
Plugging (21) and (22) into (19), we can update weight in a
recursive way; that is,
p(Y'(1)169(1)) p (689 (1) |07 (¢ — 1))
q(Y!(£)[09(£))q (89 (1) |60 (¢ — 1))

y H;zp(?’ (r)|q1 (r - 1))p(Y’<r>|§7<f><r>)
[1525 q(89(1) 109 (r - 1))q(Y!(r)169(7))
p(YI(1)169(1)) p(69 (1))

q(YI(1)109(1))q(89(1))

B )p(Y’(t)IH‘”(t))p(G“ (H)169(t-1))

q(Y{(1)169(£))q (69 ()16 (t—1)
(23)

wD(1:1) =

:W(’(

Such a time-recursive evaluation of weights can be further
simplified by allowing proposal distribution to be the prior
distribution of the parameters. In this paper, the proposal
distribution is given as

q(Y'()1609(t)) =1, (24)
q(687(0)109 (1= 1) =ap om0 N (10 (D3 o0 o 0)-
(25)

Consequently, the above weight is updated by

wd(t) o w(t = 1)p(Y(£)10D(£)) p (D (1)1 410 (t - 1)).
(26)

Remark 2. Given (1 : t — 1), there is an optimal pro-
posal distribution that minimizes variance of the importance
weights. This optimal proposal distribution is in fact the pos-
terior distribution p(@(t)lé)(l ct—1), Y1 : 1)) [23, 24].
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3.3. Rao-Blackwellization and the extended
Kalman filter

Note that yl(’)(t) in particle (i) is assumed to be distributed
in N(,ul(l (t),yn(i)(t — 1), V). By the Rao-Blackwell theo-
rem [25], the variance of weight in (26) can be reduced by
marginalizing out ‘ufq(i) (t). Therefore, we have

w(#) oc w(t = 1)
1 (i)
% [ oy P10 @)
1) du”(t).

Referring to (9) and (10) we notice that the integrand
p(Y’(t)IG(i)(t))p([,tn (t)lyn (t — 1)) is a state- space model
by (7) and (8). In this state-space model, given st , kt ,
and pt (, o (6), [41(’ (t) is the hidden continuous-valued vector
dlstrlbuted in N(yn (1); /,tn (t 1), V}), and Y'(¢) is the
observed signal of this model. This integral in (27) can
be analytically obtained if we linearize (7) with respect to

X p (D (1)1l (¢ —

/451(”(1‘). The linearized state-space model provides an ex-
tended Kalman filter (EKF) (see Appendix B for the detail

of EKF), and the integral is p(Y’(t)IsEi),k;’),‘ulf,’fk BN 21D (¢

1), Y!(t — 1)), which is the predictive likelihood shown in
(B.1). An advantage of updating weight by (27) is its sim-
plicity of implementation.

Because the predictive likelihood is obtained from EKF,
the weight w()(t) may not asymptotically approach the target
posterior distribution. One way to achieve asymptotically the
target posterior distribution may follow a method called the
extended Kalman particle filter in [26], where the weight is
updated by

w(i)(t)
p(YU(DI0D(0)) p (s’ (1)1 " (¢ — 1))

g(u” Ol (e = 0,57kl (0, Y1)
(28)

oc W(i)(f _

and the proposal distribution for ylni) (t) is from the posterior
distribution of ‘ufq(') (t) by EKF; that is,

g (1" (¢ = 1,57,k w0 (0, Y (1)

= N (@ (s (t = 1) + GV (a1 - 1), K1),
(29)

where Kalman gain G (¢), innovation vector a'?(t — 1),
and posterior variance K/ (t) are respectively given in (B.7),
(B.2), and (B.4).

However, for the following reasons, we did not apply the
stricter extended Kalman particle filter to our problem. First,
the scheme in (28) is not Rao-Blackwellized. The variance of
sampling weights might be larger than the Rao-Blackwellized
method in (27). Second, although observation function (7) is

nonlinear, it is convex and continuous. Therefore, lineariza-
tion of (7) with respect to u,(t) may not affect the mode
of the posterior distribution p(ul(1 : £)|Y! (1 : t)). By the
asymptotic theory (see [25, page 430]), under the mild con-
dition that the variance of noise N'(t) (parameterized by
V1) is finite, bias for estimating /i, (t) by MMSE estimation
via (17) with weight given by (27) may be reduced as the
number of particles N grows large. (However, unbiasedness
for estimating £, (t) may not be established since there are
zero derivatives with respect to the parameter y(¢) in (7).)
Third, evaluation of (28) is computationally more expen-
sive than (27), because (28) involves calculation processes on
two state-space models. We will show some experiments in
Section 4.1 to support the above considerations.

