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This paper deals with the analysis of adaptive Volterra filters, driven by the LMS algorithm, in the finite-alphabet inputs case. A
tailored approach for the input context is presented and used to analyze the behavior of this nonlinear adaptive filter. Complete
and rigorous mean square analysis is provided without any constraining independence assumption. Exact transient and steady-
state performances expressed in terms of critical step size, rate of transient decrease, optimal step size, excess mean square error in
stationary mode, and tracking nonstationarities are deduced.
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1. INTRODUCTION

Adaptive systems have been extensively designed and imple-
mented in the area of digital communications. In particular,
nonlinear adaptive filters, such as adaptive Volterra filters,
have been used to model nonlinear channels encountered
in satellite communications applications [1, 2]. The nonlin-
earity is essentially due to the high-power amplifier used in
the transmission [3]. When dealing with land-mobile satel-
lite systems, the channels are time varying and can be mod-
eled by a general Mth-order Markovian model to describe
these variations [4]. Hence, to take into account the effect of
the amplifier’s nonlinearity and channel variations, one can
model the equivalent baseband channel by a time-varying
Volterra filter. In this paper, we analyze the behavior and
parameters tracking capabilities of adaptive Volterra filters,
driven by the generic LMS algorithm.

In the literature, convergence analysis of adaptive
Volterra filters is generally carried out for small adaptation
step size [5]. In addition, a Gaussian input assumption is
used in order to take advantage of the Price theorem results.
However, from a practical viewpoint, to maximize the rate of
convergence or to determine the critical step size, one needs

a theory that is valid for large adaptation step size range. To
the best knowledge of the authors, no such exact theory ex-
ists for adaptive Volterra filters. It is important to note that
the so-called independence assumption, well known of be-
ing a crude approximation for large step size range, is behind
all available results [6].

The purpose of this paper is to provide an approach tai-
lored for the finite-alphabet input case. This situation is fre-
quently encountered in many digital transmission systems.
In fact, we develop an exact convergence analysis of adaptive
Volterra filters, governed by the LMS algorithm. The pro-
posed analysis, pertaining to the large step size case, is de-
rived without any independence assumption. Exact transient
and steady-state performances, that is, critical step size, rate
of transient decrease, optimal step size, excess mean square
error (EMSE), and tracking capability, are provided.

The paper is organized as follows. In the second section,
we provide the needed background for the analysis of adap-
tive Volterra filters. In the third section, we present the signal
input model. In the fourth section, we develop the proposed
approach to analyze the adaptive Volterra filter. Finally, the
fifth section presents some simulation results to validate the
proposed approach.
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2. BACKGROUND

The FIR Volterra filter’s output may be characterized by a
truncated Volterra series consisting of q convolutional terms.
The baseband model of the nonlinear time-varying channel
is described as follows:

yk =
q∑

m=1

L−1∑
i1=0

L−1∑
i2≥i1

· · ·
L−1∑

im≥im−1
f mk (i1, . . . , im)

× xk−i1 · · · xk−im + nk,

(1)

where xk is the input signal, and nk is the observation noise,
assumed to be i.i.d and zero mean. In the above equation,
q is the Volterra filter order, L is the memory length of the
filter, and f km(i1, . . . , im) is a complex number, referred to as
the mth-order Volterra kernel. This latter complex number
may be a time-varying parameter.

The Volterra observation vector X̂k is defined by

X̂k = [xk, . . . , xk−L+1, x2k , xkxk−1, . . . ,

xkxk−L+1, x2k−1, . . . ,x
q
k−L+1]

T ,
(2)

where only one permutation of each product xi1xi2 · · · xim
appears in X̂k. It is well known [7] that the dimension of the

Volterra observation vector is β =∑q
m=1

(
L+m−1

m

)
.

The input/output recursion, corresponding to the above
model, can then be rewritten in the following linear form:

yk = X̂T
k Fk + nk, (3)

where Fk = [ f 1k (0), . . . , f
1
k (L − 1), f 2k (0, 0), f

2
k (0, 1), . . . ,

f
q
k (L − 1, . . . ,L − 1)]T is a vector containing all the Volterra
kernels.

