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A new two-dimensional feed-forward functionally expanded neural network (2D FFENN) used to produce surface models in two
dimensions is presented. New nonlinear multilevel surface basis functions are proposed for the network’s functional expansion.
A network optimization technique based on an iterative function selection strategy is also described. Comparative simulation
results for surface mappings generated by the 2D FFENN, multilevel 2D FFENN, multilayered perceptron (MLP), and radial basis

function (RBF) architectures are presented.
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1. INTRODUCTION

One of the main properties of feed-forward neural networks
is that of learning an input-output mapping from a set of ex-
amples characterizing a real system. The network is trained
with some examples comprising an input signal and the de-
sired response. The network weights are then modified, us-
ing an adaptive optimization technique to minimize the dif-
ference between the desired response and actual response.
Two well-known feed-forward artificial neural networks are
the multilayered perceptron (MLP) and radial basis func-
tion (RBF). Both networks have been termed as universal
approximators [1, 2]. Their performance has been demon-
strated in various application areas such as linear and nonlin-
ear adaptive filtering [3], time series prediction [4], dynamic
reconstruction [5], and black-box modeling [6]. However,
these networks suffer from a number of drawbacks, such
as convergence characteristics and network topology selec-
tion [7].

MLP networks traditionally employ sigmoidal activation
functions that cannot model local nonlinearity optimally.
Also, their nonlinear in-the-parameters structure requires
complex and computationally intense learning algorithms,
such as the backpropagation algorithm. Furthermore, there
is no way to say whether a single hidden layer is optimum
to support the MLP network learning or a way to specify the

exact number of hidden neurons required in order for a sys-
tem to be generalizable.

On the other hand, RBF networks that traditionally em-
ploy radial symmetric functions cover only small localized
regions and therefore they cannot model global nonlinearity
well. Moreover, dealing with RBF networks’ great difficulty
is experienced in selecting the appropriate centers for the ra-
dial basis functional expansion. Additionally, a large number
of basis functions is usually required in order to cover high-
dimensional input spaces. Nonetheless, simple learning algo-
rithms may be used for training, as the RBF structure is linear
in the parameters.

In this paper, the design of a new single hidden layer, lin-
ear in the parameters, two-dimensional feed-forward func-
tionally expanded neural network surface modeler (2D
FFENN) is presented. Previously, a 1D FFENN has been suc-
cessfully applied to time series prediction [8, 9] and cochan-
nel interference [10]. The aim of this new design is to explore
the modeling capabilities of such a feed-forward network in
two dimensions. The main objective is to approximate any
nonlinear continuous surface, from a 2D data set, to an ar-
bitrary degree of accuracy. Like its predecessor 1D FFENN
design, the design of 2D FFENN can be considered as a hy-
brid neural network. In essence, it is an extended model that
incorporates the modeling capabilities of the existing archi-
tectures of MLP, RBE, and Volterra neural networks (VNN).
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FiGure 1: The 2D FFENN structure.

The remainder of the paper is organized as follows. In
Section 2, an overview of the 2D FFENN and multilevel
2D FFENN architectures is given. Section 3 provides a brief
description of the network weight adaptation algorithm.
Section 4 describes the characteristics of a function prun-
ing technique, which is developed to optimize the network’s
functional expansion. In Section 5, a number of representa-
tive simulation results are presented that illustrate the surface
modeling capabilities of both the 2D FFENN and multilevel
2D FFENN designs in comparison with the MLP and RBF
networks. Section 6 concludes the paper.

2. THE 2D FFENN ARCHITECTURE

2.1. The 2D FFENN structure

The architecture of the 2D FFENN structure is depicted in
Figure 1. It consists of two layers: a single hidden layer and
an output layer. The hidden layer acts like a feature detection
layer. As the learning process progresses, the hidden neurons
begin to gradually discover the salient features that charac-
terize the training data. This is achieved by the functional ex-
pansion unit, which performs a nonlinear transformation of
the input data into a new space called the feature space. The
output layer of the network comprises a set of linear combin-
ers that join together all the weighted functionally expanded
inputs to form a single output.

