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A nonuniform multi-Gabor expansion (MGE) scheme is studied under proportional time and frequency (TF) shifts among dif-
ferent window indices m. In particular, TF parameters for each m are different, but proportional and relevant to windows’ TF
patterns. The generation of synthesis waveforms for nonuniform MGE is generally difficult. We show constructively that there is
a set of basic synthesis MGE waveforms at each window index under proportional parameter settings. Nonuniform MGE adapts
to signal frequency dynamics effectively, and eliminates unnecessary overlapping redundancies of a uniform MGE. Examples of
the evaluation of synthesis waveforms are provided. Efficiency comparison of TF analysis using nonuniform and uniform MGEs
is also discussed.
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1. INTRODUCTION

Typical Gabor expansions use one fixed window and its
translates and complex modulates as basic elements in an at-
tempt to analyze the time-frequency (TF) information of a
signal. Studies on Gabor expansions are intense; for exam-
ple, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
There is also a book on Gabor analysis and algorithm by
Feichtinger and Strohmer [17]. However, frequency-varying
features of a signal or the multifrequency components in a
signal require windows of different size (variance) for a re-
fined TF resolution. Multi-Gabor expansions (MGEs) were
developed specifically to meet such requirements; for ex-
ample, see [11, 18], (cf. [19, 20]). MGEs are TF expan-
sions using a set of multiple windows and their trans-
lates and modulates in a frame (overcomplete “basis”) sys-
tem. The set of windows are custom-tuned. Typically, they
range from a narrower window to a wider window to meet
the requirements of TF representations of signals of time-
varying frequency components. However, standard uniform
MGEs apply the same TF shifts among all analysis win-
dows. Such uniform MGEs do not take into consideration
the distinct TF patterns of different windows, which gives
rise to unnecessary redundancy. Nonuniform MGE schemes
adapted to each window’s TF characteristics are more natu-
ral.

Let 0 ≤ m ≤M−1 be the number of windows in anMGE
system. Let j and k be the modulation and translation pa-
rameters, and letHL be an L-dimensional signal space. Then
a discrete nonuniform multi-Gabor representation (of nonuni-

form TF shifts) is defined by, for all s ∈HL,

s =
M−1∑
m=0

Nm−1∑
j=0

Km−1∑
k=0

〈
s, γ(m, j, k)

〉
g(m)
j/Nm ,kTm

, (1)

where, for the window index m, Nm is the number of fre-
quency bins (1/Nm is the frequency shift), Tm is the time-
translation parameter, Km ≡ L/Tm, g(m) is the mth window,
and {γ(m, j, k) : m, j, k} is a set of synthesis sequences to
be constructed. We have also used the conventional notation
{g(m)

j/Nm ,kTm
} for the given multi-Gabor family, namely,

{
g(m)
j/Nm ,kTm

≡ g(m)(· − kTm
)
e(2πi/Nm) j(·)

}
m, j,k

, (2)

where (·) is the (time) variable of the function. In HL, (·) is
the index n, where n = 0, 1, . . . ,L− 1.

MGEs are frame representations. A frame in a Hilbert
spaceH is a basis-like sequence {xn} for which there are con-
stants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∑
n

∣∣〈x, xn〉∣∣2 ≤ B‖x‖2 ∀x ∈H . (3)

If {xn} is a frame, the standard dual-frame representation
stands for,

∀x ∈H , x =
∑
n

〈
x, S−1xn

〉
xn =

∑
n

〈
x, xn

〉
S−1xn, (4)
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where S−1 is the inverse of the standard frame operator S de-
fined by,

∀x ∈H , Sx =
∑
n

〈
x, xn

〉
xn. (5)

The sequence {S−1xn} is the standard dual frame to the frame

{xn}. In the case of nonuniformMGEs, {g(m)
j/Nm ,kTm

} is to form
a frame in HL, and {γ(m, j, k) : m, j, k} would be a dual

frame to {g(m)
j/Nm ,kTm

}. A dual frame needs not be the stan-
dard dual. One can have infinitely many constructible dual
frames for a frame that is redundant [21]. We will only be
focusing on standard duals here. Gabor duals in a paramet-
ric form can be found in [12]. The same dual formula can
be transformed to nonuniform multi-Gabor scenarios dis-
cussed here.