In this paper, we assume that the evolution of Fk is gov-
erned by anMth-order Markovian model

Fk+1 =
M∑
i=1

ΛiFk−i+1 +Ωk, (4)

where the Λi (i = 1, . . . ,M) are matrices which characterize
the behavior of the channel. Ωk = [ω1k,ω2k, . . . ,ωβk]T is an
unknown zero-mean process, which characterizes the non-
stationarity of the channel. It is to be noted that process {Ωk}
is independent of the input {X̂k} as well as the observation
noise {nk}.

In this paper, we consider the identification problem
of this time-varying nonlinear channel. To wit, an adaptive
Volterra filter driven by the LMS algorithm is considered.
This analysis is general, and therefore includes the station-
ary case, that is, Ωk = 0, as well as the linear case, that is,
q = 1.

The coefficient update of the adaptive Volterra filter is
given by

yek = X̂T
k Gk,

ek = yk − yek,

Gk+1 = Gk + µekX̂
∗
k ,

(5)

where yek is the output estimate, Gk is the vector of (nonlin-
ear) filter coefficients at time index k, µ is a positive step size,
and (·)∗ stands for the complex conjugate operator. More-
over, we assume that the channel and the Volterra filter have
the same length.

By considering the deviation vector Vk, that is, the dif-
ference between the adaptive filter coefficients vector Gk and
the optimum parameters vector Fk, that is, Vk = Gk−Fk, the
behavior of the adaptive filter and the channel variations can
be usefully described by an augmented vector Φk defined as

Φk =
[
FT
k ,F

T
k−1, . . . ,F

T
k−M+1,V

T
k

]T
. (6)

From (3)–(6), it is readily seen that one can deduce that the
dynamics of the augmented vector are described by the fol-
lowing linear time-varying recursion:

Φk+1 = CkΦk + Bk, (7)

where

Ck=




Λ1 Λ2 · · · ΛM−1 ΛM 0

I(β) 0 · · · 0 0

0 I(β) 0 · · · 0 0
...

. . .
. . .

. . .
...

...

0 · · · 0 I(β) 0 0

I(β) −Λ1 −Λ2 · · · −ΛM−1 −ΛM I(β) − µX̂∗k X̂
T
k



,

Bk =




Ωk

0
0
...
0

−Ωk + µnkX̂
∗
k



,

(8)

and I(β) is the identity matrix with dimension β.
Note that Vk is deduced fromΦk by the following simple

relationship:

Vk = UΦk, U =
[
0(β,Mβ) I(β)

]
, (9)

where 0(l,m) is a zero matrix with l rows andm columns.
The behavior of the adaptive filter can be described by the

evolution of the mean square deviation (MSD) defined by

MSD = E
(
VH
k Vk

)
, (10)

where (·)H is the transpose of the complex conjugate of
(·) and E(·) is the expectation operator. To evaluate the
MSD, we must analyze the behavior of E(ΦkΦ

H
k ). Since

Ωk and nk are zero mean and independent of X̂k and Φk,
the nonhomogeneous recursion between E(Φk+1Φ

H
k+1) and

E(ΦkΦ
H
k ) is given by

E
(
Φk+1Φ

H
k+1

) = E
(
CkΦkΦ

H
k C

H
k

)
+ E
(
BkB

H
k

)
. (11)
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From the analysis of this recursion, all mean square per-
formances in transient and in steady states of the adaptive
Volterra filter can be deduced. However, (11) is hard to solve.
In fact, since X̂k and X̂k−1 are sharing L − 1 components,
they are dependent. Thus, Ck and Ck−1 are dependent, which
means that Φk and Ck are dependent as well. Hence, (11)
becomes difficult to solve. It is important to note that even
when using the independence assumption between Ck and
Φk, equation (11) is still hard to solve due to its structure.

In order to overcome these difficulties, Kronecker prod-
ucts are required. Indeed, after transforming the matrix
ΦkΦ

H
k to an augmented vector, by applying the vec(·) linear

operator, which transforms a matrix to an augmented vector,
and by using some properties of tensorial algebra [8], that is,
vec(ABC) = (CT ⊗ A) vec(B), as well as the commutativ-
ity between the expectation and the vec(·) operator, that is,
vec(E(M)) = E(vec(M)), (11) becomes

E
(
vec

(
Φk+1Φ

H
k+1

)) = E
((
C∗k ⊗ Ck

)
vec

(
ΦkΦ

H
k

))
+ E
(
vec

(
BkB

H
k

))
,

(12)

where ⊗ stands for the Kronecker product [8].
It is important to note that due to the difficulty of the

analysis, few concrete results were obtained until now [9, 10].
When the input signal is correlated, and even in the lin-
ear case, the analysis is usually carried out for a first-order
Markov model and a small step size [11, 12]. For a small step
size, an independence assumption is made between Ck and
Φk, which leads to a simplification of (12),

E
(
vec

(
Φk+1Φ

H
k+1

)) = E
((
C∗k ⊗ Ck

))
E
(
vec

(
ΦkΦ

H
k

))
+ E
(
vec

(
BkB

H
k

))
.