Remark 3. Working in linear spectral domain in (2) for
noise estimation does not require EKE Thus, if the noise
parameter in ©(t) and the observations are both in the lin-
ear spectral domain, the corresponding sequential BIS can
achieve asymptotically the target posterior distribution (12).
In practice, however, due to the large variance in the lin-
ear spectral domain, we may frequently encounter numeri-
cal problems that make it difficult to build an accurate sta-
tistical model for both clean speech and noise. Compress-
ing linear spectral power into log-spectral domain is com-
monly used in speech recognition to achieve more accurate
models. Furthermore, because the performance by adapting
acoustic models (modifying mean and variance of acous-
tic models) is usually higher than enhanced noisy speech
signals for noisy speech recognition [10], in the context of
speech recognition, it is beneficial to devise an algorithm
that works in the domain for building acoustic models. In
our examples, acoustic models are trained from cepstral or
log-spectral features, thus, the parameter estimation algo-
rithm is devised in the log-spectral domain, which is lin-
early related to the cepstral domain. We will show later that
the estimated noise parameter 4/ (t) substitutes 4, using a
log-add method (36) to adapt acoustic model mean vec-
tors. Thus, to avoid inconsistency due to transformations be-
tween different domains, the noise parameter may be esti-
mated in log-spectral domain, instead of linear spectral do-
main.

3.4. Avoiding degeneracy by resampling

Since the above particles are discrete approximations of the
posterior distribution p(@(1 : £)| Y!(1 : t)), in practice, after
several steps of sequential BIS, the weights of not all but some
particles may become insignificant. This could cause a large
variance in the estimate. In addition, it is not necessary to
compute particles with insignificant weights. Selection of the
particles is thus necessary to reduce the variance and to make
efficient use of computational resources.

Many methods for selecting particles have been pro-
posed, including sampling-importance resampling (SIR)
[27], residual resampling [28], and so forth. We apply resid-
ual resampling for its computational simplicity. This method
basically avoids degeneracy by discarding those particles with
insignificant weights, and in order to keep the number of the
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particles constant, particles with significant weights are du-
plicated. The steps are as follows. Firstly, set N = | Nw(? (1 :
£)]. Secondly, select the remaining N = N — ¥ N parti-
cles with new weights w (1 : t) = N~"'(w®(1 : )N — NO),
and obtain particles by sampling in a distribution approx-
imated by these new weights. Finally, add the particles to
those obtained in the first step. After this residual sampling
step, the weight for each particle is 1/N. Besides compu-
tational simplicity, residual resampling is known to have
smaller variance varN® = Nw®(1 : (1 — wO(1 : 1))
compared to that of SIR (which is varN®¥ () = Nw)(1 :
£)(1 = w¥(1: t))). We denote the particles after the selection
stepas {@V(1:¢);i=1---N}.

After the selection step, the discrete nature of the approx-
imation may lead to large bias/variance, of which the ex-
treme case is that all the particles have the same parameters
estimated. Therefore, it is necessary to introduce a resam-
pling step to avoid such degeneracy. We apply a Metropolis-
Hastings smoothing [19] step in each particle by sampling
a candidate parameter given the currently estimated param-
eter according to the proposal distribution (6™ (¢) 160 (1)).
For each particle, a value is calculated as

¢ = g (g (1), (30)

Mm§%>p« W%WWMWIQW@WIM
Yi(1 ;1) and g'(1) = q(09()10* ()/q(8* (1)169(¢)).
Within an acceptance possibility min{1,g®(¢)}, the Markov
chain then moves towards the new parameter 0* (¢); other-
wise, it remains at the original parameter.

To simplify calculations, we assume that the proposal dis-
tribution g(0* (t)|0(t)) is symmetric.’ Note that p(@®) (1
t)|Y!(1 : t)) is proportional to (1 : £) up to a scalar factor.
With (27), (B.1), and w® (1 : £ — 1) = 1/N, we can obtain the
acceptance possibility as

(Yl(f) |S*(i) k*(l) l(l

pro (D fin” (1=1), Y/(-1))
p(Y'O1s, &, g '

55:‘),;5:’)(0)1171 (t—1),YI(t— 1))
(31)

Denote the obtained particles hereafter as (OO :1); i =

., N} with equal weights.

3.5. Noise parameter estimation via the sequential
Monte Carlo method

Following the above considerations, we present the imple-
mented algorithm for noise parameter estimation. Given
that, at time t—1, N particles (@1 :¢t-1);i=1,...,N}are

eneratin involves sampling speech state s;* from §;.; accordin
5Generating 6* (£) invol pling speech state s} from 5\) according

to a first-order Markovian transition probability p(s{ \§§1)) in the graphical
model in Figure 2. Usually this transition probability matrix is not symmet-
ric; that is, p(s/ Is ) # p(s(')ls[ ). Our assumption of symmetric proposal
distribution q(6* (¢ 10D (1)) is for simplicity in calculating an acceptance
possibility.

distributed approximately according to p(®(1: t — 1)| /(1 :
t — 1)), the sequential Monte Carlo method proceeds as fol-
lows at time t.

