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The type of signal studied in this paper is a periodic pulse, with the pulse length short compared to the period, and the signal
is buried in noise. If standard techniques such as the fast Fourier transform are used to study the signal, the data record needs
to be very long. Additionally, there would be a very large number of calculations. The rapid binary gage function was developed
to quickly determine the period of the signal, and the start time of the first pulse in the data. Once these two parameters are
determined, the pulsed signal can be recovered using a standard data folding and adding technique.
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1. INTRODUCTION

The motivation for this research was the need to extract
pulsed signals that were buried in noise (signal-to-noise ra-
tio less than one). The signals of interest have a “short” pulse
duration compared to the period of the signal, and they are
“weak” compared to the background noise. Another consid-
eration when analyzing these signals was that the length of
the recorded signal be as short as possible.

Classic techniques for recovering information about
noisy signals are usually based on the Fourier transform [1],
the periodogram [2], or simply folding and adding the data.
When dealing with digitized data, certain precautions must
be taken when the data are analyzed. The signal must be dig-
itized based on the Nyquist sampling rate, which in turn is
based on the highest desired frequency component of the
signal. This is to avoid the appearance of false aliases in the
Fourier transform. Generally, to avoid this, the analog signal
is first lowpass filtered before being digitized [3].

Difficulties arise when recording and analyzing signals
which have a pulse duration that is short when compared
to the pulse period. Such a signal contains frequency com-
ponents that are very high compared to the fundamental fre-
quency of the signal. For pulsed signals, the digitizing rate
must be sufficiently high so that the pulse is well defined.
This means that the sampling rate is dictated by the pulse
duration, and not the period of the signal. The use of filters
to precondition this type of signal when it is buried in noise
might in fact result in the pulse being completely filtered out
of the data. Additionally, when the signal is buried in noise,
the classic techniques, when applied to high frequency sig-
nals, require long data records. This in turn, necessitates very
long times to acquire and analyze the data.

As an example, consider the problem of using signals
measured from pulsars as the primary navigation aid for in-
terplanetary travel, which could include the problem of fix-
ing the Earth in its orbit around the sun. One navigational
principle is based on using the Doppler shift of the pulsar
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FiGuUre 1: Signal from pulsar PSR B0329 + 54 captured by a 12m
antenna.

pulse rate measured from a number of pulsars. These shifts
can be used to identify the direction of travel, and ultimately
the position of the Earth or any other interplanetary space
vehicle. One candidate pulsar is PSR B0329 + 54, which has a
period of 0.715 seconds and a pulse width of approximately
8.7 milliseconds. An example of data captured from this pul-
sar using a 12-meter parabolic antenna is shown in Figure 1.
Data capture for this data set started on 3/3/98 at 21:20:46
GMT, and the sample rate was 1000 samples per second. The
time record shown in the figure should include several pulses,
but these cannot be seen because the pulsed signal is com-
pletely buried in noise.

The spectral resolution of the pulse rate required for sat-
isfactory interplanetary navigation using this pulsar is about
3 uHz. If classical FFT analysis were selected for this problem,
the Nyquist sampling rate and FFT theory control the length
of an individual time record to 1/(required spectral resolu-
tion). For this pulsar the required record length is 330 000
seconds, or nearly 4 days. Clearly, a single data record would
be insufficient to extract the pulse from the noise. It is esti-
mated that at least 100 averages would be required for satis-
factory extraction. Thus, the total data capture would take at
least 33 X 10° seconds, or 385 days. It is impossible to main-
tain the alignment of a single earthbound dish for this length
of time since the rotation of the Earth typically limits data
acquisition to less than half a day at a time. This aside, the
process would eventually produce an average position of the
Earth during data acquisition and the ability to locate the
Earth within its orbit is lost. Thus, FFT-based methods can-
not be used for this navigational application because the fix
time of 385 days is comparable to the journey time!

These and other considerations led to the development of
anon-FFT-based technique to recover a pulsed signal buried
in noise. The procedure developed in this paper can deter-
mine the pulse period using data acquired in only a few min-
utes, thus permitting close to real-time analysis.

