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The boundary identification represents an interesting and difficult problem in image processing, mainly if two flat zones are sepa-
rated by a gradual transition. The most common edge detection operators work properly for sharp edges, but can fail considerably
for gradual transitions. In this work, we propose a method to eliminate gradual transitions, which preserves the number of the im-
age flat zones. As an application example, we show that our method can be used to identify very common gradual video transitions

such as fades and dissolves.
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1. INTRODUCTION

The boundary identification represents an interesting and
difficult problem in image processing mainly if two flat
zones, defined as the sets of adjacent points with the same
gray-scale value, are separated by a gradual transition. The
most common edge detection operators like Sobel and
Roberts [1] work well for sharp edges but fail considerably
for gradual transitions. These transitions can be detected,
for example, by a statistical approach proposed by Canny
[2]. Another approach to cope with this problem is through
mathematical morphology operators which include the no-
tion of thick gradient and multiscale morphological gradient
[3]. From this approach, and depending on the size of the

transition and its neighboring flat zones, the gradual tran-
sitions cannot be well detected. In this work, we consider
the problem of detecting gradual transitions on images by
a sharpening process which does not change their original
number of flat zones.

As an application example, we consider the problem of
identifying gradual transitions such as fade and dissolve on
digital videos. Usually, the common approach to this prob-
lem is based on dissimilarity measures used to identify the
gradual transitions between consecutive shots [4]. In lit-
erature, we can find different types of dissimilarity mea-
sures used for video segmentation, such as pixel-wise and
histogram-wise comparison. If two frames belong to the
same shot, then their dissimilarity measure should be small.
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(a) (b)

FIGURE 1: Video transformation: (a) simplification of the video con-
tent by transformation of each frame into a column on the visual
rhythm representation and (b) a real example considering the prin-
cipal diagonal subsampling.

Two frames belonging to different shots generally yield a high
dissimilarity measure whose value can be significantly af-
fected by the presence of gradual transitions in the shot. In
the same way, a dissimilarity measure concerning the frames
of a gradual transition is difficult to define and the quality of
this measure is very important for the whole segmentation
process. Some works on gradual transitions detection can be
found in [5, 6, 7, 8, 9]. Zabih et al. [5] proposed a method
based on edge detection which is very costly due to the com-
putation of edges for each frame of the sequence. Fernando
et al. [6] and Lienhart [7] used a statistical approach that
considers features of the luminance signal. This approach
presents high precision on long fades. Zhang et al. [8] in-
troduced the twin-comparison method in which two differ-
ent thresholds are considered. Yeo [9] introduced the plateau
method where the computation of the dissimilarity measure
depends on the duration of the transition to be detected.

An interesting approach to deal with the problem of iden-
tifying gradual transitions is to transform the video images
into a 2D image representation, named visual rhythm (VR),
and apply image processing tools for detecting patterns cor-
responding to different video events in this simplified repre-
sentation. As we will see elsewhere, each frame of the video
is transformed into a vertical line of the VR, as illustrated in
Figure 1a. This method of video representation and analysis
can be found in [10, 11, 12, 13]. In [10], Chung et al. ap-
plied statistical measures to detect patterns on the VR with
a considerable number of false detections. In [11], Ngo et al.
applied Markov models for shot transition detection which
fails in the presence of low contrast between textures of con-
secutive shots. In [12], we proposed a method to identify cuts
based on the VR representation and on morphological image
operators. In [13], we considered the problem of identifying
fades based on a VR by histogram.

This work is an extension of a previous one [14] which
introduces the problem of detecting patterns on a VR image
by eliminating gradual transitions according to a homotopic
sharpening process. Here, we explain in detail some features

of the proposed method and illustrate its application and re-
sults on a set of video images by taking into account different
experiments and variants of the method.

This paper is organized as follows. In Section 2, we give
some concepts on digital video and define the visual rhythm
transformation. In Section 3, we introduce the approach for
transforming gradual into sharp transitions represented by
a 1D signal. In Section 4, we consider the problem of iden-
tifying fades and dissolves from this signal. In Section 5, we
make some comments on the realized experiments. Finally,
some conclusions and suggestions of future works are given
in Section 6.