Algorithm 1.
Bayesian importance sampling step
(1) Sampling. For i = 1,...,N, sample a proposal ©)(1 :
)= (OD(1:t—1)89(t)) by
(a) sampling §E’) ag,
(b) sampling kt ~ Ty
(c) Samphngﬂ km(t) N(ﬂéﬁn,;y)(t)Wéy),;t(x‘):Zégi),;ﬁn)-
(2) Extended Kalman prediction. For i = 1,...,N, evalu-

ate (B.2)—(B.7) for each particle by EKFs. Predict noise
parameter for each particle by

GOt = @D (et - 1), (32)

where ;iln(i)(tlt — 1) is given in (B.3).
(3) Weighting. For i = 1,...
each particle ®) by

,N, evaluate the weight of

A (i a(i A N
WL ) e (1t = Dp(YOIS K 0 o (1),

A - 1), Yt - 1),
(33)

where the second term in the right-hand side of the
equation is the predictive likelihood, given in (B.1), of
the EKE

(4) Normalization. Fori = 1,...
particle is normalized by

, N, the weight of the ith

wd(1:1)

S0 (1. 4y —
wW(1:t) = , .
S wi(1:t)

(34)

Resampling

(1) Selection. Use residual resampling to select particles
with larger normalized weights and discard those par-
ticles with insignificant weights. Duplicate particles of
large weights in order to keep the number of particles
as N. Denote the set of particles after the selection step
as{®@D(1:¢);i=1,...,N}. These particles have equal
weights w® (1 : t) = 1/N.

(2) Metropolis-Hastings smoothing For i = 1,...,N,
sample @*(1 : t) = (@W(1 : t — 1)0*(¢)) from
step (1) to step (3) in the Bayesian importance sam-
pling step with starting parameters given by @ (1 : t).
Fori = 1,...,N, set an acceptance possibility by (31).
Fori = 1,...,N, accept @*(1 : t) (i.e., substitute
OU(1 : t) by ®* (1 : t)) with probability r)(t) ~
U(0,1). The particles after the step are {@? (1 : t); i =

., N} with equal weights w (1 : £) = 1/N.
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TaBLE 1: State estimation experiment results. The results show the mean and variance of the mean squared error (MSE) calculated over 100

independent runs.

Algorithm MSE - Averaged execution time (s)
Mean Variance

Particle filter 8.713 49.012 5.338

Extended Kalman particle filter 6.496 34.899 13.439

Rao-Blackwellized particle filter 4.559 8.096 6.810

Noise parameter estimation
(1) Noise Parameter Estimation. With the above generated
particles at each time ¢, estimation of the noise param-
eter !, (t) may be acquired by MMSE. Since each par-
ticle has the same weight, MMSE estimation of ‘&L(t)
can be easily carried out as

= L o (35)
A0 = 5 2" (1)

The computational complexity of the algorithm at each
time t is O(2N) and is roughly equivalent to 2N EKFs. These
steps are highly parallel, and if resources permit, can be im-
plemented in a parallel way. Since the sampling is based on
BIS, the storage required for the calculation does not change
over time. Thus the computation is efficient and fast.

Note that the estimated fi/,(t) may be biased from the
true physical mean vector for log-spectral noise power N'(t),
because the function plotted in Figure 1 has zero derivative
with respect to nﬁ(t) in regions where nﬂ-(t) is much smaller

than xé(t). For those ﬁﬁ(i) (t) which are initialized with val-

ues larger than speech mean vector yiﬁ,?k(,.), updating by EKF
t M

may be lower bounded around the speech mean vector. As a

result, the updated f(t) = 1/N Zf\il ﬂln(i)(t) may not be the

true noise log-spectral power.

Remark 4. The above problem, however, may not hurt a
model-based noisy speech recognition system, since it is the
modified likelihood in (10) that is used to decode speech
signals.® But in a speech enhancement system, noisy speech
spectrum is directly processed on the estimated noise param-
eter. Therefore, biased estimation of the noise parameter may
hurt performances more apparently than in a speech recog-
nition system.

4. EXPERIMENTS

We first conducted synthetic experiments in Section 4.1 to
compare three types of particle filters presented in Sections
3.2 and 3.3. Then, in the following sections, we present ap-
plications of the above noise parameter estimation method

©The likelihood of the observed signal Y'(t), given speech model param-
eter and a noise parameter, is the same as long as the noise parameter is

much smaller than the speech parameter /4155)) L0 (t).
St Kt

based on Rao-Blackwellized particle filter (27). We consider
particularly difficult tasks for speech processing, speech en-
hancement, and noisy speech recognition in nonstationary
noisy environments. We show in Section 4.2 that the method
can track noise dynamically. In Section 4.3, we show that the
method improves system robustness to noise in an ASR sys-
tem. Finally, we present results on speech enhancement in
Section 4.4, where the estimated noise parameter is used in a
time-varying linear filter to reduce noise power.