Gabor expansions from a filtering point of view

A typical uni-Gabor expansion (with one window) is equiv-
alent to shifted bandpass filtering in signal processing.
The bandwidth of the filter is determined by the window
size. Wider window in time has typically narrower fre-
quency bandwidth and vice versa. Evidently, a fixed band-
width system is insufficient to analyze signals of dynamic
frequencies—a phenomenon known as poor resolution. This
was the very reason why the multi-Gabor representations,
for example, see [11, 18], was introduced. With multi-Gabor
systems, there are now multiple bandpass filters of varying
bandwidth. They can be designed to adapt to signal fre-
quency dynamics, and thereby provide flexible and adaptive
TF analysis of a signal.

Reasons for using nonuniform TF shifts

While MGE marks one step forward in a refined TF analysis
of Gabor expansions, uniform MGE schemes do not reflect
the nature of TF patterns of different windows, causing ex-
cessive and unnecessary TF-tiling overlaps.

For instance, a wider window in time has narrower effec-
tive frequency bandwidth and vice versa. Hence, in a more
natural MGE scheme, a wider window in time should be
assigned with larger time translates and smaller frequency
shifts (i.e., larger Nm). Likewise, a narrower window should
be given smaller time but larger frequency shifting parame-
ters.

MGEs of nonuniform time translates but fixed frequency
shifts among windows have been analyzed and constructed
in detail in [18].

When both TF shifts are varying among window indices,
the theory and construction of nonuniform MGEs are gen-
erally difficult. In this paper, we report the study on the con-
struction of a nonuniformMGE with proportional TF shifts,
namely, the time translates and frequency shifts are propor-
tional among window indices and relevant to windows’ TF
patterns, following the basic TF tiling principle described
earlier.

We provide an analysis and construction of the struc-
ture of the dual multi-Gabor frames of such proportional

nonuniform MGEs. We show that the standard dual multi-
Gabor frame is formed by translations and modulations of
a set of basic windows at each window index m. This result
in turn allows us to derive a fast algorithm for the evaluation
of these basic dual windows. Numerical examples of the con-
struction of such MGEs as well as the efficiency discussion of
nonuniform MGEs in TF analysis are also presented.

2. CONSTRUCTING NONUNIFORMMGEs

To construct a nonuniform MGE system, one has to make
sure that a set of multi-Gabor waveforms form a frame.

Intuitively, the requirement is to have combined win-
dow waveforms covering the entire TF plane. We show in
the following some direct conditions for the construction of
nonuniform MGEs. This will provide users with an intuitive
guideline. The proof of the following result can be found in
Appendix A.1.

Theorem 1. Let {g(m)}M−10 ∈ HL be a set of M window func-
tions. For each m, let Tm and Nm be the translation and mod-
ulation parameters, respectively, satisfying KmTm = L and
PmNm = L with integers Km and Pm. Assume that

(1) A ≤ ∑M−1
m=0 Nm

∑Km−1
k=0 |g(m)(n − kTm)|2 ≤ B for some

0 < A ≤ B <∞, and for all n,

(2)
∑M−1

m=0 Nm
∑Pm−1

lm=1 a(m)(lmNm) is sufficiently small such
that

A−
M−1∑
m=0

Nm

Pm−1∑
l=1

a(m)(lNm
) ≥ A0 > 0, (6)

where

a(m)(lNm
)≡ max

0≤q≤L−1

∣∣∣∣∣
Km−1∑
k=0

g(m)(q−kTm
)
g(m)

(
q+lNm−kTm

)∣∣∣∣∣.
(7)

Then, {g(m)
jk }m, j,k (0 ≤ m ≤M − 1, 0 ≤ j ≤ Pm − 1, and 0 ≤

k ≤ Km − 1) forms a multi-Gabor frame ofHL.

Remark 1. (a) Notice that the indices j, k, and l should all
have carried a subindex m as they all have different ranges
for different m. Nevertheless, the subindex m is omitted for
the simplicity of the presentation.

(b) If the combined translates of all windows cover all the
signal span (condition (1)), and ifNm is large enough (so that
the relative shifts in the cross-correlation a(m)(lNm) is amply
extended) to sufficiently lower the value of a(m)(lNm) (con-

dition (2)), then {g(m)
jk } forms a nonuniform multi-Gabor

frame.

It is also possible to improve the conditions in Theorem 1
following an observation by Casazza and Christensen [22].

Theorem 2. Let {g(m)}M−10 ∈ HL be a set of M window func-
tions. For each m, let Tm and Nm be given in Theorem 1.
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Assume that

(1)

inf
n

M−1∑
m=0

Nm

( Km−1∑
k=0

∣∣∣g(m)(n− kTm
)∣∣∣2

−
Pm−1∑
l=1

∣∣∣∣∣
Km−1∑
k=0

g(m)(n− kTm
)

×g(m)
(
n + lNm−kTm

)∣∣∣∣∣
)
=a>0,

(8)

(2)

sup
n

M−1∑
m=0

Nm

Pm−1∑
l=0

∣∣∣∣∣
Km−1∑
k=0

g(m)(n−kTm
)
g(m)

(
n+lNm−kTm

)∣∣∣∣∣
= b <∞.