2. VIDEO TRANSFORMATION

Let A ¢ 72, A = {0,...,H — 1} x {0,...,W — 1}, be our
application domain, where H and W are the height and the
width of each frame, respectively.

Definition 1 (frame). A frame f; is a function from A to Z,
where for each spatial position (x, y) in A, f;(x, y) represents
the gray-scale value at pixel location (x, y).

Definition 2 (video). A video V, in domain 2D X ¢, can be
seen as a sequence of frames f;. It can be described by

V= (ﬁ)te[o,duration—l]’ (1)

where duration is the number of frames in the video. In this
work, we consider video transitions such as cut, fade, and
dissolve. Cut is an event which concatenates two consecutive
shots. According to [15], the fade transition is characterized
by a progressive darkening of a shot until the last frame be-
comes completely black (fade-out), or the opposite, allow-
ing the gradual transition from black to light (fade-in). A
more general definition of fade is given in [7] where the black
frame is replaced by a monochrome frame. This event can be
subdivided into fade-ins and fade-outs. Unlike cut, the dis-
solve transition is characterized by a progressive transforma-
tion of a shot P into another shot Q. Usually, it can be seen
as a generalization of fade in which the monochrome frame
is replaced by the first or last frame of the shot. Figure 2 illus-
trates these different types of events.

2.1. Visual rhythm

The detection of events on digital videos is related to ba-
sic problems concerning, for instance, processing time and
choice of a dissimilarity measure. Aiming at reducing the
processing time and using 2D image segmentation tools in-
stead of dissimilarity measures only, we consider the follow-
ing simplification of the video content [10, 11].

Definition 3 (VR). Let V = ( ﬁ)tE[O,duration—l] be an arbitrary
video, in domain 2D X t. The visual rhythm VR, in domain
1D X t, is a simplification of the video where each frame f; is
transformed into a vertical line on the VR:

VR(t,2) = fi(re x z+a,r, % 2 +b), (2)
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FiGURrE 2: Example of cut and gradual transitions: (a) cut, (b) fade-out, and (c) dissolve.

wherez € [0,...,Hyr—1] and t € [0,...,duration—1], Hyr
and duration are the height and the width of the VR, respec-
tively, . and r, are ratios of pixel sampling, and a and b are
shifts on each frame. Thus, according to these parameters,
different pixel samplings can be considered. For instance, if
ry =1, =1,a=>b=0,and H = W, then we define all pixels
of the principal diagonal as samples of the VR.

The choice of the pixel sampling is an interesting problem
because different samplings can yield different VRs with dif-
ferent patterns. In [10], the authors analyze some pixel sam-
plings, together with their corresponding VR patterns, and
state that the best results are obtained by considering diag-
onal sampling of the images since it encompasses horizontal
and vertical features. In Figure 3, we give some examples of
patterns based on the principal diagonal pixel sampling. Ac-
cording to the defined features, we have that all cuts are rep-
resented by vertical sharp lines while the gradual transitions
are represented by vertical aligned gradual regions. All these
features are independent of the type of the frame sampling.
Figure 3a illustrates the cut transition. Figures 3b and 3c give
examples of fade, and Figures 3d and 3e show some dissolve
patterns.

3. SHARPENING BY FLAT ZONE ENLARGEMENT

In a general way, the existence of gradual transitions in an im-
age yields a more difficult problem of edge detection which
can be approached, for example, by multiscale and sharp-
ening operations [3]. While the multiscale operations con-
sider gradual regions as edges of different sizes identified at

different scales, the sharpening methods try to detect edges
by eliminating (or reducing) gradual transition regions. The
multiscale operations need the definition of a maximum
scale during the processing since the transition detection is
associated with this scale parameter.

This work concerns the definition of a sharpening
method to identify gradual transitions on video images. As
we will see next, we try to transform these transitions, related
to events such as fades and dissolves, into sharp regions based
on some 1D operations that enlarge the components of the
VR image. It is important to remark that the sharp vertical
lines representing cuts in the VR will not be modified by this
transformation.