4.1. Synthetic experiments

This section’ presents some experiments® to show the va-
lidity of Rao-Blackwellized filter applied to the state-space
model in (7) and (8). A sequence of y/(1 : t) was generated
from (8), where state-process noise variance V) was set to
0.75. Speech mean vector ‘uitkt(t) in (7) was set to a constant
10. The observation noise variance Zitkt was set to 0.00005.
Given only the noisy observation Yi(1:¢) fort =1,...,60,
different filters (particle filter by (26), extended Kalman par-
ticle filter by (28), and Rao-Blackwellized particle filter by
(27)) were used to estimate the underlying state sequence
(1 : t). The number of particles in each type of filter was
200, and all the filters applied residual resampling [28]. The
experiments were repeated for 100 times with random re-
initialization of g}, (1) for each run. Table 1 summarizes the
mean and variance of the MSE of the state estimates, together
with the averaged execution time of each filter. Figure 3 com-
pares the estimates generated from a single run of the differ-
ent filters. In terms of MSE, the extended Kalman particle
filter performed better than the particle filter. However, the
execution time of the extended Kalman particle filter was the
longest (more than two times longer than that of particle fil-
ter (26)). Performance of the Rao-Blackwellized particle fil-
ter of (27) is clearly the best in terms of MSE. Notice that its
averaged execution time was comparable to that of particle
filter.

4.2. Estimation of noise parameter

Experiments were performed on the TI-Digits database
downsampled to 16 kHz. Five hundred clean speech utter-
ances from 15 speakers and 111 utterances unseen in the
training set were used for training and testing, respectively.

7A Matlab implementation of the synthetic experiments is available by
sending email to the corresponding author.
8 All variables in these experiments are one dimensional.
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FIGURE 3: Plot of estimates generated by the different filters on the
synthetic state estimation experiment versus true state. PF denotes
particle filter by (26). PE-EKF denotes particle filter with EKF pro-
posal sampling by (28). PF-RB denotes Rao-Blackwellized particle
filter by (27).

Digits and silence were respectively modeled by 10-state and
3-state whole-word HMMs with 4 diagonal Gaussian mix-
tures in each state.

The window size was 25.0 milliseconds with a 10.0
milliseconds shift. Twenty-six filter banks were used in the
binning stage; that is, ] = 26. Speech feature vectors were
Mel-scaled frequency cepstral coefficients (MFCCs), which
were generated by transforming log-spectral power spectra
vector with discrete Cosine transform (DCT). The baseline
system had 98.7% word accuracy for speech recognition un-
der clean conditions.

For testing, white noise signal was multiplied by a chirp
signal and a rectangular signal in the time domain. The
time-varying mean of the noise power as a result changed ei-
ther continuously, denoted as experiment A, or dramatically,
denoted as experiment B. SNR of the noisy speech ranged
from 0 dB to 20.4 dB. We plotted the noise power in the 12th
filter bank versus frames in Figure 4, together with the esti-
mated noise power by the sequential method with the num-
ber of particles N set to 120 and the environment driving
noise variance V) set to 0.0001. As a comparison, we also
plotted in Figure 5 the noise power and its estimate by the
method with the same number of particles but larger driving
noise variance set to 0.001.

Four seconds of contaminating noise were used to initial-
ize (1},(0) in the noise estimation method. Initial value /)ln(’) (0)
of each particle was obtained by sampling from A (f2,(0) +
{(0),10.0), where {(0) was distributed in U(—1.0,9.0). To
apply the estimation algorithm in Section 3.5, observation
vectors were transformed into log-spectral domain.

Based on the results in Figures 4 and 5, we make the fol-
lowing observations. First, the method can track the evolu-
tion of the noise power. Second, the larger driving noise vari-
ance V! will make faster convergence but larger estimation
error. Third, as discussed in Section 3.5, there was large bias
in the region where noise power changed from large to small.
Such observation was more explicit in experiment B (noise
multiplied with a rectangular signal).

4.3. Noisy speech recognition in time-varying noise

The experiment setup was the same as in the previous ex-
periments in Section 4.2. Features for speech recognition
were MFCCs plus their first- and second-order time differ-
entials. Here, we compared three systems. The first was the
baseline trained on clean speech without noise compensa-
tion (denoted as Baseline). The second was the system with
noise compensation, which transformed clean speech acous-
tic models by mapping clean speech mean vector yit x, ateach
state s; and Gaussian density k; with the function [8]

@y, = i +log (1+exp (4, — i), (36)

where 4! was obtained by averaging noise log-spectral in
noise-alone segments in the testing set. This system was de-
noted as stationary noise assumption (SNA). The third sys-
tem used the method in Section 3.5 to estimate the noise
parameter /i, (¢) without training transcript. The estimated
noise parameter was plugged into {i, in (36) for adapting
acoustic mean vector at each time t. This system was denoted
according to the number of particles and variance of the en-
vironment driving noise V.

4.3.1.

In terms of recognition performance in the simulated non-
stationary noise described in Section 4.2, Table 2 shows that
the method can effectively improve system robustness to
the time-varying noise. For example, with 60 particles and
the environment driving noise variance V,l, set to 0.001, the
method improved word accuracy from 75.3%, achieved by
SNA, to 94.3% in experiment A. The table also shows that
the word accuracies can be improved by increasing the num-
ber of particles. For example, given driving noise variance V}
set to 0.0001, increasing the number of particles from 60 to
120 could improve word accuracy from 77.1% to 85.8% in
experiment B.