(13)

Equation (13) becomes a linear equation, and can be solved
easily. However, the obtained results which are based on the
independence assumption, are valid only for small step sizes.

The aim of this paper is to propose a valid approach to
solve (12) for all step sizes, that is, from the range of small
step sizes to the range of large step sizes, including the opti-
mal and critical step sizes. To do so, we consider the case of
baseband channel identification, where the input signal is a
symbol sequence belonging to a finite-alphabet set.

3. ANALYSIS OF ADAPTIVE VOLTERRA FILTERS:
THE FINITE-ALPHABET CASE

3.1. Input signal model

In digital transmission contexts, when dealing with base-
band channel identification, the input signal xk represents
the transmitted symbols during a training phase. These sym-
bols are known by the transmitter and by the receiver. The in-
put signal belongs to a finite-alphabet set S = {a1, a2, . . . , ad}
with cardinality d, such as PAM, QAM, and so forth. For
example, if we consider a BPSK modulation case, the trans-
mitted sequence xk belongs to S = {−1, +1}. Assuming that
{xk} is an i.i.d. sequence, then xk can be represented by

an irreducible discrete-time Markov chain with finite states
{1, 2}, and a probability transition matrix P =

[
1/2 1/2
1/2 1/2

]
. This

model for the transmitted signal is widely used, especially for
the performance analysis of trellis-coded modulation tech-
niques [13].

Consequently, the Volterra observation vector X̂k re-
mains also in a finite-alphabet set

A = {Ŵ1, Ŵ2, . . . , ŴN
}

(14)

with cardinality N = dL. Thus, the matrix Ck, defined in (8)
and which governs the adaptive filter, belongs also to a finite-
alphabet set

C = {Ψ1, . . . ,ΨN
}
, (15)

where

Ψi

=




Λ1 Λ2 · · · ΛM−1 ΛM 0

I(β) 0 · · · 0 0

0 I(β) 0 · · · 0 0
...

. . .
. . .

. . .
...

...

0 · · · 0 I(β) 0 0

I(β) −Λ1 −Λ2 · · · −ΛM−1 −ΛM I(β) − µŴ∗
i Ŵ

T
i



.

(16)

As a result, the matrix Ck can be modeled as an irreducible
discrete-time Markov chain {θ(k)} with finite state space
{1, 2, . . . ,N} and probability transition matrix P = [pi j],
such that

Ck = Ψθ(k). (17)

By using the proposed model of the input signal, we will ana-
lyze the convergence of the adaptive filter in the next subsec-
tion.

3.2. Exact performance evaluation

Themain idea used to tackle (11), in the finite-alphabet input
case, is very simple. Since there are N possibilities for Ψθ(k),
we may analyze the behavior of E(ΦkΦ

H
k ) through the fol-

lowing quantity, denoted byQj(k), j = 1, . . . ,N , and defined
by

Qj(k) = E
(
vec

(
ΦkΦ

H
k 1(θ(k)= j))

)
, (18)

where 1(θ(k)= j) stands for the indicator function, which is
equal to 1 if θ(k) = j and is equal to 0 otherwise.

It is interesting to recall that at time k,Ψθ(k) can have only
one value among the N possibilities, which means that

N∑
j=1

1(θ(k)= j) = 1. (19)
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From the last equation, it is easy to establish the relationship
between E(ΦkΦ

H
k ) and Qj(k). In fact, we have

vec
(
E
(
ΦkΦ

H
k

)) = vec


E

ΦkΦ

H
k

N∑
j=1

1(θ(k)= j)






=
N∑
j=1

E
(
vec

(
ΦkΦ

H
k 1(θ(k)= j)

))

=
N∑
j=1

Qj(k).

(20)

Therefore, we can conclude that the LMS algorithm con-
verges if and only if all of the Qj(k) converge.