Next, we introduce some basic concepts considered in
this paper. Let g be a 1D signal represented by a function of
N — N. We denote by N(p) the set of neighbors of a point p.
In such a case, N(p) = {p — 1, p+ 1} represents the right and
left neighbors of p.

Definition 4 (flat zone, k-flat zone and k*-flat zone). A flat
zone of g is a maximal set (in the sense of inclusion) of ad-
jacent points with the same value. A k-flat zone is a flat zone
of size equal to k. A k*-flat zone is a flat zone of size greater
than or equal to k.

Definition 5 (transition). We denote by F the set of k*-flat
zones of g. A transition T between two k*-flat zones, F; and
Fj, is the range [po - - - pn-1] such that py € F;, p,- €
Fj,for0 <m < n—1, py &€ FiUFj, foralll # i,j F; ¢
[po -+ pn-1landfor 0 < i< n—1,g(p:)) < g(pir1) (or
g(pi) = g(pi+1)).
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(e)

FIGURE 3: Example of patterns on the visual rhythm associated with
cut and gradual transitions: (a) 3 cuts, (b) 1 fade-out followed by
1 fade-in, (c) 1 fade-out, (d) 1 dissolve, and (e) 2 consecutive dis-
solves.

Figure 4 shows examples of flat zones and transitions.
In this work, the analysis of the transition regions is re-
lated to the identification and elimination of the neighbor-
ing points of these transitions while preserving the number
of k*-flat zones. Next, we define two different types of tran-
sition points, namely, constructible and destructible points,
as illustrated in Figure 5.

Let D(p, F) be the difference between the gray-scale value
of a point p and the value of a flat zone F.

Definition 6 (constructible or destructible transition point).
We denote by T the transition between two k*-flat zones, F;
and Fj.Let p € T, p — 1, and p + 1, be a pixel of a 1D signal,
g, and its neighbors, respectively. A point p is a constructible
transition point if and only if g(p) = min(g(p—1),g(p+1)),
g(p) < max(g(p—1),g(p+1)),and D(p,F~) >D(p,F"). A
point p is a destructible transition point if and only if g(p) =
min(g(p —1),g(p+1)), g(p) < max(g(p—1),g(p+1)),and
D(p,F~) < D(p,F"), where F~ and F" denote lowest and
the highest gray-scale flat zones nearest to p and, D(p,F~)
and D(p, F*) are the difference of gray-scale values between
p and the respective flat zones.

Transitions

Regional
maximum

Flat zones

FiGure 4: Example of flat zones and transitions.

Destructible

Constructible

................

FiGure 5: Constructible and destructible points in a transition re-
gion.

In Figure 5, we illustrate the identification of con-
structible and destructible points. In such a case, p is a de-
structible (d; < d,) and q is a constructible point (ds < d3).
The aim here is to define a homotopic operation which sim-
plifies the image without changing the number of its k*-
flat zones. In other words, we want to change gray-scale
values representing transition points in the neighborhood
of k*-flat zones, without suppressing or creating new flat
zones. As we will see next, the definition of the sequence
of points to be evaluated in the sharpening process is an
important aspect to be considered since different sequences
can yield different results. Algorithm 1 is used to eliminate
gradual transitions of an image by enlarging its original flat
zones.

Informally, step (1) identifies all k*-flat zones of the in-
put VR image. A morphological filtering operation (e.g., a
closing followed by an opening with a linear and symmetric
structuring element taking into account the minimum dura-
tion of a shot) may be considered to reduce small irrelevant
flat zones of the original image. We empirically set k = 7 as
the minimum duration of a shot. For each k*-flat zone, in
step (2), set C represents the neighboring points of the cor-
responding flat zone.

Steps (3)—(7) deal with the constructible and destruc-
tible points related to the transition regions. As stated be-
fore, an interesting aspect of these steps concerns the re-
moval of a point from set C which, depending on its re-
moving order, can yield different results. For the purpose
of this removal control, we use a hierarchical priority queue
to maintain an equidistant spatial relation between the re-
moved points and their neighboring flat zones. To this end,
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Input: Visual rhythm (VR) image, size parameter k
Output: Sharpened visual rhythm (VR®).