Results in the simulated nonstationary noise

4.3.2. Speech recognition in real noise

In this experiment, speech signals were contaminated by
highly nonstationary machine gun noise in different SNRs.
The number of particles was set to 120, and the environment
driving noise variance V} was set to 0.0001. Recognition per-
formances are shown in Table 3, together with Baseline and
SNA. It is observed that, in all SNR conditions, the method in
Section 3.5 further improved system performances in com-
parison with SNA. For example, in 8.9 dB SNR, the method
improved word accuracy from 75.6% by SNA to 83.1%. As
a whole, it reduced the word error rate by 39.9% more than
SNA.
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4.4. Perceptual speech enhancement

Enhanced speech x(#) is obtained by filtering the noisy
speech sequence y(t) via a time-varying linear filter h(¢); that
is,

x(t) = h(t) * y(1). (37)

This process can be studied in the frequency domain as mul-
tiplication of the noisy speech power spectrum y}‘“(t) by a

time-varying linear coefficient at each filter bank; that is,
£0(e) = y(e) - yin(e), (38)

where h;(t) is the gain at filter bank j at time ¢. Referring to
(2), we can expand it as

#0(E) = hy(Ox(E) + iy (O (1) (39)

We are left with two choices for linear time-varying fil-
ters.
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TaBLE 2: Word accuracy (%) in simulated nonstationary noise, achieved by the sequential Monte Carlo method in comparison with baseline
without noise compensation, denoted as Baseline, and noise compensation assuming stationary noise, denoted as stationary noise assump-

tion.
Stationary No. of particles = 60 No. of particles = 120
Experiment Baseline noise assumption V! V)
0.001 0.0001 0.001 0.0001
A 48.2 75.3 94.3 94.0 94.3 94.6
B 53.0 78.0 82.2 77.1 85.8 85.8

TaBLE 3: Word accuracy (%) in machine gun noise, achieved by the sequential Monte Carlo method in comparison with baseline without
noise compensation, denoted as Baseline, and noise compensation assuming stationary noise, denoted as stationary noise assumption.

SNR (dB) Baseline Stationary noise assumption No. of particles = 120, V} = 0.0001
28.9 90.4 92.8 97.6
14.9 64.5 76.8 88.3
8.9 56.0 75.6 83.1
1.6 50.0 69.0 72.9
(1) Wiener filter constructs the coefficient as Both Wiener filter and perceptual filter require the esti-
mated noise power spectrum ﬁ'j'“(t). Under the assumption
;,ljin(t) of stationary noise, the noise power spectrum can be esti-
hi(t) =1 - gy’ (40) mated from noise-alone segments provided by explicit VAD,
J

where ﬁlji“(t) is the estimate of noise power spectrum.
(2) The criterion for perceptual filter is to construct h;(¢)

so that the amplitude of the filtered noise power spec-

tra hj(t) - ngi“(t) is below the masking threshold of the

denoised speech; that is,

hj(t) - n?“(t) < T;(t), (41)

where T(t) is the masking threshold of the denoised
speech signal. The threshold is a function of clean
speech spectrum x;i“ (t). Since x?“(t) is not directly ob-
served, the following equation is used instead, which
makes the masking threshold a function of the esti-
mated noise power spectra ﬁ?n(t):

#in(e) = ylin(e) — alin(e), (42)

The perceptual filter exploits the masking properties of
the human auditory system, and it has been employed by
many researchers (e.g., [14]) in order to provide improved
performance over the Wiener filter in low SNR conditions.
Masking occurs because the auditory system is incapable of
distinguishing two signals close in time or frequency domain.
This is manifested by an evaluation of the minimum thresh-
old of audibility due to a masker signal. Masking has been
widely applied to speech and audio coding [15]. We consider
frequency masking [15] when a weak signal is made inaudi-
ble by a stronger signal occurring simultaneously.

for example, speech enhancement scheme in [7]. However,
in real applications, we encounter time-varying noise, which
may change its statistics during speech utterances.

The objective of this section is to test the above de-
vised method in Section 3.5 for speech enhancement in time-
varying noise. The estimated g/ (t) is converted to linear
spectral domain Ali"(t) by exponential operation. Corre-
sponding jth element in /i"(¢) substitutes ﬁlji“(t) in (40)
and (42), respectively, to construct Wiener filter and percep-
tual filter. Therefore, the proposed speech enhancement al-
gorithm is a combination of sequential noise parameter es-
timation by sequential Monte Carlo method and speech en-
hancement method with time-varying linear filtering. Dia-
gram of the algorithm is shown in Figure 6. At each frame
t, the algorithm carries out the noise parameter estimation
in the log-spectral domain and perceptual enhancement of
noisy speech in the time domain. Noise parameter estimation
in the module “Noise parameter estimation” works in the
log-spectral domain of input speech signals. Estimation of
noise parameter is given by Algorithm 1. With the estimated
noise parameter at the current frame, the module “wiener fil-
ter” outputs the enhanced speech spectrum in linear spectral
domain, and the enhanced speech spectrum is used in
“masking threshold calculation.” Perceptual filter based on
masking threshold and the estimated noise parameter is con-
structed in the module “perceptual filter” With the time-
varying perceptual filter constructed, input noisy speech sig-
nal is filtered in time domain in the module “filtering”
to obtain perceptually enhanced signal X(#). A detailed de-
scription of this algorithm is provided in the following sec-
tions.
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Figure 6: Diagram of the proposed speech enhancement method. Noisy signal y(t) is converted into linear spectral amplitude in
“windowing + FFT.” Noise parameter is sequentially estimated in “noise parameter estimation.” The estimated noise parameter is con-
verted back into linear spectral domain and is fed into “Wiener filter” to obtain enhanced linear power spectrum. The enhanced spectrum
is inputted to “masking threshold calculation,” and the obtained masking threshold is used in perceptual filter with the estimated noise pa-
rameter in linear spectral domain. Module “perceptual filter” outputs filter coefficients for speech enhancement in “filtering,” which outputs