The functional expansion unit of 2D FFENN takes two
inputs #; and f, which are the grid indices that specify the 2D
data set to be modeled. Both inputs are normalized to within
the range (+1, —1).

The entire functional expansion is described by F(k) as
follows:

F(k) = sum of N(linear & nonlinear) basis functions.

(1)

In a similar fashion to the functions described in [11], the
linear terms of the expansion are the original input terms,
whilst the nonlinear terms are a combination of trigonomet-
ric and polynomial 2D functions of the input. The modeling
efficiency of the 2D FFENN is the result of this hybrid func-
tional expansion [12]. These functions have been chosen in
such a way to combine the global approximation capability of
the MLP network’ the local approximation capability of the
RBF network and also to emulate the modeling capability of
the VNN.

In general, a multiple-input multiple-output (MIMO)
FFENN (n, N, m) will completely be specified for a given
number of n inputs and m outputs by a similar F(k) expan-
sion.

The output of the two-layered, two-input, and N-term
FFENN (2, N, 1) is defined as follows.

(a) Hidden layer functional expansion vector at time k:

E(k) = [i(k), k), fu (k)] (2)
and the associated weight vector as
W(k) = [wi(k), wa(k),..., wn (k)] (3)
(b) Single 2D FFENN output:
y(k) = FT(k) - W(k). (4)
(¢) Prediction error:

e(k) = d(k) — y(k), (5)

where d(k) is the reference response.

Network weight adaptation is achieved using the expo-
nentially recursive least squares (RLS) algorithm. Complex
training algorithms are not required because of the linear in-
the-parameters network structure.

The function selection unit shown in Figure 1 is used in
order to reduce the size of the functionally expanded net-
work. The scope of the functional expander is to introduce
to the network new functional terms in order to enhance
its nonlinear approximation ability. However, this process
can lead the expansion to very large and highly redundant
networks. For this reason, a pruning or function selection
scheme is occupied to choose only the most significant func-
tions.

2D FFENN functional expansion

Analytically, the functional expansion of 2D FFENN, for 2
inputs (x; and x) normalized within the range (+1, —1), is
described by the following set of terms.

(1) Zero-order (dc) term (1 term).

(2) Original input terms (2 terms). Linear system model-
ing.

(3) Sine expansion of the 2 inputs, comprising sin(x;),
sin(2x;), and sin(3x;) terms for i = 1,2 (6 terms).

(4) Cosine expansion of the 2 inputs, comprising cos(x;),
cos(2x;), and cos(3x;) terms for i = 1,2 (6 terms).
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(5) Cross input and sine expansion of the 2 inputs, com-
prising x; sin(x;), x; sin(2x;), and x; sin(3x;) terms for
i# j,i,j =1,2 (6 terms).

(6) Cross input and cosine expansion of the 2 inputs, com-
prising x; cos(x;), x; cos(2x;), and x; cos(3x;) terms for
i# j,i,j =1,2(6terms).

(7) Cross sine expansion of the 2 inputs, compris-
ing sin(x;) sin(x;), sin(x;) sin(2x;), and sin(x;) sin(3x;)
terms for i # j,4,j = 1,2 (5 terms).

(8) Cross cosine expansion of the 2 inputs, comprising
cos(x;) cos(x;), cos(x;)cos(2x;), and cos(x;) cos(3x;)
terms fori # j, i, j = 1,2 (5 terms).

(9) Cross cosine and sine expansion of the 2 inputs,
comprising the terms cos(x;) sin(x;), cos(x;) sin(2x;),
cos(x;) sin(3x;),  cos(2x;)sin(x;),  cos(3x;)sin(x;),
cos(2x;) sin(3x;), cos(3x;)sin(2x;), cos(2x;)sin(2x;),
and cos(3x;) sin(3x;) for i # j,i,j = 1,2 (18 terms).