For each line L of VR do

For all flat zones of L with size greater than or
equal to k do

insert(C, {gq | 3p € k*-flat zones, g € N(p),
and g ¢ k*-flat zones })

While C # & do
p = extractHighestPriority (C)
q = point in N (p) not yet modified by the
sharpening process

VR?(L, p) = gray scale of p nearest neighboring
flat zone

insert (C, q)

ArLGoriTHM 1: Algorithm for sharpening by enlarging flat zones.

we define two functions, extractHighestPriority(C) and in-
sert(C, q), which remove a point of highest priority and
insert a new point g into set C, according to a predefined
priority criterium. A currently removed point presents the
highest priority in this queue, where the priority depends
on the criterium used to insert new points in this data
structure. The gray-scale difference between a k*-flat zone
and its neighboring points is used here as an insertion cri-
terium.

Figure 6 illustrates the data structure representing the set
C considered in the sharpening process. In Figure 6a, the
k*-flat zones are represented by letters f and g while the
transition points are indicated by a, b, ¢, and d. Figure 6b
shows the first configuration of set C (step (2) of the algo-
rithm), in which points a and d are inserted with the 1 pri-
ority corresponding to the gray-scale differences with respect
to their nearest k*-flat zones, f and g, respectively. In Fig-
ures 6¢ and 6d, we illustrate the results of steps (6) and (7) of
the algorithm, applied to set C and represented by the prior-
ity queue illustrated in Figure 6b. In Figure 6e, we illustrate
the results of steps (6) and (7) represented by the new de-
fined queue shown in Figure 6d where the priority of points
b and c equals 2. From this example, we have that flat zones
f and g were enlarged yielding an elimination of the corre-
sponding gradual transitions between them. This transfor-
mation defines a sharpened version of the original signal.
Figure 7 gives some examples of the flat zone enlargement
(or sharpening) method applied to each line of the original
VR representation.

4. TRANSITION DETECTION

The video segmentation problem is very difficult to consider
in the presence of gradual transitions, mainly, in case of dis-
solves. As described in [11], the gradual transitions are rep-
resented by vertically aligned gradual regions in the VR. In
Figure 8a, we illustrate a VR of a video containing 4 cuts,
2 fades, and 1 dissolve. In Figure 8b we show the result of

(c) (d)

(e)

FiGuUrk 6: Enlargement of flat zones using a priority queue: (a) orig-
inal image, (b) initial configuration of the priority queue according
to the signal in (a), (c) sharpening after extracting 1 priority points
from the priority queue, (d) new configuration of the priority queue
according to the signal in (c), and (e) result of the sharpening pro-
cess.

our sharpening method applied to the VR image illustrated
in Figure 8a. Figures 8c and 8d correspond, respectively, to
the line profiles of the center horizontal rows in Figures 8a
and 8b. In case of gradual transitions, all lines of the VR
present a common feature in a specific range of time, that is,
a gray-scale increasing or decreasing regarding the temporal
axis.

To detect these gradual transitions, we can simplify the
VR by considering the sharpening transformation described
in Section 3. As stated before, this transformation preserves
the original number of shots in a video sequence since it does
not change the number of k*-flat zones representing them.
To reduce noise effects, we can also apply an alternated mor-
phological filter [16, 17] with a linear structuring element of
size closely related to the smallest duration of a shot (7, in our
case). Further, we consider the following aspects of a gradual
transition.

(1) In a gradual transition region, the number of points
modified by the sharpening process is high. If the
transformation function of the event is linear and the
consecutive frames are different from each other, then
the number of points in the sharpened visual rhythm
(VR®) modified by the sharpening process equals the
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(®)

FiGure 7: Example of flat zones enlargement: (a) artificial original
signal (left) and its sharpened version (right), (b) and (c) original
visual rhythms (left) and their corresponding sharpened versions
(right).

height of the original VR. Unfortunately, in real cases,
this number can be affected, for example, by the pres-
ence of noise and digitization problems.