the enhanced signal %(¢).

4.4.1.

The masking threshold T;(t) is obtained through modeling
the frequency selectivity of the human ear and its masking
property. This paper applies a computational model of mask-
ing by Johnston [15].

Masking threshold calculation

Frequency masking threshold calculation

(1) Frequency analysis. According to a mapping between
linear frequency and Bark frequency [14], power spectrum
x}in(t) after short-time Fourier transform (STFT) of input
speech signal is combined in each Bark bank b (1 < b < B)

by

by
aqn(t) = > xn(), (43)
j=bu

where by, and by denote the lowest and the highest frequency
for the bark index b.

(2) Convolution with spreading function. The spreading
function § is used to estimate the effects of masking across
critical bands. One example of the spreading function B, at
b = 2 is plotted in Figure 7. The spread Bark spectrum at
bark index b is denoted as C}}“(t) = Bbx}f“(t).

(3) Relative threshold calculation based on tone-like or
noise-like determination. The tone-like or noise-like is de-
termined by spectral flatness measure (SFM), which is calcu-
lated by measuring the decibel (dB) of the ratio of the geo-
metric mean of the power spectrum to the arithmetic mean
of the power spectrum.

(4) Masking threshold calculation. The relative threshold
is subtracted from the spread critical band spectrum to yield
the spread threshold estimate.

(5) Renormalization and including absolute threshold
information [15].

(6) Converting the masking threshold from Bark fre-
quency to linear frequency domain. The masking threshold
in linear spectral domain T'j(¢) is obtained as a result.
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FIGURE 7: Spreading function for the noise masking threshold cal-
culation. The plot shows the spreading function applied to critical
band at 2.

An example of masking threshold in linear spectral do-
main for a given input spectrum is plotted in Figure 8. The
sampling frequency is 8 kHz. Therefore, the total number of
critical bands is B = 18. In the method presented above, the
masking threshold is calculated from the clean speech sig-
nal.

4.4.2. Wiener filter and perceptual filter

We apply the method in Section 3.5 for time-varying noise
parameter estimation. The jth element in i} (¢) is converted
to linear spectral domain by exponential operation and then
substitutes leji“(t) in (40) and (42), respectively, for Wiener
filter and perceptual filter. Masking threshold of the percep-
tual filter is obtained from Section 4.4.1.
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4.4.3. Experimental results

Experiments were performed on Aurora 2 database. Speech
models were trained on 8840 clean speech utterances. The
model was an HMM with 18 states and 8 Gaussian mix-
tures in each state. Noise model was a single Gaussian
density with time-varying mean vector. Window size was
25.0 milliseconds with a 10.0 milliseconds shift. ] was set to
65.

We compared three systems. The first system, denoted
as Baseline, was a speech enhancement system based on
ETSI proposal [7], in which a VAD is used for decision
of speech/nonspeech segments. Noise parameters were esti-
mated from segmented noise-alone frames. The second sys-
tem, denoted as Known, differs from the first system in that
the Wiener filter was designed with noise parameters esti-
mated by the proposed method. The third system, denoted
as Perceptual, was a perceptual filter with noise parameter
estimated by the proposed method.

VAD was initialized during the first three frames in each
utterance. Driving variance V,ﬂ in (9) was set to 0.0003. Num-
ber of particles (N in (35)) was set to 800.

Noise signals were (1) simulated nonstationary noise,
generated by multiplying white noise with a time-varying
continuous factor in time domain, (2) Babble noise, and (3)
Restaurant noise.