The paper is divided into two parts. First, a method is
presented that allows the rapid determination of the period
of the signal, and the start time of the first pulse in the data.
Second, the time-averaged wave form shape of the pulsed sig-
nal is recovered from the noisy data.

2. NOISY DATA

Consider a data signal D(¢t) which is the sum of a periodic
pulsed signal F(¢) and noise N (t). Example signals are shown
in Figures 2a and 2b.

Notice that the vertical scales of Figures 2a and 2b are dif-
ferent. The pulsed signal, F(t), has a period of Tr. The pulse
width, Tr/KF, is given in terms of the period, and a constant
Kp, with Kr being called the pulse width parameter. It is ex-
pected that the beginning of the first pulse, in the recorded
data, does not start at ¢ = 0. The time fgp shifts the pulse in
time to account for this. The signal F(t) shown in Figure 2a
can be generated using the following equations:

F(t)
. TTKF .
Apsin S [(t—tsg) —(Cy—1)Tr]| during the pulse,
= F
0 outside the pulse,
Cy=12,...,C
(1)

In this equation, Cy is the cycle number, C is the maxi-
mum number of cycles, and Ar is the maximum amplitude of
F(t). The pulse width parameter takes on the values Kr = 1.
If Kr = 1, then the pulse width is equal to the period. It is to
be noted that Kr probably will not be an integer.

The mean value of a pulsed signal is not necessarily equal
to zero. The mean value of the example F(¢) is f = 2Ap/nKE,
and is nonzero. Because f may not be equal to zero, we do
not average out the mean value of D(t) before analyzing the
signal as is usually done [4]. This also means that a nonzero
mean value of the noise would not be removed.

Mathematically, define

F(t)= f(t)+ f, 2)
N(t) = »(t) +,

where f(t) is the zero-mean time-varying part of the pulsed

signal F(t), and f is the mean value. The zero-mean time-

varying part of the noise, N(t), is ¥(¢), and 7 is the nonzero

mean value. Using the above definitions, the observed data

signal is given by

D(t) = F() + N(t) = f(O) + f +¥(D) + 7. (3)

For storage and analysis purposes, the data signal is digi-
tized. The inverse of the sampling rate is h, with units of sec-
onds/sample. The total number of data points is n = tg/h.
Here, n is an integer, and tz is the total time of the record
length.

3. DISCRETE CROSS-CORRELATION FUNCTION

The cross-correlation function gives the correlation between
two signals, x(t) and y(¢). When x and y are digitized, the
discrete form of the cross-correlation function is employed.
The digitized signals are x; and y; with i = 1,2,...,n. The
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FIGURE 2: (a) Pulsed signal F(t) versus time t. (b) Data signal D(t) = F(¢) + N(t) versus time t.

biased discrete cross-correlation function is then given by binary gage. It is defined as follows:

. 1= 0 outside the pulse,

== s = - G(t, T,K) = . 6

Rey(rh) = - l; XiYirr» r=0,1,2,...om=n—1 (4) ( ) {1 during the pulse. (6)

In this equation, r is the lag number. Then rh is the lag The pulses occur during the times
time between y and x. The lag time rh is the digital equiv- T
alent of the continuous lag time 7. Notice, as r approaches T+H(C-DT<t<7+(Cy-1T+ X (7)
n — 1 there are fewer and fewer terms which are added to- <
gether. This results in a loss of accuracy for high lag times wit
[1]. Two important properties of the cross-correlation func- Cy=1,2,...,C (8)

tion, [1, 5], are

| Rey(rh) |* < Re(0)R,(0),

1. ) (5)
E [Rx(o) + Ry(o)]-

Ryy(rh)| <

In these relationships, R, and Ry are the autocorrelation
functions of x and y, respectively. Another property arises
when both x and y are periodic, with the same period. For
this special case, the cross-correlation function is also pe-
riodic, with the same period as x and y [1]. A significant
disadvantage of using the autocorrelation function is the
large number of calculations that need to be performed. It
requires (n? + n)/2 multiplications, and (#? + n)/2 additions
for the direct method, although FFT methods can reduce the
number of multiplications to nlogn.