(2) As we will see next, the regions of gradual transitions
will be represented by a specific 1D configuration.
Again, if the transformation function of the transition
is linear, then the points modified by the sharpening
process define a regional maximum corresponding to
the center of the transition and given by the highest
gray-scale value of the difference between images VR
and VR®.

Now, if we consider both images VR and VR®, the basic
idea of our gradual transition detection method consists in
analyzing the VR image by taking into account the number
and the gray-scale values of its modified pixels (points of the
gradual transitions) in the sharpened version VR®. Figure 9
summarizes the following steps of the transition detection
algorithm.

Difference

This step computes the difference between images VR and
VR?, defining a new image Dif as follows

Dif(x, y) = [ VR(x, ) = VR*(x, ) |- (3)

-
Cuts Dissolve Fade-out

(a) (b)

|

Fade-in

(c) (d)

FiGure 8: Example of a sharpened image: (a) VR with some events,
(b) image obtained after the proposed sharpening process, (c) and
(d) the respective line profiles of the center horizontal rows of the
images.

Sharpened Difference
image
Point Value
counting analysis
?
Detection Detection

transitions

FIGURE 9: Main steps of the proposed gradual transition detection
algorithm for video images.

Point counting

This step takes into account the points modified by the
sharpening process by counting the number of nonzero val-
ues in each column of image Dif. To reduce noise and fast
motion influence, we consider a morphological opening with
a vertical structuring element of size 3 before the counting
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FiGgure 10: Example of flat zones enlargement: (a) original image,
(b) sharpened image, and (c) difference image.

process given by

Hyr—1 . . .
- S {1 if Dif(p, j) >0, W

o (0 otherwise,

where Hygr is the height of the VR image and p €
[0,...,duration — 1].

Value analysis

This step computes the gray-scale mean of the points
modified by the sharpening process. As illustrated in
Figure 10, gradual transitions are represented by single
domes (Figure 10c) in each row of image Dif, the center of
the transitions corresponding to the regional maximum of
these domes. Usually, the first and last frames of a gradual
transition correspond to the smallest values of these domes.
In case of a monotonic transition, we have that the 1D signal
increases between the first and the center frames of the event,
decreasing from the center of the defined dome until the last
transition frames. Furthermore, the duration of each half of
the dome is the same if the transformation function of the
gradual transition is linear. Before analyzing the domes con-
figuration in image Dif, we compute the mean values in each
column of this image, defining a 1D signal, M", as follows:

St (Dif(p, y))
Hyr

M"(p) = . (5)

To identify a dome configuration (Figure 10c), we de-
compose the M" signal into morphological residues by
means of granulometric transformations [16, 18, 19]. This
multiscale representation of a signal is used here to detect the
residues, at a certain granulometric level, associated with the
dome configuration of a gradual transition. These residues
are defined as follows.

Definition 7 (gray-scale morphological residues [19]). Let
(¥i)i=o be a granulometry. The gray-scale morphological

residues (or simply, morphological residues), R;, of residual
level i are given by the difference between the result of two
consecutive granulometric levels, that is,

Ri(f) = wi-i (f) — vi(f), (6)

where f represents gray-scale digital images. The morpho-
logical residues represent the components preserved at level
(i — 1) and eliminated at the granulometric level i. The mor-
phological residues depend on the used structuring element
whose parameter i corresponds to its radius (a linear struc-
turing element of radius i has length (2 x i) + 1).

Vi=1, fez,

As an illustration of this analysis, we consider two differ-
ent levels, Inf and Sup. Based on these parameters, we can
define the number of residual levels containing a point p as
follows:

Sup . ”
S, 1 ifR(MY(p)) >0,
Miag (P) = i_%f{o otherwise, )

where R; means the morphological residue at level i (6). A
point p corresponding to a regional maximum in M" repre-

sents a candidate frame for gradual transition if Mls:ffp (p) is
greater than a threshold [;. The set of these candidate frames
along a video sequence is given by

1 iM% (p) > 1y,
0 otherwise.