(9)

Then, {g(m)
jk }m, j,k (0 ≤ m ≤ M − 1, 0 ≤ j ≤ Pm − 1, and

0 ≤ k ≤ Km − 1) forms a multi-Gabor frame ofHL.

A sketch of the proof can be found in Appendix A.2. Note
that condition (2) of Theorem 2 may be removed in finite-
dimensional space since it always holds. Nevertherless, since
the ratio of the frame bounds determines the numerical sta-
bility of the frame system, condition (2) can be used towards
that end.

The improvement of conditions in Theorem 2 lies
in the fact that pointwise comparison is done be-
tween the sampled autocorrelation

∑Km−1
k=0 |g(m)(n − kTm)|2

and the sampled cross-correlation (shifted correlation)∑Pm−1
l=0 |∑Km−1

k=0 g(m)(n − kTm)g(m)(n + lNm − kTm)|, while in
Theorem 1, the infimum of the autocorrelation must be
greater than the supreme of the cross-correlation. When the
redundancy of a nonuniform MGE system is close to the
minimum, the conditions in Theorem 2 will become sub-
stantially superior.

The remaining fundamental task is to determine dual
multi-Gabor waveforms {γ(m, j,k)} for a given multi-Gabor

(frame) sequence {g(m)
jk }.

3. NONUNIFORMMGEsWITH FIXED
PROPORTIONS OF TF SHIFTS

Assume that the window “width” increases as index m in-
creases (from 0 to M − 1), and hence assume that Tm in-
creases. Since a wider window corresponds to narrower fre-
quency bandwidth, a smaller frequency shift is desired, which
in turn corresponds to a larger number of frequency bin Nm

as see in (2). Therefore, both Tm and Nm are assumed in-
creasing asm goes up.

Let T = TM−1, the largest time translate, and let
N = N0, the smallest frequency bin (which corresponds
to the largest frequency shift). Then, for integers α and β,

we assume that the following proportional relationship hold:

Nm ≡ αNm−1 = αmN , α ≥ 1,

Tm ≡ βTm−1 = βm−M+1T , β ≥ 1.
(10)

We show that the standard dual sequences {γ(m, j, k) :
m, j, k} are formed by translations and modulations of sev-
eral basic window waveforms together with multiplications
of relevant constants. More precisely, we have the following
result. Notation ep/N τqT x ≡ x(· − qT)e2πip(·)/N is used from
time to time for convenience.

Theorem 3. Let {g(m)
jk }m, j,k be a given multi-Gabor frame for

HL. Assume that Tm and Nm for the index m are defined by
(10), respectively. Let j = uαm + p and k = vβM−m−1 + q,
where 0 ≤ u ≤ N − 1, 0 ≤ p ≤ αm − 1, 0 ≤ v ≤ L/T − 1,
and 0 ≤ q ≤ β(M−m−1) − 1, and so that 0 ≤ j ≤ Nm − 1 and
0 ≤ k ≤ L/Tm − 1. Then, at the window indexm,

(1) there are αmβ(M−m−1) basic dual multi-Gabor windows
{γ̃(m,p,q) : 0 ≤ p ≤ αm − 1, 0 ≤ q ≤ β(M−m−1) − 1};

(2) these basic {γ̃(m,p,q)} are given by

γ̃(m,p,q) = S−1
[
g(m)
p/Nm ,qTm

]
,

∀0 ≤ p ≤ αm − 1,

∀0 ≤ q ≤ β(M−m−1) − 1,

(11)

where S is the frame operator defined by the multi-Gabor

frame {g(m)
jk }m, j,k:

∀x ∈HL, Sx =
∑
m

∑
jk

〈
x, g(m)

jk

〉
g(m)
jk . (12)

The standard dual multi-Gabor sequence {γ(m,p,q)
u/N ,vT

: p, q,u, v}
at indexm is formed by

γ(m,p,q)
u/N ,vT

≡ eu/N τvT
[
e2πipvT/Nm γ̃(m,p,q)

]
(13)

for all 0 ≤ u ≤ N − 1, 0 ≤ v ≤ L/T − 1, and for all p and q
specified in (11). Here T = TM−1 and N = N0 are the largest
time-shifting step and the smallest frequency bins, respectively.