The recursive relationship between Qj(k + 1) and all the
Qi(k) can be established as follows:

Qj(k + 1) = E
(
vec

(
Φk+1Φ

H
k+11(θ(k+1)= j)

))
= E

((
C∗k ⊗ Ck

)
vec

(
ΦkΦ

H
k

)
1(θ(k+1)= j)

)
+ E
(
vec(BkB

H
k )1(θ(k+1)= j)

)

=
N∑
i=1

E
((
C∗k ⊗ Ck

)
vec

(
ΦkΦ

H
k

)
1(θ(k+1)= j)1(θ(k)=i)

)

+
N∑
i=1

E
(
vec(BkB

H
k

)
1(θ(k+1)= j)1(θ(k)=i)

)
.

(21)

In order to overcome the difficulty of the analysis found in
the general context, we take into account the properties in-
duced by the input characteristics, namely,

(1) Ck belongs to a finite-alphabet set

Ck1(θ(k)=i) = Ψi1(θ(k)=i), (22)

(2) Ψi are constant matrices independent of Φk.

Hence, the dependence difficulty found in (12) is avoided,
and one can deduce that

Qj(k + 1) =
N∑
i=1

(Ψ∗i ⊗Ψi)E(vec(ΦkΦ
H
k )1(θ(k+1)= j)1(θ(k)=i))

+
N∑
i=1

E
(
vec(BkB

H
k )1(θ(k+1)= j)1(θ(k)=i)

)

=
N∑
i=1

pi j
(
Ψ∗i ⊗Ψi

)
E
(
vec

(
ΦkΦ

H
k

)
1(θ(k)=i)

)

+
N∑
i=1

pi jE
(
vec

(
BkB

H
k

)
1(θ(k)=i)

)

=
N∑
i=1

pi j
(
Ψ∗i ⊗Ψi

)
Qi(k) + Γ j ,

(23)

where

Γ j
�=

N∑
i=1

pi jE
(
vec

(
BkB

H
k

)
1(θ(k)=i)

)
. (24)

From (18)–(24), along the same lines as in the linear case
[10, 14], and by expressing the recursion between Qj(k + 1)
and the remaining Qi(k), we have proven, without any con-
straining independence assumption on the observation vec-
tor, that the terms Qj(k + 1) satisfy the following exact and
compact recursion:

Q̃(k + 1) = ∆Q̃(k) + Γ, (25)

where Q̃(k) = [Q1(k)T , . . . ,QN (k)T]T . The matrix ∆ is de-
fined by

∆
�=( PT ⊗ I((M+1)β2)

)
DiagΨ, (26)

where DiagΨ denotes a block diagonal matrix defined by

DiagΨ

=




Ψ∗1 ⊗Ψ1 0 0 · · · 0

0 Ψ∗2 ⊗Ψ2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 Ψ∗N−1 ⊗ΨN−1 0

0 0 · · · 0 Ψ∗N ⊗ΨN



.

(27)

The vector Γ depends on the power of the observation noise
and the input statistics and is defined by

Γ
�=[ΓT1 , . . . ,ΓTN]T ∈ CN((M+1)β)2 . (28)

The compact linear and deterministic equation (25) will re-
place (11). From (25), we will deduce all adaptive Volterra
filter performances.

3.3. Convergence conditions

Since the recursion (25) is linear, the convergence of the LMS
is simply deduced from the analysis of the eigenvalues of ∆.
We assume that the general Markov model (4) describing the
channel behavior is stable, the algorithm stability can then be
deduced from the stationary case, whereM = 1,Ωk = 0, and
Λ1 = I . In this case, since Fk is constant, we choose Φk = Vk

to analyze the behavior of the algorithm. Hence,

Ψi = I − µŴ∗
i Ŵ

T
i . (29)

3.3.1. Excitation condition

Proposition 1. The LMS algorithm converges only if the alpha-
bet setA = {Ŵ1, Ŵ2, . . . , ŴN} spans the space Cβ.

Physically, this condition means that, in order to con-
verge to the optimal solution, we have to excite the algorithm
in all directions which spans the space.
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Proof. If the alphabet set does not span the space, we can find
a nonzero vector, z, orthogonal to the alphabet set, and by
constructing an augmented vector

Z = [zH , . . . , zH , zH , . . . , zH]H , (30)

it is easy to show that ∆Z = Z, and so the matrix ∆ has an
eigenvalue equal to one.