Cint (P) = { (®)
In this work, the values Inf, Sup, and [, were empirically
defined as 3, 15, and 3, respectively. The choice of these val-
ues is related to the features of the gradual transitions to be
detected. For instance, Inf = 3 was defined based on the min-
imum duration of a transition (11 frames on average accord-
ing to our video corpus) and the maximal number of empty
residual levels represented by I;. Thus, the Inf value corre-
sponds to the radius of the linear used structuring element
whose size parameter equals 7 (2 X 3 + 1 = 7). The value
of I; concerns the number of odd values between the low-
est size parameter (7, in this case), and the minimum dura-
tion of a transition (11 frames). If we decrease [}, the num-
ber of missed candidate frames can increase, for example,
in cases where the dome configuration is affected by motion
and noise. Finally, the parameter Sup concerns the duration
of the longest considered gradual transition (2 X 15+ 1 = 31
frames). Note that the configuration of each dome is very
important if we want to identify gradual transitions but it
does not represent a sufficient criterium. We also need to take
into account, for each candidate frame, the number of points
modified by the sharpening process as explained next.

Detection operation

This last step of the algorithm combines the information ob-
tained from the point counting and the value analysis steps
previously defined. By considering a gradual transition as a
specific dome configuration in M", represented by candidate
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FIGURE 11: Gradual transition detection: (a) original image containing 12 dissolves and 5 cuts, (b) sharpened image, (c) M" signal, (d)
number of modified points, and (e) result of the method without false detection.

frames with a high number of modified points in the sharp-
ening process, we can combine the above steps as follows:

P . Sup

This equation takes into account candidate frames p and
the corresponding number of values in each column of the
VR image modified by the sharpening process. Finally, we
can detect a gradual transition at location p through the sim-
ple thresholding operation

T(p) = {1 itM)(p) > b,

(9)

otherwise.

10
0 otherwise, (10)

where [, is a threshold value. Figure 11 illustrates our grad-
ual transition detection method. In this example, we process
each horizontal line of the original VR (Figure 11a) contain-
ing, among other events, 12 dissolves and 5 cuts. The sharp-
ened version of this image is shown in Figure 11b. The result

in Figure 11le (the white vertical bars indicate the detected
events) was obtained by defining I, as 25% of the maximal
value of Mj. The relation with this maximal value is impor-
tant to make the parameter independent from different types
of videos (e.g., commercial, movie, and sport videos). No-
tice that all sharp vertical lines representing cuts in Figure 11a
were not detected here.

To evaluate the proposed method, we considered the set
of four experiments described next.

5. EXPERIMENTAL ANALYSIS

In this section, we discuss the experimental results concern-
ing the detection of gradual transitions on video images. The
choice of the digital videos was guided by the presence of
events, such as cut, dissolve, and fades on the sequences. In all
experiments, we used 28 commercial video images contain-
ing 77 gradual transitions (involving fades and dissolves). To
compare the different results, we defined some quality mea-
sures [12] demanding a manual identification of the consid-
ered events. We denote by Events the number of all events
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TaBLE 1: Results of our experiments.
Exp Gradual Detected False Recall Precision Error Threshold
1 77 75 46 97.5% 62% 60% 2%
2 77 75 52 97.5% 59% 67% 25%
3 77 72 10 93.5% 88% 13% 25%
4 77 57 53 74% 52% 68% 0.5and 0.1

in the video, by Corrects the number of properly detected
events, and by Falses the number of detected frames that do
not represent a correct event. Based on these values, we con-
sider the following quality measures.

Definition 8 (recall, precision, and error rates). The recall
and error rates represent the ratios of correct and false de-
tections, respectively, and the precision value relates correct
to false detections. These measures are given by

C t
o = —DIIeCs (recall),
Events
Falses
= 11
Events (error), (D)
P __Corrects (precision).

" TFalses + Corrects

Since we are interested in gradual transitions, Events is
related to the gradual transitions satisfying the basic hypoth-
esis in which the number of gradual transition frames is
greater than 10. The tests realized in this work concern the
following experiments.