A proof of the result can be found in Appendix B.

Remark 2. (a) Theorem 3 states that the construction of a
nonuniform MGE with proportional TF shifts is reduced
to the evaluation of a set of basic dual window waveforms
γ(m,p,q) at each index m by (11). This result greatly fa-
cilitates the evaluation of proportional nonuniform multi-
Gabor dual frames. It also allows us to derive a fast algorithm
for the construction of the dual multi-Gabor frames.

(b) The standard dual multi-Gabor sequences {γ(m,p,q)
u/N ,vT

}
are formed by translations of the basic windows γ̃(m,p,q) by
the largest step size T and multiplied by a constant e2πipvT/Nm

(for each parameter p and each translate v) and then mod-
ulated by the smallest frequency bins N . Notice that the
constant e2πipvT/Nm is mostly 1 if pvT/Nm is an integer.



2726 EURASIP Journal on Applied Signal Processing

In particular, if Nm divides T for all m (which is practically
so since T is the largest translation parameter among all),
the constant is then always 1. Examples will be presented
later.

For instance, let M = 2 and α = β = 2. We have a
nonuniformMGE of 2-window system. Then for the window
index m = 0, there are 2 basic dual windows for p = 0 and
q = 0, 1. For m = 1, there are 2 basic dual windows as well
for p = 0, 1 and q = 0. Moreover, the 2 basic dual windows
for m = 0 are both real-valued windows (p = 0), while the
second basic dual windows for m = 1 are generally complex
valued since p = 1. See (11).

4. NONUNIFORMMGEsWITH VARYING
PROPORTIONS OF TF SHIFTS

While MGEs of fixed proportional TF shifts (presented in the
last section) are natural enough for a majority of applica-
tions, it is conceivable that some applications may demand
a nonuniform MGE scheme, where the TF shifts do not fol-
low a fixed proportion. Under an assumption that each of the
translation and modulation parameters Tm and Nm satisfies
an integer-multiple relationship with respect to the reference
parameter set (T ,N), it is possible to analyze the dual struc-
ture similarly.

Again, let T = TM−1, the largest time translate, and let
N = N0, the smallest frequency bin parameter. For integers
αm and βm for allm, we now assume that

Nm ≡ αmN , αm ≥ 1,

T ≡ βmTm, βm ≥ 1.
(14)

It turns out that a similar dual structure result holds.

Theorem 4. Let {g(m)
jk }m, j,k be a given multi-Gabor frame for

HL. Assume that Tm and Nm for the index m satisfy (14), re-
spectively. Let j = uαm + p and k = vβm + q, where 0 ≤ u ≤
N −1, 0 ≤ p ≤ αm−1, 0 ≤ v ≤ L/T −1, and 0 ≤ q ≤ βm−1,
and so that 0 ≤ j ≤ Nm − 1 and 0 ≤ k ≤ L/Tm − 1. Then, at
the window indexm,

(1) there are αmβm basic dual multi-Gabor windows
{γ̃(m,p,q) : 0 ≤ p ≤ αm − 1, 0 ≤ q ≤ βm − 1};

(2) these basic {γ̃(m,p,q)} are given by

γ̃(m,p,q) = S−1
[
g(m)
p/Nm ,qTm

]
∀0 ≤ p ≤ αm − 1,

∀0 ≤ q ≤ βm − 1,

(15)

where S is the frame operator defined by the multi-Gabor

frame {g(m)
jk }m, j,k as in (12).

The standard dual multi-Gabor sequences {γ(m,p,q)
u/N ,vT

: p, q,u, v}
at index m are formed by (13) for all 0 ≤ u ≤ N − 1, 0 ≤ v ≤
L/T − 1, and for all p and q specified in (15). Here T = TM−1
and N = N0 are the largest time-shifting step and the smallest
frequency bins, respectively.
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Figure 1: A 2-window system.

The proof of this result mimics that of Theorem 3 which
can be found in Appendix B.

5. THE EVALUATIONOF THE DUAL
WAVEFORMS

The evaluation of the dual multi-Gabor waveforms takes
an algorithmic structure similar to that of uniform fre-
quency shifting. In fact, the frame operator matrix is still
a sparse and “banded” matrix corresponding to the small-
est frequency bin N . The computation of each synthesis
waveform at each index m is broken into a set of Nm ×
Nm systems of linear equations. We refer to [18, Algorithm
4] for a similar implementation algorithm that breaks the
system into a set of smaller systems of equations. Read-
ers that are interested in the implementation of the con-
struction algorithm may contact the author for the Matlab
code.