(10) Cross input and cosine and sine expansion of the 2 in-
puts, comprising xx cos(x;) sin(x;), xx cos(x;) sin(2x;),
xx cos(2x;) sin(x;) terms for i # j, i,j,k = 1,2 (12
terms).

(11) cos(x2)x1x2, cos(2x2)x1%2, cos(3x2)x1x2, sin(xy)x1x2,
and sin(3x1)x1x, (5 terms).

(12) x1x2, (x1)*(x2)%, (1) (x2)%, (x1)*(x2), (x1)%, and (x7)°
(5 terms).

(13) (1 —x1) cos(xy) and (1 — x,) cos(xy) (2 terms).

The set of equations described above comprise the full
cross-terms functional expansion. However, a number of
these can be discarded due to the symmetric properties of
the functions. The following functions may be excluded
after visual inspection of the surface characteristics of
all 80 function terms: sin(x;)sin(2x;), cos(x;)cos(2x1),
cos(x1)sin(xz), x(x1)%  (x1)°, (x2)°, x2sin(x,) cos(x1),
x5 cos(x2)sin(x1),  x1cos(xy)sin(x;),  xysin(xy) cos(xq),
x2 cos(2x1), x2sin(3x1), (1 — x2) cos(x1), cos(2x,) sin(2x1),
sin(2x;) cos(3x1), sin(x;) cos(3x1), cos(2x1) sin(2x,),
x1 sin(x;) cos(x1), sin(x;) cos(2x7 ), x; sin(2x7), x, cos(3x7).

The final functional expansion has been reduced to 59
functions in total.

2.2. Multilevel 2D FFENN design

The multilevel 2D FFENN design is an extended version of
the generic 2D FFENN model. It incorporates extra func-
tion groups at different scales in order to enhance its perfor-
mance and to cope with “spikier” data. The topology of the
multilevel 2D FFENN design is depicted in Figure 2. The 2D
FFENN scale-set-1 unit (low-scales functional expansion)
shown in Figure 2 refers to exactly the same design described
so far by the generic 2D FFENN using 59 functions. Scale-
set-2 (medium-scales functional expansion) and scale-set-3
(high-scales functional expansion) are two additional func-
tion groups that have been included in order to be intro-
duced to the model functions at different scales. The network
can produce results by either using scale-set-1 only, by using
scale-sets-1 and -2, or by using all three sets together. Scale-
set-2 achieves a further functional expansion of 33 functions
and scale-set-3 adds an extra 42 functions at a higher scale.

2D FFENN low-scales
functional expansion

Original | |2p FFENN medium-scales Ade_lptecN Modelled
— . . —— weights
surface functional expansion Set2 surface
>

2D FFENN high-scales
functional expansion

FIGURE 2: The multilevel 2D FFENN design.

Extended 2D FFENN functional expansion

The extended functional expansion of the multilevel 2D
FFENN is constituted by the following terms.

Medium-scales functional expansion

(1) Sine expansion of the 2 inputs, comprising sin(10x;)
and sin(20x;) terms for i = 1,2 (4 terms).

(2) Cosine expansion of the 2 inputs, comprising
cos(10x;) and cos(20x;) terms for i = 1,2 (4 terms).

(3) Cross sine expansion of the 2 inputs, comprising
sin(x;) sin(10x;), sin(x;) sin(20x;), sin(10x;) sin(10x;),
sin(20x;) sin(20x;), and sin(10x;) sin(20x;) terms for
i# j,i,j =1,2(8 terms).

(4) Cross cosine expansion of the 2 inputs, compris-
ing the terms cos(x;)cos(10x;), cos(x;)cos(20x;),
cos(10x;) cos(10x;), cos(20x;) cos(20x;) and
cos(10x;) cos(20x;) for i # j, i, j = 1,2 (8 terms).

(5) Cross cosine and sine expansion of the 2 inputs,
comprising cos(10x;) sin(10x;), cos(10x;) sin(20x;),
cos(20x;) sin(10x;), and cos(20x;) sin(20x;) terms for
i# j,i,j =1,2(8 terms).