Proposition 2. The set A = {Ŵ1, Ŵ2, . . . , ŴN} spans the
space Cβ only if the cardinality d of the alphabet S =
{a1, a2, . . . , ad} is greater than the order q of the Volterra fil-
ter nonlinearity.

This can be explained by rearranging the rows of W =
[Ŵ1, Ŵ2, . . . , ŴN ] such that the first rows correspond to the
memoryless case. We denote this matrix by

W̃ =




a1 a2 · · · ad · · · a1 · · · ad
a21 a22 · · · a2d · · · a21 · · · a2d
...

...
...

...
...

a
q
1 a

q
2 · · · a

q
d · · · a

q
1 · · · a

q
d


 . (31)

This matrix is a Vandermonde matrix, and it is full rank if
and only if d > q, which proves the excitation condition.

It is easy to note that this result is similar to the one ob-
tained in [7]. As a consequence of this proposition, we can
conclude that we cannot use a QPSK signal (d = 4) to iden-
tify a Volterra with order q = 5.

3.3.2. Convergence condition

We provide, under the persistent excitation condition, a very
useful sufficient critical step size in the following proposition.

Proposition 3. If the Markov chain {θ(k)} is ergodic, the al-
phabet set A = {Ŵ1, Ŵ2, . . . , ŴN} spans the space Cβ, and
the noise nk is zero mean, i.i.d., sequence independent of Xk,
then there exists a critical step size µc such that

µc ≥ µmin
cNL =

2

maxi=1,...,N ŴH
i Ŵi

, (32)

and if µ ≤ µc, then the amplitude of ∆’s eigenvalues are less
than one, and the LMS algorithm converges exponentially in
the mean square sense.

Proof. Using the tensorial algebra property (A⊗B)(C⊗D) =
(AC)⊗ (BD), the matrix ∆∆H is given by

∆∆H = (PT ⊗ Iβ2
)

× diag
((
I−µŴiŴ

H
i

)2 ⊗ (I−µŴ∗
i Ŵ

T
i

)2)(
P ⊗ Iβ2

)
.

(33)

It is interesting to note that the matrix diag((I−µŴiŴ
H
i )

2⊗
(I − µŴ∗

i Ŵ
T
i )

2) is a nonnegative symmetric matrix. By de-
noting {Dj , j = 1, . . . ,N − 1}, the set of vectors orthogo-
nal to the vector Wi, the eigenvalues of the matrix ((I −
µŴiŴ

H
i )

2 ⊗ (I − µŴ∗
i Ŵ

T
i )

2) are as follows:

(i) (1 − µWH
i Wi)4 associated with the eigenvectors Wi ⊗

W∗
i ,

(ii) (1 − µWH
i Wi)2 associated with the eigenvectors Wi ⊗

D∗j ,
(iii) (1 − µWH

i Wi)2 associated with the eigenvectors Dj ⊗
W∗

i ,
(iv) 1 associated with the eigenvectors Dj ⊗D∗l .

So, for µ ≤ 2/maxi=1,...,N ŴH
i Ŵi, the eigenvalues λi of

diag((I − µŴiŴ
H
i )

2 ⊗ (I − µŴ∗
i Ŵ

T
i )

2) satisfy

0 ≤ λi ≤ 1. (34)

Assuming that the Markov chain {θ(k)} is ergodic, the prob-
ability transition matrix P is acyclic [15], and it has 1 as the
unique largest amplitude eigenvalue, corresponding to the
vector u = [1, . . . , 1]T . This means that for a nonzero vec-
tor R in CNβ2 , RH(PT ⊗ Iβ2 )(P ⊗ Iβ2 )R = RHR if and only if R
has the following structure:

R = u⊗ e, (35)

where e is a nonzero vector in Cβ2 .
Now, for any nonzero vector R inCNβ2 , there are two pos-

sibilities:

(1) there exists an e in Cβ2 such that R = u⊗ e,
(2) R does not have the structure described by (35).

In the first case, we can express RH∆∆HR as follows:

RH∆∆HR = (uT ⊗ eH
)(
PT ⊗ Iβ2

)
× diag

((
I − µŴiŴ

H
i )

2 ⊗ (I − µŴ∗
i Ŵ

T
i

)2)
× (P ⊗ Iβ2

)
(u⊗ e)

= (uT ⊗ eH
)

× diag
((
I−µŴiŴ

H
i

)2⊗(I−µŴ∗
i Ŵ

T
i

)2)
(u⊗e)

=
N∑
i=1

eH
((
I − µŴiŴ

H
i )

2 ⊗ (I − µŴ∗
i Ŵ

T
i

)2)
e.