4.4.4. Performance evaluation
Spectrogram

An example of the original clean speech signals, noisy signals
in the simulated nonstationary noise, and enhanced signals
are shown in Figure 9. The contrast is more evident by view-
ing their corresponding spectrogram in Figure 10. It is ob-
served that the noise power appeared after 0.4 seconds, which

Time (s)

(a)

Time (s)

(b)

Time (s)

(d)

Time (s)

(e)

FIGURE 9: An example of signals. (a) Clean speech signal in En-
glish “Oh Oh Two One Six.” (b) Noisy signal (noise is the simulated
nonstationary noise and SNR is —0.2 dB). (c) Enhanced speech sig-
nal by Wiener filter (system Baseline). (d) Enhanced speech signal
by Wiener filter with noise parameters estimated by the proposed
method (system Known). (e) Enhanced speech signal by perceptual
filter with noise parameters estimated by the proposed method (sys-
tem Perceptual).

was almost at the time when the speech segments occurred.
Figure 10c shows that Baseline cannot handle this nonsta-
tionarity of the noise, and the enhanced signal by the system
still contains much noise power in the speech segments. On
the contrary, with the proposed method, the enhanced signal
by Known has reduced the noise power in speech segments
(shown in Figure 10d). Perceptual reduces noise in the en-
hanced signal to a greater extent than the other two systems
(shown in Figure 10e). An example in Babble noise is shown
in Figure 11, and the corresponding spectrogram is shown in
Figure 12.



Time-Varying Noise Estimation Using Monte Carlo Method 2379

Frequency (kHz)
Frequency (kHz)

02 04 06 08 1 1.2 14 16 1.8 2
Time (s)

02 04 06 08 1 12 14 1.6 1.8 2

Time (s)

(a) (b)

Frequency (kHz)
Frequency (kHz)

0.2 04 06 08 1 1.2 14 16 1.8 2 0.2 04 06 08 1 1.2 14 1.6 1.8 2
Time (s) Time (s)
(c) (d)
4

N
wn

Frequency (kHz)
s

—

e
w

02 04 06 08 1 12 14 16 1.8 2

Time (s)

(e)

F1Gure 10: An example of the spectrum of the signals (from top to down). (a) Spectrogram of the clean speech signal in English “Oh Oh
Two One Six.” (b) Spectrogram of the noisy signal (noise is the simulated nonstationary noise and SNR is —0.2 dB). (¢) Spectrogram of the
enhanced signal by Wiener filter (system Baseline). (d) Spectrogram of the enhanced signal by Wiener filter with noise parameters estimated

by the proposed method (system Known). (e) Spectrogram of the enhanced signal by perceptual filter with noise parameters estimated by
the proposed method (system Perceptual).
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FIGURE 11: An example of signals. (a) Clean speech signal in English
“Oh Oh Two One Six.” (b) Noisy signal (noise is babble and SNR
is —1.86dB). (c) Enhanced speech by Wiener filter (system Base-
line). (d) Enhanced speech by Wiener filter with noise parameter
estimated by the proposed method (system Known). (e) Enhanced
speech by perceptual filter with noise parameter estimated by the
proposed method (system Perceptual).

However, the nonstationary noise was not perfectly re-
moved in the final part of the sequence in Figure 10. This was
in part due to inefficiency in the proposal distribution. Note
that the speech states and mixtures were sampled according
to the proposal distribution in (25). Thus, at the end of an
utterance, the proposed speech states might not yet reach the

states of silence. As a result, the speech parameter y (t)

might still mask (be larger than) the noise parameter yn(t).
In this situation, the noise parameter may not have been
updated (remained small if previously estimated noise pa-

rameter was smaller than speech parameters y )) because

z)k
the Kalman gain in EKF was (approaching) zero. Therefore,
noise in the final part of the sequence cannot be perfectly re-

moved in some utterances.

Another direction in which the method needs to be im-
proved is obvious in Figure 12. In this figure, high-frequency
components are attenuated more than necessary. Since the
Mel scale and Bark scale are wider in higher-frequency com-
ponents than those in the lower-frequency components,
noise parameters may not be accurately estimated due to
frequency uncertainty between linear frequency and Mel
scale (or Bark scale). Constructing speech enhancement al-
gorithms that work directly in linear spectral domain (not
Bark-scaled log-spectral domain in this work) may achieve
higher frequency resolution and hence better enhancement
results.

SNR improvement

The amount of noise reduction is generally measured with
the segmental SNR (SegSNR) improvement—the difference
between input and output SegSNR:

(1/D) SV w2(d + Db)

- [x(d+Db)—i(d + Db)]*’
(44)

1 B-1
GSNR:_ Z 10 - logw
B b=0

(1/D)

where B represents the number of frames in the signal. D is
the number of observation samples per frame, and it is set to
256.

Figure 13 shows the SegSNR improvement obtained
from various noise types and at various noise levels. We
can see that the system Known with the sequential Monte
Carlo method has improved SegSNR over system Baseline.
Figure 13 also shows that both systems Known and Percep-
tual benefit from the sequential Monte Carlo method. Fur-
thermore, Perceptual shows much greater improvement than
Known, which implies that it is effective to employ human
auditory properties for speech enhancement.’

5. CONCLUSIONS AND DISCUSSIONS

We have presented a sequential Monte Carlo method for a
Bayesian estimation of time-varying noise parameters. This
method is derived from the general sequential Monte Carlo
method for time-varying parameter estimation, but with
particular considerations on time-varying noise parameter
estimation. The estimated noise parameters are used in a
Wiener filter and a perceptual filter for speech enhancement
in nonstationary noisy environments. We also demonstrate
that, with the estimated noise parameters, a sequential mod-
ification of the time-varying mean vector of speech models
can improve speech recognition performance in nonstation-
ary noise. The results show that it is a promising approach to
handle speech signal processing in nonstationary noise sce-
narios.