We present an example of 2-window multi-Gabor sys-
tems and their duals with (proportional) nonuniform TF
shifts. Figure 1 is the given 2-window system that generates
a multi-Gabor frame. In all figures, the horizontal axis is the
time index, and the vertical axis is the magnitude of the win-
dow waveform.

Figures 2 and 3 are the sets of dual multi-Gabor win-
dows at two window indices.When pictures are shown in two
columns, the left column (a) represents the real parts of the
basic dual window functions, while the right column (b) rep-
resents the imaginary parts. The parameters in this example
are T = 16 (the largest time-translation parameter), N = 16
(the smallest frequency-shift parameter); and α0 = 1, α1 = 8,
β0 = 8, and β1 = 1.

Remark 3. It seems that atm = 0, the β0 (since α0 = 1) basic
synthesis windows are simply translates of each other. A fur-
ther notice that can be made is that these basic window func-
tions do have a shifting property, but not exactly the shift to
each other in general. This observation applies to both sce-
narios of fixed as well as varying proportional parameters as
in Sections 3 and 4, respectively.
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Figure 2: The 8 basic dual multi-Gabor windows at scale m = 0:
T0 = 2, N0 = 16.

Corollary 1. Let {g(m)
jk }m, j,k be a given multi-Gabor frame for

HL whose parameters Tm and Nm are given as in Theorem 4.
Let SqT0 be the frame operator associated with the multi-Gabor

frame sequence {g(m)
jk (· + qT0)}m, j,k, that is,

∀x ∈HL, SqT0x =
∑
m

∑
jk

〈
x, g(m)

jk

(· + qT0
)〉

g(m)
jk

(· + qT0
)
.

(16)

Then the β0 basic waveforms {γ̃(0,0,q)}β0−1q=0 at m = 0 are given
by

γ̃(0,0,q) = S−1
(
τqT0g

(0)) = τqT0

(
S−1qT0

g(0)
)
, 0 ≤ q ≤ β0 − 1.

(17)

A sketch of the proof can be found in Appendix C. Note
that, except for index m = 0, the translation by Tm of the
window g(m)(· + qT0) for all m �= 0 no longer covers the
signal span in exactly the same way as the Tm-translates of
g(m). Consequently, S �= SqT0 in general. In fact, for each q,
SqT0 is generally different. Nevertheless, since the translates of

g(m)(·+qT0) still cover the signal span, {g(m)
jk (·+qT0)}m, j,k re-

mains a multi-Gabor frame. Because of the redundancy, the
difference among SqT0 for different q is generally unnotice-
able.

6. A LOOK AT THE EFFICIENCY OF
NONUNIFORMMGE

We consider the efficiency of the proportional nonuniform
MGEs by calculating the number of coefficients and by com-
paring with that of the uniformMGEs, under the assumption
that the corresponding TF resolution for each corresponding
window stays equivalent.

Take a 2-window system for instance. Assume that one
narrower window (m = 0) has a support of 8 units, and the
wider window (m = 1) has 64 units. This system is exactly
the same as illustrated in Figures 1, 2, and 3.

The parameter selection follows the principle that the
TF resolution is equivalent in corresponding window in-
dices between the proportional nonuniform MGE and the
uniform MGE. Specifically, at m = 0, since the TF pat-
tern is fundamentally stretched in the frequency direction
and very narrow in time, the time resolution is the fine
one. The uniform MGE parameter T is necessarily small
and is set at T = 2. Meantime, at m = 1, the TF pat-
tern is stretched in the time direction and very narrow
in frequency. The frequency parameter N is set at N =
128 to attain a certain frequency resolution in the uniform
MGE.

In the corresponding nonuniformMGE, T0 is set at T0 =
T = 2. Hence the fine time resolution emphasized at m = 0
is kept the same between the uniform and nonuniformMGE
systems, and N0 is set at N0 = 16 	 N = 128. At m = 1,
the fine frequency resolution is to be preserved. Hence, N1

is set as N1 = N = 128, while T1 is enlarged substantially:
T1 = 16
 T = 2.

With the equivalent TF resolutions, the efficiency im-
provement of the representation using the nonuniform TF
shifts is clearly substantial. The number of coefficients of the
proportional nonuniform MGE is

L

T0
×N0 +

L

T1
×N1 = L

2
× 16 +

L

16
× 128 = 16L, (18)

where L is the length of the signal. Meantime, the number of
coefficients of the uniform MGE is

2× L

T
×N = 2× L

2
× 128 = 128L. (19)

The ratio of the coefficients (nonuniform versus uniform)
is merely 12.5%. This is expected to substantially reduce the
postprocessing complexity.