(36)

SinceA = {Ŵ1, Ŵ2, . . . , ŴN} spans the space Cβ, it is easy to
show that

N∑
i=1

eH
((
I − µŴiŴ

H
i )

2 ⊗ (I − µŴ∗
i Ŵ

T
i

)2)
e

< NeHe = RHR,

(37)

which means

RH∆∆R < RHR. (38)

In the second case, it is easy to show that

RH∆∆HR ≤ RH
(
PT ⊗ Iβ2

)(
P ⊗ Iβ2

)
R. (39)

This is due to the fact that DiagΨ is a symmetric nonnegative
matrix, with largest eigenvalue equal to one.
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Now, using the fact that R does not have the structure
(35), this leads to

RH∆∆HR < RHR. (40)

If we resume the two cases, we conclude that for any nonneg-
ative vector R in CNβ2 ,

RH∆∆HR

RHR
< 1, (41)

which concludes the proof.

It is interesting to note that when the input signal is a
PSK signal, which has a constant modulus, all the quantities
2/ŴH

i Ŵi are equal and thus they are also equal to the exact
critical step size.

Moreover, in the general case, the exact critical step size
µc and the optimum step size µopt for convergence are de-
duced by the analysis of the ∆ eigenvalues as a function of
µ. These important quantities depend on the transmitted al-
phabet and on the transition matrix P.

3.4. Steady-state performances

If the convergence conditions are satisfied, we determine the
steady-state performances (k →∞) by

Q̃∞ = (I − ∆)−1Γ. (42)

From limk→∞Qi(k), and using the relationship (9) between
Vk and Φk, we deduce that

lim
k→∞

E
(
vec

(
VkV

H
k 1(θ(k)=i)

)) = (U ⊗U) lim
k→∞

Qi(k), (43)

and thus the exact value of MSD. In the samemanner, we can
compute the exact EMSE:

EMSE = E
(∣∣yk − yek

∣∣2)− E
(∣∣nk∣∣2)

= E
(∣∣X̂T

k Vk

∣∣2)
= E

(
X̂T
k VkV

H
k X̂∗k

)
= E

((
X̂H
k ⊗ X̂T

k

)
vec

(
VkV

H
k

))
.

(44)

Using the relationship (9) between Vk and Φk, we can de-
velop the EMSE as follows:

EMSE = E
((
X̂H
k ⊗ X̂T

k

)
vec

(
UΦkΦ

H
k U

T
))

= E
((
X̂H
k ⊗ X̂T

k

)
(U ⊗U) vec

(
ΦkΦ

H
k

))

= E


(X̂H

k ⊗ X̂T
k

)
(U ⊗U) vec

(
ΦkΦ

H
k

) N∑
i=1

1θ(k)=i




=
N∑
i=1

E
((
X̂H
k ⊗ X̂T

k

)
(U ⊗U) vec

(
ΦkΦ

H
k

)
1θ(k)=i

)

=
N∑
i=1

E
((
ŴH

i ⊗ ŴT
i

)
(U ⊗U) vec

(
ΦkΦ

H
k

)
1θ(k)=i

)

=
N∑
i=1

(
ŴH

i ⊗ ŴT
i

)
(U ⊗U)E

(
vec

(
ΦkΦ

H
k

)
1θ(k)=i

)
.

(45)

Under the convergence conditions, E(vec(ΦkΦ
H
k )1θ(k)=i)

converges to limk→∞Qi(k), the mean square error (MSE) can
be given by

MSE =
N∑
i=1

(
ŴH

i ⊗ŴT
i

)
(U⊗U) lim

k→∞
Qi(k)+E

(∣∣nk∣∣2
)
. (46)

In this section, we have proven that without using any unre-
alistic assumptions, we can compute the exact values of the
MSD and the MSE.

It is interesting to note that the proposed approach re-
mains valid even when the model order of the adaptive
Volterra filter is overestimated, which means that the non-
linearity order and/or the memory length of the adaptive
Volterra filter are greater than the real system to be identi-
fied. In fact, in this case the observation noise is still indepen-
dent of the input signal, and the used assumptions remain
valid. Indeed, this case is equivalent to identifying some co-
efficients which are set to zero. Of course, this will decrease
the rate of convergence, and increase the MSE at the steady
state.