(6) Exponential expansion of the 2 inputs, comprising the
following term: ec0s(2xi)t<os2-x) for j £ j i, j = 1,2 (1
term).

High-scales functional expansion

(1) Sine expansion of the 2 inputs, comprising sin(30x;)
and sin(40x;) terms for i = 1,2 (4 terms).

(2) Cosine expansion of the 2 inputs, comprising
c0s(30x;) and cos(40x;) terms for i = 1,2 (4 terms).

(3) Cross sine expansion of the 2 inputs, comprising
sin(x;) sin(30x;), sin(x;) sin(40x;), sin(30x;) sin(30x;),
sin(40x;) sin(40x;), and sin(30x;) sin(40x;) terms for
i# j,i,j=1,2(8 terms).

(4) Cross cosine expansion of the 2 inputs, compris-
ing the terms cos(x;)cos(30x;), cos(x;)cos(40x;),
cos(30x;) cos(30x;), cos(40x;) cos(40x;), and
cos(30x;) cos(40x;) for i # j, i, j = 1,2 (8 terms).

(5) Cross cosine and sine expansion of the 2 inputs,
comprising cos(30x;) sin(30x;), cos(30x;) sin(40x;),
cos(40x;) sin(30x;), and cos(40x;) sin(40x;) terms for
i# j,i,j =1,2(8 terms).
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(6) Sigmoid expansion of the 2 inputs, compris-
ing tanh(x;), tanh(10x;), tanh(30x;), tanh(50x;),
tanh(60x;), and tanh(100x;) terms for i = 1,2 (12
terms).

3. NETWORK WEIGHT ADAPTATION

FFENN network weight adaptation is achieved recursively by
the exponentially weighted RLS algorithm [13, Chapterl3,
pages 562-587].

The exponentially weighted RLS estimator can be derived
by minimizing the following cost function with respect to the
weight coefficient vector W (k):

k
E(k) = > A" e(t)?, (6)

t=1

where the ensemble averages have now been replaced by time
averages and A represents a weighting or forgetting factor be-
longing to (0, 1).

The computation is launched with known initial condi-
tions and then progresses recursively using information con-
tained in new data samples that used to update the old esti-
mates. The use of the exponential weighting factor or forget-
ting factor A, in general, is intended to ensure that the data in
the distant past are “forgotten,” in order to allow modeling of
time-variant systems.

The optimum weight vector W (k), for which the cost
function E(k) attains its minimum value, is defined by the
set of “normal” equations

Wope = R (k) - (k), (7)

where the autocorrelation matrix R(k) is defined as

k
R(k) = > A*' - F(t) - FT(t) (8)

t=1

and the cross-correlation vector @ (k) as

k
O(k) = D A d(t) - F(b). )

t=1

Notice that both R(k) and ®(k) can also be recursively ex-
pressed as

R(k) = A - R(k — 1)+ F(k) - FT(k), (10)
D(k) =A- Ok —1)+d(k) - F(k). (11)
The inverse of R(k) can then be estimated recursively using
the matrix inversion lemma [13, Chapter13, pages 562—587]

as follows. Let P(k) = R™!(k) and assume ®(k) is positive
definite and therefore nonsingular:

_1). A _
P = §[pte - 1) - PEZ DL PO FIW- P CD)

A+FT(k)-P(k—1) - F(k)
(12)

Thus, substituting for ®(k) from (11) into (7) yields
Wopt(k) = A - P(k) - ®(k — 1) +d(k) - P(k) - F(k), (13)

where P(k) is given from (12). Also, P(k — 1) - ®(k — 1) =
W(k-1).

Hence, the final recursive update for the FFENN weight
vector W (k), for a single output, can be expressed as

W(k) = W(k — 1)+ P(k) - F(k) - e(k). (14)

The RLS algorithm has been preferred due to its faster con-
vergence rates, even though it is computationally more com-
plex. A simpler algorithm such as the least mean squares
(LMS) or the normalized least mean squares (NLMS) can
equally be used.