4. MODIFIED DISCRETE CROSS-CORRELATION
FUNCTION

For the purposes of this research, the discrete cross-
correlation function, (4), was modified. The x; term was re-
placed with the data, D;, with i = 1,2,...,n. The y; term was
replaced with a pulsed periodic reference function called the

Here, T is the period, and K is the pulse width parameter
of the binary gage. The binary gage is illustrated in Figure 3.
Notice that the binary gage is not a Walsh or related function
[1, 6] which are square waves with values of +1. The binary
gage only takes on the values 0 and 1 and has variable period
T and pulse width parameter K.

The binary gage is digitized with the same 4 value as was
used for the data. However, to increase accuracy, it is twice as
long as the length of the data set. The digitized binary gage is
Gj,with j = 1,2,...,n,...,2n. Since the binary gage is twice
as long as D;, the summation upper limit in (4) becomes n.
Using these substitutions, and multiplying through by n, (4)
becomes

n
nRpG(rh) = > DiGiy, r=0,1,...,n—1.  (9)
i=1

The effect of the noise on (9) can be illustrated by substi-
tuting D; = F; + v; + . This gives

nRpg(rh)
n n n
:zFiGi+r+Z7)iGi+r+7_/ZGi+r) r=0,1,...,n— 1.
i1 i=1 i=1
(10)
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F1Gure 3: The binary gage G(¢, T, K) versus time t.

The first term on the right is the cross-correlation of the
pulsed signal with the binary gage. When the period of the
binary gage is the same as the period of the pulsed signal, the
cross-correlation will have the same period. The second term
on the right is the cross-correlation of the noise with the bi-
nary gage. The pieces of equipment used to receive, digitize,
and store the data signal have finite band widths. Thus, v; is
band-limited white noise (pink noise). This means that the
second term on the right will not exactly sum to zero. The
third term is a result of the mean value of the noise not being
zero. In this equation, it is implied that the noise is station-
ary and ergodic. Strictly speaking, the noise only has to have
these features during the time of the data record.

5. RAPID BINARY GAGE FUNCTION

The purpose of the rapid binary gage function (RBGF) is to
rapidly determine the period, TF, of the signal, and the start
time, tsp, of the first pulse. The properties of the binary gage
are used to reduce the number of computations. During the
pulse, the binary gage has a value of one. Thus, there is no
need to perform these multiplications. Outside the pulse, the
binary gage has a value of zero. Thus, there is no need to per-
form these multiplications or adds. Equation (9) can now be
written as

n
RBGF(rh, T,K)= > D;, r=0,1,...,
i(Giyr=1)=1

Sk

<n-1

(11)

The notation “i(Gi, = 1)” means to perform the adds
only during the pulse of the binary gage. Otherwise, incre-
ment i to the next value.

There are significant computational savings for (11)
compared to (4) and (9). First, there are no multiplications.
Second, the RBGF will be periodic, with the period of F(t),
when G(#) has the period of F(t). This means that the max-

imum lag number r only needs to equal T/h. This results in
a further savings of computations. The resulting number of
adds is nT/Kh.

The use of the RBGF requires an estimate of K, the pulse
width parameter of the binary gage. It also requires estimates
of the low, Tt, and high, Ty, values of the period of the binary
gage. The behavior of the RBGF is seen when a surface plot is
generated. For each K, plot the values of RBGF versus T and
rh. When T, and Ty bracket T, there will be a peak in the
plot when T = Ty and rh = tsp. An algorithm for calculating
the RBGF is given in Algorithm 1.

Example RBGF plots are shown in Figures 4, 5, 6, and 7.
These plots use the F(t) equation that is shown in Figure 2a.
For all of the plots the parameters of F(t) were Ap = 7, Tp =
40 seconds, Kr = 4, tg = 393 seconds; and the parameters
of the binary gage were 30 < T < 50 seconds, 0 < rh < 30
seconds. Notice that in all four plots, the vertical axis scale is
shortened compared to the other two axes. The purpose of
this was to clarify the plots.