7. CONCLUSION

We present the results of nonuniform multi-Gabor rep-
resentations of proportional TF shifts among window in-
dices. Theorems 3 and 4 make possible efficient imple-
mentations of the construction of nonuniform multi-Gabor
dual-frame systems. It is shown that the standard dual sys-
tem can be generated by a set of basic waveforms as well.
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Figure 3: The 8 basic dual multi-Gabor windows at scale m = 1: T1 = 16, N1 = 128. (a) Real part of the basic dual windows. (b) Imaginary
part of the basic dual windows.

Numerical examples are provided. Proportional nonuniform
MGEs eliminate unnecessary redundancies due to superflu-
ous overlapping using identical TF shifts among all windows
(in uniform MGEs). This substantially reduces the cost of
post-decomposition processing, which is valuable in appli-
cations of TF signal analysis and processing. Applications of
proportional nonuniform MGEs remain an open area. Prac-
tical benefits using such a more natural MGE system are ex-
pected.

APPENDICES

A. PROOFS OF THEOREMS 1 AND 2

A.1. Outline of a proof of Theorem 1

The proof is in line with similar results for continuous cases;
see, for example, [23]. Again, we assume that Tm and Nm

both divide L so that L = TmKm and L = NmPm for all
window indices m. We further agree that the translate index
k = km and the modulate index j = jm, although for sim-
plicity, the subindex m for k and j or their substitutes are

omitted in the presentation. Now for all x ∈HL, consider

M−1∑
m=0

Nm−1∑
j=0

Km−1∑
k=0

∣∣∣〈x, g(m)
jk

〉∣∣∣2

=
M−1∑
m=0

Nm−1∑
j=0

Km−1∑
k=0

∣∣∣∣∣
L−1∑
t=0

x(t)g(m)
(
t − kTm

)
e−(2πi/Nm) jt

∣∣∣∣∣
2

=
M−1∑
m=0

Km−1∑
k=0

L−1∑
t=0

L−1∑
τ=0

x(t)x(τ) g(m)
(
t − kTm

)
g(m)(τ − kTm

)

×
Nm−1∑
j=0

e−(2πi/Nm) j(t−τ).

(A.1)

Notice that for each 0 ≤ τ ≤ L− 1,

Nm−1∑
j=0

e(−2πi/Nm) j(t−τ) = Nm

Pm−[τ/Nm]−1∑
l=−[τ/Nm]

δ
(
t − τ − lNm

)
,

0 ≤ t ≤ L− 1,

(A.2)
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where δ(a− b) = 1 if a = b, δ(a− b) = 0 if a �= b, and [q/N]
is the greatest integer less than or equal to q/N . So now, for
given τ,

M−1∑
m=0

Nm−1∑
j=0

Km−1∑
k=0

∣∣∣〈x, g(m)
jk

〉∣∣∣2

=
M−1∑
m=0

Km−1∑
k=0

L−1∑
τ=0

Pm−[q/Nm]−1∑
l=−[q/Nm]

Nmx
(
τ + lNm

)
x(τ)

×g(m)
(
τ + lNm − kTm

)
×g(m)(τ − kTm

)

=
L−1∑
τ=0

∣∣x(τ)∣∣2 ·
(M−1∑

m=0
Nm

Km−1∑
k=0

∣∣g(m)(τ − kTm
)∣∣2)

+
M−1∑
m=0

Nm

Km−1∑
k=0

Pm−1∑
l=1

L−1∑
τ=0

x(τ)x
(
τ + lNm

)

×
(
g(m)(τ − kTm

)
×g(m)

(
τ + lNm − kTm

))
,

(A.3)

where, at the last step, we have used the periodicity of se-
quences x and g, and rearranged the summation over l from
0 to Pm − 1.

Now, assume that condition (1) holds in Theorem 1, that
is,

A ≤
M−1∑
m=0

Nm

Km−1∑
k=0

∣∣∣g(m)(τ − kTm
)∣∣∣2 ≤ B. (A.4)

By Cauchy-Schwartz inequality applied to the second part of
(A.3), the above calculation shows that

M−1∑
m=0

∑
jk

∣∣∣〈x, g(m)
jk

〉∣∣∣2 > A‖x‖2

−
M−1∑
m=0

Nm

Pm−1∑
l=1

(
max

0≤τ≤L−1

∣∣∣∣∣
Km−1∑
k=0

g(m)(τ − kT)

×g(m)(τ+lN − kT)

∣∣∣∣∣
)
‖x‖2,
(A.5)

where the summation ranges over j and k are indicated in
previous steps. Therefore, if condition (2) of Theorem 1 is
satisfied, the lower frame bound condition is established.