The LMS algorithm uses a simple equation to update the
weight vector W (k) as follows:

W(k+1)=W(k)+2-u-e(k)-F(k), (15)

where y is the step-size parameter. Notice that the larger the
value of y, the faster the convergence of the weight vector, but
the more susceptible to noise.

For the NLMS algorithm, we need also to introduce the
normalized step-size parameter a. Thus, the step-size param-
eter y of (15) is now defined as

o
[JZW, O<a<l. (16)

4. PRUNING OF THE FULLY EXPANDED 2D FFENN

A large functional expansion can achieve better prediction
results. Nevertheless, depending on the type and level of
complexity of the surface to be modeled, the network may
assume too many free parameters. This is because a much
smaller number of functions are probably needed to charac-
terize the specific function or surface. For this reason, a prun-
ing scheme is utilized. Its task is to select only those functions
which have a significant contribution to the output of the
network. In other words, we want to choose only the domi-
nant weights of the functional expansion.

Pruning is performed by an iterative pruning-retraining
approach. Initially, the fully expanded network structure is
trained on the training data set, and the maximum surface
level error (MSLE) value on the training set is computed. For
other methods, compute the mean square error (MSE) in-
stead, which is defined as follows:

MSE = + S [e(k)?]. (17)
k k

Based on our experiments, we suggest that the MSLE takes
under consideration the worst possible error and not an aver-
age measurement. In the sea environment for example, target
signal returns are mixed with the “spiky” signal characteris-
tics of the sea clutter; therefore, averaging cannot assure op-
timal detection results because the MSE occasionally fails to
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FiGure 3: Original test surface T(f;,1,).

minimize localized error responses. In mathematical terms,
the MSLE is defined as follows:

MSLE = || max [e(k)] — min [e(k)]||. (18)

The insignificant functions in the expansion model are as-
sociated with the smallest weights; these are successively
pruned one by one starting with the least significant one. Af-
ter each insignificant function is being pruned, the output
of the network is computed. Moreover, the resulting MSLE
is also computed at each pruning stage. The pruning process
is stopped at the stage when a pruned network structure is
found to be incapable of reducing the output MSLE or MSE
on the training set to the desired level. The network structure
can be retrained after each time pruning is applied, with the
same train set, in order to determine the optimal weights for
the remaining unpruned functions.

Furthermore, it is important to note that pruning is only
an optimization strategy and can be omitted when there is
no advantage to be gained. It effectively achieves to reduce
the size of the functional expansion, but in the downside,
requires offline training (supervised learning) and much
longer computation time.

5. SIMULATION RESULTS

5.1. Application to computer generated 2D data

5.1.1. Function approximation by the 2D FFENN

and multilevel FFENN

In this section, we present simulation results for both the 2D
FFENN and multilevel 2D FFENN structures. In order to il-
lustrate the modeling capability of the 2D FFENN structure
and the effectiveness of the pruning strategy, we produce a
model for the smooth continuous surface described by (19).
The choice of this function is based on its surface character-
istics that resemble the nature of a swell wave. It has also been
used in [14, Chapter 5, page 75] for testing the performance

0.5

-0.5

Peak-to-peak error

|
—_

|
—
v

FIGURE 4: Error surface of 2D FFENN (no pruning, 59 functions, 5
epochs).

of feed-forward neural networks:

1+Sill(2'¥1+3'22)

T(f,12) =0.1+ —
(1 2) 3.5+Sll’1(f1—t2)

(19)

Figure 3 displays the surface characteristics of this 2D func-
tion. The training set is constructed from the function
T(t1,t) by sampling the domain from —1.0 to +1.0 in two
dimensions at equally spaced grid points, at an interval of 0.1
for both #; and 7,. The 21 spacing indices generated for each
one of the dimensions correspond to the network inputs.