In the next section, we will confirm our analysis through
a study case.

4. SIMULATION RESULTS

The exact analysis of adaptive Volterra filters made for the
finite-alphabet input case is illustrated in this section. We
consider a case study, where we want to identify a nonlinear
time-varying channel, modeled by a time-varying Volterra
filter. The transmitted symbols are i.i.d. and belong to a
QPSK constellation, that is, xk ∈ {1+ j, 1− j,−1+ j,−1− j}
(where j2 = −1). In this case, we have

Prob
(
xk+1|xk

) = Prob
(
xk+1

) = 1
4
, (47)

and xk can be modeled by a discrete-time Markov chain with
transition matrix equal to

Px =




1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4




. (48)

In this example, we assume that the channel is modeled as
follows:

yk = f0(k)xk + f1(k)xk−1 + f2(k)x2kxk−1

+ f3(k)xkx2k−1 + nk.
(49)
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Figure 1: Evolution of the ∆’s maximum eigenvalue versus the step
size.

The observation noise nk is assumed to be i.i.d complex
Gaussian with power E(|nk|2) = 0.001. The parameters vec-
tor Fk = [ f0(k), f1(k), f2(k), f3(k)]T is assumed to be time
varying, and its variations are described by a second-order
Markovian model

Fk+1 = 2γ cos(α)Fk − γ2Fk−1 +Ωk, (50)

where γ = 0.995, α = π/640, and Ωk is a complex Gaus-
sian, zero mean, i.i.d., spatially independent, and with com-
ponents power E(|ωk|2) = 10−6.

We assume that the adaptive Volterra filter has the same
length as the channel model. In this case, the input observa-
tion vector is equal to X̂k = [xk, xk−1, x2kxk−1, xkx

2
k−1]

T , and it
belongs to a finite-alphabet set with cardinality equal to 16,
which is the number of all xk and xk−1 combinations.

The sufficient critical step size computed using (32) is
equal to µmin

cNL = 1/10. To analyze the effect of the step size on
the convergence rate of the algorithm, we report in Figure 1
the evolution of the largest absolute value of the eigenvalues
of ∆, we deduce that

(i) the critical step size µc, deduced from the finite-
alphabet case, corresponding to λmax(∆) = 1 is equal to
µc = 0.100, which has the same value as µmin

cNL = 1/10.
This result is expected since the amplitude of the input
data xk is constant;

(ii) the optimal step µopt, corresponding to the minimum
value of λmax(∆), is µopt = 0.062. The optimal rate of
convergence is found to be

min
µ

λmax(∆) = 0.830. (51)

In order to evaluate the evolution of the EMSE versus the
iteration number, we compute the recursion (25), and we
run a Monte Carlo simulation over 1000 realizations, for
µ = 0.06, for an initial deviation vector V0 = [1, 1, 1, 1]T ,
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Figure 2: Transient behavior of the adaptive Volterra filter: the evo-
lution of MSE.
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Figure 3: Variations of the EMSE versus µ in a nonstationary case.

and for an initial value of the channel parameters vector
F0 = [0, 0, 0, 0]T . Figure 2 shows the superposition of the
simulation results with the theoretical ones.

Figure 3 shows the variations of the EMSE at the conver-
gence, versus the step size, which varies from 0.001 to 0.100.
The simulation results are obtained by averaging over 100 re-
alizations.

The simulations of transient and steady-state perfor-
mances are in perfect agreement with the theoretical anal-
ysis. Note from Figure 3 the degradation of the tracking ca-
pabilities of the algorithm for small step size. The optimum
step size is high, and it cannot be deduced from classical
analysis.
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5. CONCLUSION

In this paper, we have presented an exact and complete the-
oretical analysis of the generic LMS algorithm used for the
identification of time-varying Volterra structures. The pro-
posed approach is tailored for the finite-alphabet input case,
and it was carried out without using any unrealistic indepen-
dence assumptions. It reflects the exactness of the obtained
performances in transient and in steady cases of the adap-
tive nonlinear filter. All simulations of transient and track-
ing capabilities are in perfect agreement with our theoretical
analysis. Exact and practical bounds on the critical step size
and optimal step size for tracking capabilities are provided,
which can be helpful in a design context. The exactness and
the elegance of the proof are due to the input characteristics,
which is commonly used in the digital communications con-
text.
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