A.2. Outlines of the proof of Theorem 2

The proof in Appendix A.1 up to and including (A.3) holds.
Define now

G(m)
l (τ) ≡

Km−1∑
k=0

g(m)(τ − kTm
)
g(m)

(
τ + lNm − kTm

)
, (A.6)

and denote by I the second part of (A.3). Then

I =
M−1∑
m=0

Nm

Pm−1∑
l=1

L−1∑
τ=0

x(τ)x
(
τ + lNm

)
G(m)
l (τ)

≤
M−1∑
m=0

Nm

( Pm−1∑
l=1

L−1∑
τ=0

∣∣x(τ)∣∣2∣∣∣G(m)
l (τ)

∣∣∣
)1/2

×
( Pm−1∑

l=1

L−1∑
τ=0

∣∣x(τ + lNm
)∣∣2∣∣∣G(m)

l (τ)
∣∣∣
)1/2

=
M−1∑
m=0

Nm

( Pm−1∑
l=1

L−1∑
τ=0

∣∣x(τ)∣∣2∣∣∣G(m)
l (τ)

∣∣∣
)1/2

×
( Pm−1∑

l=1

L−1∑
τ=0

∣∣x(τ)∣∣2∣∣∣G(m)
l

(
τ − lNm

)∣∣∣
)1/2

=
M−1∑
m=0

Nm

( L−1∑
τ=0

∣∣x(τ)∣∣2 Pm−1∑
l=1

∣∣∣G(m)
l (τ)

∣∣∣
)1/2

×
( L−1∑

τ=0

∣∣x(τ)∣∣2 Pm−1∑
l=1

∣∣∣G(m)
l

(
τ − lNm

)∣∣∣
)1/2

.

(A.7)

Note that it is easy to verify that

Pm−1∑
l=1

∣∣∣G(m)
l

(
τ − lNm

)∣∣∣ = Pm−1∑
l=1

∣∣∣G(m)
l (τ)

∣∣∣. (A.8)

Therefore,

I ≤
M−1∑
m=0

Nm

( L−1∑
τ=0

∣∣x(τ)∣∣2 Pm−1∑
l=1

∣∣∣G(m)
l (τ)

∣∣∣
)
. (A.9)

Hence (A.3) yields

∑
m

∑
jk

∣∣∣〈x, g(m)
jk

〉∣∣∣2

≥
L−1∑
τ=0

∣∣x(τ)∣∣2

×
M−1∑
m=0

Nm

( Km−1∑
k=0

∣∣∣g(m)(τ − kTm
)∣∣∣2

−
Pm−1∑
l=1

∣∣∣∣∣
Km−1∑
k=0

g(m)(τ − kTm
)

×g(m)
(
τ + lNm − kTm

)∣∣∣∣∣
)

≥ a‖x‖2,
(A.10)

by condition (1) of Theorem 2. Similarly, condition (2) is ob-
tained from (A.3) by adding I to the first term of (A.3).



2730 EURASIP Journal on Applied Signal Processing

B. PROOF OF THEOREM 3

We have assumed that N = N0 is the smallest number of
frequency bins corresponding to the window index 0, and
that T = TM−1 is the largest time-translation parameter cor-
responding to the window index M − 1. The frame opera-
tor S is defined by (12). We will also be using the notation
ep/N τqT x ≡ x(· − qT)e2πip(·)/N .

Consider

Seu/N τvT x(t)

=
∑
m

∑
jk

〈
x(· − vT)e2πiu(·)/N , g(m)(· − kTm

)
e2πi j(·)/Nm

〉

×g(m)(t − kTm
)
e2πi jt/Nm

=
∑
m

∑
jk

〈
x(· − vT), g(m)(· − kTm

)
e2πi( j−uα

m)(·)/Nm

〉

×g(m)(t − kTm
)
e2πi jt/Nm

=
∑
m

∑
jk

〈
x, g(m)(· −(k−vβM−m−1)Tm

)
e2πi( j−uα

m)(·+vT)/Nm

〉

×g(m)(t − kTm
)
e2πi jt/Nm

=
∑
m

∑
jk

〈
x, g(m)(· − (k − vβM−m−1

)
Tm
)
e2πi( j−uα

m)(·)/Nm

〉

×e−2πi( j−uαm)vT/Nmg(m)(t − kTm
)
e2πi jt/Nm

=
∑
m

∑
jk

〈
x, g(m)(· − (k−vβM−m−1)Tm

)
e2πi( j−uα

m)(·)/Nm

〉

×eu/N τvT
[
g(m)(t−(k−vβM−m−1)Tm

)
e−2πi( j−uα

m)t/Nm
]
,

(B.1)

where we have used the fact that

eu/Nm τvTm g
(m)(t)