In Figure 4, the 2D FFENN modeling error is presented.
Modeling was achieved by a functional expansion of 59 func-
tions and batch training was performed for 5 times. Pruning
has not been considered, so at this stage, all 59 functions con-
tribute to the model. Based on the results, we can conclude
that the 2D FFENN is able to produce very good surface map-
pings even after being trained for a small number of epochs.

In order to test the efficiency of the pruning strategy em-
ployed by the 2D FFENN, we simulate for the same surface,
but this time using the MSE and MSLE to choose the most
appropriate functions for modeling. The results are shown
in Figures 5 and 6, respectively. From the results, it is evi-
dent that pruning can effectively reduce the dimensionality
of the functional expansion. MSLE measure considers the
worst possible error (peak-to-peak error) achieving a fairly
flat error response, while the MSE measures the average error
and consequently fails to minimize localized error responses.
In this example, 29 functions have been discarded. The size of
pruning achieved mainly depends on the specific characteris-
tics of the surface to be predicted and the number of training
epochs. The algorithm allows the user to retrain also after
each time pruning is performed. This leads to a better weight
adaptation achieving a smaller mapping error. However, the
downside is that the number of candidate-pruned functions
is reduced. In general, the minimum the network training
performed, the maximum the pruning that can be achieved.
Obviously, this tradeoff is directly reflected to the modeling
accuracy requirement. Finally, Figure 7 shows the modeling
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FIGURE 5: Error surface of 2D FFENN (MSE pruning, 30 functions,
5 epochs).

Peak-to-peak error

FIGURE 6: Error surface of 2D FFENN (MSLE pruning, 30 func-
tions, 5 epochs).

results produced by the multilevel 2D FFENN design. The
networKk is initially trained for a functional expansion of 134
functions and after 5 epochs of training, pruning manages to
reduce the functional expansion down to 60 significant func-
tions.

5.1.2. Comparative study

In this section, we compare the results presented in
Section 5.1.1 with the performance of the MLP and RBF neu-
ral networks [7]. In order to perform a quantitative relative
comparison, we try to achieve the best surface approxima-
tion that both the RBF and MLP can produce under a real-
istic network design of a strength similar to that of the 2D
FFENN.

In Figure 8, the MLP network training error is given.
From the results, it appears to be inferior to the 2D FFENN. It
requires 500 epochs under supervised batch training and ap-
proximately a network expansion of 15 hidden neurons (i.e.,
46 weights in total) to produce good but not better results
than the 2D FFENN.

Peak-to-peak error

FIGURE 7: Error surface of multilevel 2D FFENN (MSLE pruning,
60 functions, 5 epochs).

UL,

s "

70, SR
D

Peak-to-peak error

—-0.6 ' X _Q\aﬁe

Figure 8: MSLE error surface of MLP (500 epochs, 15 hidden neu-
rons).

On the other hand, the RBF network can level the per-
formance of the 2D FFENN at the expense of a large hidden
neurons expansion. The associated training error for an RBF
network of 42 hidden neurons (i.e., 127 weights in total) is
shown in Figure 9.

5.1.3. System validation

In order to validate the performance of the 2D FFENN, mul-
tilevel 2D FFENN, MLP, and RBF networks, a test data set
was constructed using grid spacing of 0.03195, a value cho-
sen to avoid replication of training set points, forcing the net-
work to interpolate. MSLE pruning was performed as it has
proven to be a more reliable measurement in comparison to
the MSE. All results are shown in Table 1.

5.2. Application to real sea surface
5.2.1.

Detection of small targets in an oceanic environment using
a radar system is a difficult task [15, 16, 17, 18, 19, 20], pri-
marily due to the phenomenon of sea clutter, which limits

Sea surface approximation
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TasLE 1: Network training and validation errors.
Network Pruning Total no. of weights Training MSLE Validation MSLE
2D FFENN Not applied 59 0.00259 0.00221
2D FFENN MSLE 30 0.00033 0.00030
Multilevel 2D FFENN MSLE 60 0.00029 0.00021
MLP Not applied 46 0.00785 0.00722
RBF Not applied 127 0.00104 0.00093
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F1GURE 9: MSLE error surface of RBF (42 hidden neurons).