9However, as discussed in Section 4.4.4, because the system Perceptual
attenuated higher-frequency components more than traditional Wiener fil-
ters, the subjective quality of the perceptually enhanced speech signal in hu-
man hearing was in fact no better than that by Wiener filters.
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FIGURE 12: An example of the spectrum of the signals (from top to bottom). (a) Spectrogram of the clean speech signal in English “Oh Oh
Two One Six.” (b) Spectrogram of the noisy signal (noise is babble and SNR is —1.86 dB). (c) Spectrogram of the enhanced speech by Wiener
filter (system Baseline). (d) Spectrogram of the enhanced speech by Wiener filter with noise parameter estimated by the proposed method

(system Known). (e) Spectrogram of the enhanced speech by perceptual filter with noise parameter estimated by the proposed method
(system Perceptual).
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FIGURE 13: Segmental SNR improvement in the following noise:
(a) simulated nonstationary noise; (b) babble noise; (c) restaurant
noise. The tested systems are the following: (x) Wiener filter (sys-
tem Baseline); (A) Wiener filter with noise parameter estimated by
the proposed method (system Known); (o) Perceptual filter with
noise parameter estimated by the proposed method (system Per-
ceptual).

The sequential Monte Carlo method in this paper is suc-
cessfully applied to two seemingly different areas in speech
processing, speech enhancement, and speech recognition.
This is possible because the graphical model shown in
Figure 2 is applicable to the above two areas. The graphi-
cal model incorporates two hidden state sequences: one is
the speech state sequence for modeling transition of speech
units, and the other is a continuous-valued state sequence
for modeling noise statistics. With the sequential Monte
Carlo method, noise parameter estimation can be con-
ducted via sampling the speech state sequences and updating
continuous-valued noise states with 2N EKFs at each time.
The highly parallel scheme of the method allows an efficient
parallel implementation.

We are currently considering the following steps for im-
proved performance: (1) making use of more efficient pro-
posal distribution, for example, auxiliary sampling [29],
(2) accurate training of speech models, and (3) design of
algorithms working directly in linear spectral domain for
speech enhancement. Improvements may be achieved if ex-
plicit speech modeling, for example, autocorrelation model-
ing of speech signals [11], pitch model [30], and so forth,
can be incorporated in the framework. Because there is non-
linear function involved, we also believe that incorporating
smoothing techniques recently proposed for nonlinear time
series [31] may achieve improved performances.

APPENDICES

A. APPROXIMATION OF THE ENVIRONMENT
EFFECTS ON SPEECH FEATURES

Effects of additive noise on speech power at the jth filter bank
can be approximated by (2), where y?“(t), xi-i“(t), and ngi“(t)
denote noisy speech power, speech power, and additive noise
power in filter bank j [8, 9].

In the log-spectral domain, this equation can be written

below as

log (xﬁ»in(t) + n?n(t))

n‘;n(t)>
X (1)

= logx?“(t) +log (1 + exp (log nbi“(t) - logxﬁi"(t))).
(A.1)

= logx?n(t) + log (1 +

Substituting xé(t) = logx?“(t), nﬂ-(t) = log ngi“(t), and yé(t) =

logy}i“(t), we have (3).

B. EXTENDED KALMAN FILTER
The prediction likelihood of the EKF is given by [24]

(YOI k" o (10,40 (= 1), Y (2~ 1)

kt([)

) J“"( P10 0) p e (1)1 (¢ = 1)) (1)
n - (t

1 .. . . -1 .
o< exp ( — @zl OO+ V) a<'><t)),
(B.1)
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where, respectively, the innovation vector a'?(t), one-step
ahead prediction of noise parameter paif” (tlt—1), correlation
matrix of the error in ‘ai,(i)(t), correlation matrix of the error
in ﬁffi)(tlt — 1), measurement matrix at time ¢ (obtained by

the first-order differentiation of (7) with respect to ‘ui,(i)(t)),
and gain function G (t) are given as

a() = Y'(1) = g0 (D)

, _ (B.2)
—log (1 + exp (ﬁln(’)(t -1)- [’lgf))kf”(t)))’
Ol —1) = p0(t = 1)+ GO ()al (£ - 1), (B.3)
KO@) = KO(t,t—1) - GO(OCHHOKD (¢t — 1), (B.4)
KOt t—1) = KO(t - 1)+ V1, (B.5)
NI !
ey exp ([/ln (tt—1) - Hsﬁ“kﬁ’)(t)) (B.6)

1+exp (‘l:lgq(i)(ﬂf -1) - Miﬁ”k,(')(t))
G(i)(t) — K(i)(t,t— l)C(i)(t)T[C(i)(t)K(i)(t,t— l)C(i)(t)T

+3,

-1
s k;i)] :

(B.7)
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