Experiment 1. This experiment considers only the gray-scale
values of the difference image M". In such a case, a transition
p is detected if the M"(p) value is greater than a given thresh-
old T. This value, associated with the M" regional maximum,
was empirically defined as 2% of the maximal possible value
(255).

Experiment 2. This experiment takes into account the num-
ber of modified points by the sharpening process. If M?(p) is
greater than a given threshold, then the point p represents a
transition frame. This analysis is based on the regional max-
ima of the 1D signal M". The threshold value corresponds
here to 25% of the VR height.

Experiment 3. This experiment corresponds to our proposed
method (Section 3).

Experiment 4. This experiment considers the twin-
comparison approach [8] which detects gradual transitions
based on histogram information. Two thresholds, T; and
T;, are defined reflecting the dissimilarity measures of
frames between two shots and frames in different shots,
respectively. If a dissimilarity measure, d(i,i + 1), between
two consecutive frames satisfies T, < d(i,i + 1) < Ts, then

S

>
e
-

FIGURE 12: Nonstatic and static gradual transition detection. The
white bars indicate the detected transitions (3 nonstatic and 9 static
gradual events).

candidate frames representing the start of gradual transitions
are detected. For each candidate frame, an accumulated
comparison A(i) = > d(i,i+ 1) is computed if A(i) > Ty and
d(i,i+ 1) < T, and the end frame of a gradual transition is
determined when A(i) > T. Here, we consider T, = 0.1 and
T, = 0.5 and since cuts are not considered, a transition is
detected only if the video frames are classified as candidates.

5.1. Analysis of the results

According to Table 1, we can observe that the proposed
method (Experiment 3) yields better results when compared
to the other experiments. If we take into account only gray-
scale values (Experiment 1), the transitions are well identi-
fied due to their specific configurations, but this method is
very sensitive to differences between two consecutive shots.
By considering the modified points only (Experiment 2),
some transition frames can be confused with special events
and fast motions. Indeed, this method is more sensitive
to noise and fast motion. The above features explain why
we take into account both the gray scale and the modi-
fied point information in Experiment 3 which performs bet-
ter than the twin-comparison method (Experiment4) as
well.

Some false detections of our approach are due to the
identification of transitions whose duration is smaller than
11 frames. These transitions are probably defined by the pres-
ence of noise in the VR representation. In case of nonstatic
gradual events, their sharpened version is not completely
vertically aligned, and the number of modified points may
be smaller than the one obtained for static gradual transi-
tions. Due to this some missed detections may have occurred.
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Dissolves

Fades

(a)

Figure 13: Example of a real video in which 2 dissolves are not detected: (a) visual rhythm which contains 3 dissolves and 2 fades, (b)
sharpened visual rhythm, and (c) the detected transitions identified by vertical white bars.

Figure 12 shows an example in which all nonstatic transitions
are identified (3 dissolves). Figure 13 shows a VR containing
3 dissolves and 3 fades. This figure illustrates the occurrence
of missed detections (2 dissolves) represented mainly by cases
in which a gradual transition is combined with other video
effects like a zoom in.

Finally, it is important to note that all parameters related
to Experiment 3 were defined based on the inherent charac-
teristics of the transitions to be detected.

6. CONCLUSIONS

In this work, we defined a new method for transforming
smooth transitions into sharp ones and illustrated its appli-
cation in the detection of gradual events on video images.
The sharpening operator defined here is based on the clas-
sification of pixels in the gradual transition regions as con-
structible or destructible points. This operator constitutes
the first step for detecting two very common video events
known as dissolve and fade. One of the main features of our
approach is that it does not depend on the transition du-
ration, that is, dissolve and fade events with different tran-
sition times can be properly recognized. Furthermore, the
computational cost of the proposed method, based on the
VR representation, is lower when compared to other ap-
proaches taking into account all video information. A draw-
back here concerns the sensitivity to motion which can be
avoided through a preprocessing for motion compensation.
An interesting extension to this work concerns the analysis
of the efficiency of the method, when applied to all video
content, and the improvement of the obtained results for
nonstatic transitions. Also, the choice of thresholds must be
exploited.
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