the performance of such systems. Sea clutter refers to the
backscattered energy returns from a radar illuminated sea
surface. A conventional radar system directs a beam of mi-
crowave pulses illuminating a patch of the sea surface. The
backscattered energy is collected and based on its strength
and round trip delay targets can be detected and located. Sig-
nal returns from the actual sea surface are widely known as
sea clutter, whilst signal returns from an object are known as
targets. Therefore, for successful target detection, sea clutter
suppression must be achieved. Because sea clutter refers to
radar signal returns from the sea surface itself, the problem
casts explicitly to sea surface modeling.

In the previous section, we have demonstrated the mod-
eling capability of the 2D FFENN design over two of the most
well-known neural network architectures described in the lit-
erature. In this section, we investigate the performance of
the proposed 2D FFENN design to a real sea surface patch.
The actual sea surface texture segment is shown in Figure 10.
The data has been taken from a much larger radar data set,
provided by QinetiQ, Malvern, with characteristics shown in
Table 2. Results have been produced for both the method of
surface approximation by the 2D FFENN and MLP. The cor-
responding modeled surfaces are shown in Figures 11 and 12,
respectively. The 2D FFENN network is initially trained for a
functional expansion of 134 functions and after 10 epochs
of training, pruning achieves reduction of the functional ex-
pansion down to 97 significant functions (i.e., 97 weights
in total). The MLP is trained for 500 epochs with a hid-
den layer expansion of 32 neurons (i.e., 97 weights in total).

08 06 04 02 o -02-04-06-0.8 —1

Y-plane

FiGure 10: Original sea surface.

TaBLE 2: Staring radar data (QinetiQ, Malvern, UK).

Range bin size (m) 0.3
Sea state 2-3
Wind speed (Knots) 10
Wind direction NE
Polarisation HH
PRF (Hz) 1000
Sampling period (s) 0.001
Radar mode Staring
Radar height (m) 50

From the surface approximation results, it is evident that
both models are capable of estimating the main surface char-
acteristics of the sea surface segment. Both models experi-
ence some difficulty in estimating the sharp peaks of the ac-
tual sea surface, however, the main peaks are clearly iden-
tified. Modeling with the RBF network was not feasible, as
the network was not able to approximate the original sur-
face leading to a very large neuron expansion approaching
the length of the original data.

6. CONCLUSION

A 2D functionally expanded neural network was presented
in this paper. The network’s backbone architecture was
described and computer simulations for both computer



Surface Approximation Using the 2D FFENN Architecture

2703

1 2

=

< 0.8 [

£ 06 <
S 04
o
0

F1GURE 11: Error surface of multilevel 2D FFENN (MSLE pruning,
97 functions, 10 epochs).

Amplitude
ocooo

08 06 04 02 o -02-0.4_-0.6 0.8 —1

Y-plane

FIGURE 12: Error surface of MLP (500 epochs, 32 hidden neurons).

generated data and real sea clutter data were presented. A
multiscaled functionally expanded structure of 2D FFENN
design was also presented, designed to enhance its nonlinear
modeling ability for surfaces where discontinuities and spik-
iness are present. An efficient function pruning strategy was
also devised. The results obtained by the proposed system
demonstrate the effectiveness of such a network structure to
produce surface mappings under short training times. Com-
parative simulation results were also produced for MLP and
RBF networks, validating the surface modeling potential of
the 2D FFENN network architecture.

FFENN’s flexible functional expansion and short train-
ing time makes it a very attractive design for many 2D sig-
nal processing applications. We are currently extending the
proposed network design to a wavelet-based functionally ex-
panded structure. Our future development plans include first
the extension of the static 2D FFENN architecture to a recur-
rent 2D FFENN design, which will be able to produce dy-

namic models and second the extension of the 2D structure
to a three-dimensional volume modeler, 3D FFENN, which
lies on straightforward modifications of the existing system.
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