= eu/N τvT
[
g(m)(t − (k − vβM−m−1

)
Tm
)

×e−2πi( j−uαm)t/Nm

]
e−2πi( j−uα

m)vT/Nm

(B.2)

in canceling out an exponential factor. Hence, (B.1) contin-
ues to read

Seu/N τvT x

= eu/N τvT

[∑
m

∑
jk

〈
x, e( j−uαm)/Nm

τ
(k−vβM−m−1)Tm g

(m)
〉

×e( j−uαm)/Nm
τ
(k−vβM−m−1)Tm g

(m)

]

= eu/N τvT

[∑
m

∑
jk

〈
x, ej/Nm

τkTm g
(m)
〉
ej/Nm

τkTm g
(m)

]

= eu/N τvT Sx,
(B.3)

where in the second step, we have used the periodicity as-
sumption of the window functions g(m) for eachm.

So now if, for 0 ≤ p ≤ αm − 1 and 0 ≤ q ≤ βM−m−1 − 1,

x = S−1
[
g(m)(· − qTm

)
e2πip(·+vT)/Nm

]
, (B.4)

then

S
(
eu/N τvT S

−1
[
g(m)(· − qTm

)
e2πip(·+vT)/Nm

])

= eu/N τvT S
(
S−1
[
g(m)(· − qTm

)
e2πip(·+vT)/Nm

])

= eu/N τvT
[
g(m)(· − qTm

)
e2πip(·+vT)/Nm

]
= e(uαm+p)/Nm

τ
(vβM−m−1+q)Tm g

(m).

(B.5)

Therefore, writing j = uαm + p and k = vβM−m−1 + q, where
u = 0, 1, . . . ,N −1, v = 0, 1, . . . ,L/T−1, p = 0, 1, . . . ,αm−1,
and q = 0, 1, . . . ,βM−m−1 − 1, we see that 0 ≤ j ≤ Nm − 1,
and 0 ≤ k ≤ L/Tm − 1 for allm, and

S−1
(
ej/Nm

τkTm g
(m)
)

= S−1
(
e(uαm+p)/Nm

τ
(vβM−m−1+q)Tm g

(m)
)

= eu/N τvT S
−1
[
g(m)(· − qTm

)
e2πip(·+vT)/Nm

]
= eu/N τvT

[
e2πipvT/NmS−1

(
g(m)(· − qTm

)
e2πip(·)/Nm

)]
.

(B.6)

This implies that the dual-frame sequence{
S−1
(
ej/Nm

τkTm g
(m)
)
: m, j, k

}
(B.7)

is formed by translations by T and complex modulations by
the frequency parameter N of a few basic dual window func-
tions {S−1[g(m)(·−qTm)e2πip(·)/Nm] : m, p, q} with a multiple
constant. The theorem is thereby established.

C. OUTLINE OF THE PROOF OF COROLLARY 1

Consider, similarly,

SτqT0 x(t)

=
∑
m

∑
jk

〈
x
(· − qT0

)
, g(m)(· − kTm

)
e2πi j(·)/Nm

〉

×g(m)(t − kTm
)
e2πi jt/Nm

=
∑
m

∑
jk

〈
x, g(m)(· + qT0 − kTm

)
e2πi j(·+qT0)/Nm

〉

×g(m)(t − kTm
)
e2πi jt/Nm

=
∑
m

∑
jk

〈
x, g(m)(· + qT0 − kTm

)
e2πi j(·)/Nm

〉

×e−2πi jqT0/Nmg(m)(t − kTm
)
e2πi jt/Nm

= τqT0

(∑
m

∑
jk

〈
x, g(m)(· + qT0 − kTm

)
e2πi j(·)/Nm

〉

×g(m)(t + qT0 − kTm
)
e2πi jt/Nm

)

= τqT0

(
SqT0x

)
.

(C.1)
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So now, for x = S−1qT0
g(0),

SτqT0

(
S−1qT0

g(0)
)
= τqT0g

(0), (C.2)

or

γ̃(0,0,q) = S−1
(
τqT0g

(0)
)
= τqT0

(
S−1qT0

g(0)
)
. (C.3)
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