For Figure 4, the first pulse of the signal started at tgp = 0
seconds, and K = Kr = 4. The maximum value of the RBGF
isat T = 40 seconds, and rh = 0 seconds, which correspond
to the parameters of F(t). The peak value of the RBGF is over
300, which is about 3 times the values of the lower regions
of the plot. Thus, Tk and tsp can easily be found from the
location of the peak value of the RBGF using a simple peak
finding program.

For Figure 5, the first pulse of the signal started at tsp =
20 seconds, and K = Kr = 4. The maximum value of the
RBGF is at T = 40 seconds, and rh = 20 seconds, which
correspond to the parameters of F(t).

Since the binary gage pulse width parameter, K, is esti-
mated, it may turn out that it is higher or lower than the sig-
nal pulse width parameter, Kp. The effects of this are shown
in the next two figures.

For Figure 6, K = 2 which is one half the value of Kr = 4.
This means that the binary gage pulse is twice that of the
signal pulse. The first pulse of the signal started at tsp = 20
seconds. A ridge now appears in the contour plot. The ridge
ends at T' = 40 seconds, and rh = 20 seconds, which corre-
spond to the parameters of F(t). Notice that the maximum
value is still the same as Figures 4 and 5. This agrees with the
theory.

For Figure 7, K = 8 which is twice the value of Kr = 4,
indicating that the binary gage pulse is one half that of the
signal pulse. The first pulse of the signal started at tsp = 20
seconds. A ridge also appears in this contour plot. The maxi-
mum value of the ridge begins at T = 40 seconds, and rh = 20
seconds, which correspond to the parameters of F(t). Since
there are fewer points to add together, the maximum value is
lower than in the other three plots. However, the maximum
value is still about 3 times larger than the lower values. The
ridge can easily be located by using a ridge finding program.

The ridge introduces an ambiguity: which end of the
ridge gives the period, TF, of the signal? The ambiguity can
be resolved by doubling the pulse width parameter, K, of the
binary gage, and replotting. Figures 4, 5, and 6 show that the
RBGF takes on a maximum value for K < Kp.
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D(j): read in the magnitudes of the data, put them into the array D(j),
tr = numeric value of the length of the data record (s),
h = numeric value of the inverse of the signal digitization rate(s/sample),
T;, = numeric value of the lowest period of the binary gage (s),
Ty = numeric value of the highest period of the binary gage (s),
K = numeric value of the binary gage pulse-duration-parameter,
C = int(tg/Tx), minimum number of whole cycles in the data record. int(- - - ) = integer,
rmax = int(7T;/h), maximum value of the lag number r,
for T = Ty, to Ty step h, set the period of the binary gage,
for r = 0 to r max, set the value of the lag number,
SUM = 0, SUM = temporary variable for summing,
for Cy = 1to C, Cy = the cycle number,
ju =int((r * h+ (Cy — 1) * T)/h), 1st data point during binary gage pulse,
ju =1int((r x h+ (Cy — 1) * T + (T/K))/h), last data point during binary gage pulse,
for j = ji to ju, sum the data points during binary gage pulses,

SUM = D(j) + SUM
next j
next Cy

rh(r) = r * h, rh = time lag of binary gage,
RBGEF(rh, T) = SUM, value of the rapid binary gage function,

next r

next T
ArcoriTHM 1: Rapid binary gage function algorithm.
50 rh 50 rh
10 10
T 40 20 T 40 20
30 30
30 30
300 300

200

RBGF

100

FIGURE 4: RBGF plot. Tr = 40 seconds, tsg = 0 second, and K =
Kr = 4.

6. NUMERICAL EXAMPLE

The procedure is demonstrated on a numerically generated
signal using parameters comparable to pulsar PSR B0329 +
54. Figure 8 shows part of the 60-second long signal that in-
cludes an 8.7-millisecond long half-sine pulse being repeated
every 0.7415 seconds, with random noise added. The signal
has a pulse width parameter Kr = 85.2. Notice that the pulse
width is very small compared with the period of the signal.

200

RBGF

100

FIGURE 5: RBGF plot. Tr = 40 seconds, sz = 20 seconds, and K =
Kp = 4.

For the reduced data set shown in the figure, there are pulses
starting at times of 0.12 seconds and at 0.861 seconds. The
data were digitized at a sampling rate of 1000 samples per
second. Clearly a simple visual inspection cannot identify the
pulses.

The results of applying the RBGF to the full data set are
shown in Figure 9. This figure shows data for a broad range
of time delays and periods. The original pulse is identifiable
as the single large peak.
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FIGURE 8: Portion of simulated pulsar data.

FIGURE 6: RBGF plot. Tr = 40 seconds, ts¢ = 20 seconds, K = 2,
Kp = 4.
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For comparison with earlier work in this paper, Figure 10 .
shows the same results, but with the area of attention fo- : 0.7405
cused around the peak of Figure 9. The noise in the signal
has caused the peak to lose some of the straightforward form ~ FIGURE 10: Rapid binary gage function results featuring the region
seen in the earlier figures. However, the maximum peak is near the peak in Figure 9.
correctly located at rh = 0.7415 seconds and T = 0.12
seconds. Thus the RBGF has correctly located the narrow,
pulsed signal hidden in significant noise as was shown in
Figure 8.

The time averaging process can be illustrated with the
help of Figure 11. The wavy line is the amplitude of the
recorded data, which includes both the noise and the signal
of interest. The RBGF was used to determine the period, TF,
7. RECOVERED AVERAGE WAVE FORM of the periodic signal. Successive cycles in the data are in-
The signal-to-noise ratio of periodic signals can be increased ~ dicated by the vertical dashed lines. The data in each cycle
by summing successive periods of the signal [1]. Thisisnota  are added to each other, point-by-point. The first data points
correlation process, but an averaging one. In order for the in each cycle are added to each other. Then the second data
noise to average out, the statistical properties of the noise ~ points in each cycle are added to each other. This process
need to be independent of time during the time of the data ~ continues until the last data points in each cycle are added
record. That is, the noise process must be stationary and er-  to each other. The results of the averaging process, as applied
godic [7]. to the signal shown in Figure 2b, are plotted in Figure 12.
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D(j): read in the magnitudes of the data, put it into the array D(j),

h = numeric value of the inverse of the signal digitization rate(s/sample),

Tr = numeric value of the period of F(t) in the data (s) as determined by the RBGF,
tr = numeric value of the length of the data record (s),

C = int(tg/TF), the integer number of whole cycles of F(t) in the data;

next Cy
Y (i) = SUM, magnitude of Y (¢),
t(i) = i * h, time,

next i

for i = 0 to int(Tx/h), time of the data pointis t = i % h (s),
SUM = 0, temporary variable for summing,

for Cy = 1to C, Cy = the cycle number,

sum = D(i+ (Cy — 1) * Tp/h) + SUM, sum the data points,

ALGoRrITHM 2: Algorithm to recover Y (t) from the noisy data.

D(t)

Tr 2Tk 3Tk

O First point of each cycle
O Second point of each cycle
¢ Last point of each cycle

FiGure 11: Data D(t) versus time f.

The amplitude, Y (t), of the plot is not yet F(t), since C
cycles of F(t) were added together, along with C times the
mean value of the noise, 7. Since the data record is of fi-
nite length and the noise is band limited, the noise does not
completely average to zero. This results in the slight wavi-
ness in the plot. An algorithm to compute Y (¢) is given in
Algorithm 2. The desired F(t) is derived from Y (¢) as follows.
The number of whole cycles of F(t) in the data is C = t,/TF,
C being an integer. The magnitude of C¥ is determined from
the data or the plot. This is subtracted from Y (¢) which leaves
CE(t). This in turn is divided by C which gives the final signal
F(t).

8. CONCLUSIONS

Noisy, pulsed signals of the type studied in this paper require
very long data records if conventional techniques are used to
analyze them. Additionally, the analysis requires a very large
number of calculations. The RBGF was developed to very
quickly determine the period of the signal, and the start time
of the first pulse in the data, using a relatively short data set.
This method works well even when the signal-to-noise ratio
is much less than one. Once the period of the signal is deter-
mined, a conventional time averaging technique can be used
to recover the wave form shape of the signal.

Y(t)

C(Ap +7) ++
Cy —
; | ot
tsp tp + 1% Tr
FIGURE 12: Y(t) versus time t.
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