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This paper presents an adaptive weight computation algorithm for a robust array antenna based on the sample matrix inversion
technique. The adaptive array minimizes the mean output power under the constraint that the mean square deviation between
the desired and actual responses satisfies a certain magnitude bound. The Lagrange multiplier method is used to solve the con-
strained minimization problem. An efficient and accurate approximation is then used to derive the fast and recursive computation
algorithm. Several simulation results are presented to support the effectiveness of the proposed adaptive computation algorithm.
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1. INTRODUCTION

The directionally constrained minimization of power
(DCMP) adaptive array adjusts the array weights to mini-
mize the mean output power while keeping the antenna re-
sponse to the direction of arrival (DOA) of the desired signal
[1, 2]. When the true DOA is known a priori, the DCMP ar-
ray achieves a good performance. More precisely, the array
provides spatial filtering that maximizes the radar’s sensitiv-
ity in the desired direction while suppressing interference sig-
nals coming from other directions and measurement noises.
However, if there is a mismatch between the prescribed and
actual DOAs, the desired signal is viewed as an interference
and then suppressed [3]. Even a small mismatch may cause a
significant performance degradation.

For the solution, a number of robust array antennas that
impose the directional derivative constraints [4, 5, 6, 7, 8, 9],
the inequality directional constraints [10, 11, 12, 13], and the
mean-square deviation constraints [14, 15, 16] have been de-
veloped. These methods succeed in achieving flat main beam
magnitude responses and decreasing the array sensitivity to
look-direction errors. However, the adaptive weight compu-
tation algorithm to solve the constrainedminimization prob-
lem at each time step is not provided, which is required to
follow changing interference environment. Although some
adaptive algorithms were presented in [6, 7, 10], they
were derived based on the steepest descent technique and

therefore exhibit slower convergence than the sample matrix
inversion (SMI) technique [17, 18].

We here consider the robust array antenna with the in-
equality directional constraints [10, 11, 12, 13]. The robust
array antenna is designed so that the mean output power is
minimized under the constraint that the mean square devia-
tion between the desired and actual responses satisfies a cer-
tain magnitude bound. The constrained minimization prob-
lem can be solved by using the Lagrange multiplier method.
However, when the interference environment changes with
time, we have to find a root of a nonlinear equation at each
time step, which is computationally expensive. We thus apply
second-order Taylor series approximations to the nonlinear
equation to obtain the closed-form solution, and then derive
an adaptive weight computation algorithm based on the SMI
technique. The derived adaptive algorithm recursively com-
pute the weight vector in O(N2) computation time at each
time step, where N is the number of array elements. Several
simulation results are performed to show the effectiveness of
the proposed adaptive computation algorithm.

2. DCMP ARRAY ANTENNA

Consider a narrowband adaptive array antenna of N sensors.
We define the kth array input at a discrete time t as xk,t and
the kth weight as wk. We further define the array input vec-
tor and the weight vector as xt = (x1,t, x2,t, . . . , xN ,t)T and
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w = (w1,w2, . . . ,wN )T, respectively, where “T” denotes the
transpose operator. The array output is then given by

yt = wHxt , (1)

where “H” denotes the complex conjugate transpose. Con-
sider a desired sinusoidal signal with a DOA θd. Putting the
phase shift at the kth input as Φk(θd), the constraint of the
DCMP array is formulated as

cHw = h, (2)

where c is the constraint vector defined by cH =
(e− jΦ1(θd), e− jΦ2(θd), . . . , e− jΦN (θd)) and h is the desired re-
sponse. Although we here treat a single constraint, the ex-
tension to multiple (L) direction constraints is possible by
replacing c by the L × N matrix (cT1 , c

T
2 , . . . , c

T
L)

T, where L is
the number of constraints.

When the DOA θd is given, the DCMP array determines
the weight vector w so that the mean output power E[(yt)2]
is minimized subject to the constraint (2), where E[·] de-
notes the expectation operator. Using the Lagrange multi-
plier method, the solution to the linearly constrained min-
imization problem is obtained by [1, 2]

w = R−1c
(
cHR−1c

)−1
h, (3)

where R is the covariance matrix of xt, defined by R =
E[xtxHt ]. Adaptive weight estimation algorithms to follow
changing interference environment have been derived based
on the SD and SMI techniques [1, 17].

3. ADAPTIVE ALGORITHM FOR ROBUST
ARRAY ANTENNA

3.1. Constrainedminimization problem

The use of the equality constraint (2) causes performance
degradation in the presence of look-direction errors. For the
solution, a robust array antenna, which minimizes the mean
output power under the constraint that the mean square de-
viation between the desired and actual responses satisfies a
certain magnitude bound, has been proposed [14, 15, 16].
This is formulated as

min
w

wHRw (4)

subject to
1
2∆

∫ θd+∆

θd−∆

∣∣cT(θ)w − h
∣∣2dθ ≤ ε2, (5)

where ε and ∆ are small positive constants representing the
severity of the constraint and the angle width considered in
the constraint, respectively. While the equality constraint (2)
restricts the output response to h only at the angle θd, the
inequality constraint (5) makes the response close (in a least
squares sense) to h in the angle range [θd−∆, θd+∆]. The re-
sulting array therefore has robustness against look-direction
errors.

The inequality constraint must be an active equality con-
straint. If the constraint is not active, the solution to the op-
timization problem becomes w = 0, which does not make
sense. Hence we replace (5) by the equality constraint so that
the Lagrange multiplier method is immediately applied. The
Lagrangian function is then given by

H(w) = wHRw + λ

(
1
2∆

∫ θd+∆

θd−∆

∣∣cH(θ)w − h
∣∣2dθ − ε2

)
,

(6)

where λ is the Lagrange multiplier. The solution to the con-
strainedminimization problemmust satisfy the following re-
lations:

∂H(w)
∂w

= 0, (7)

1
2∆

∫ θd+∆

θd−∆

∣∣cH(θ)w − h
∣∣2dθ = ε2. (8)

We put

S = R +
λ

∆

∫ θd+∆

θd−∆
c(θ)cH(θ)dθ,

u = λ

∆

∫ θd+∆

θd−∆
c(θ)dθ

(9)

to have

H(w) = 1
2
wHSw − h

2
wHu− h∗

2
uHw + λ

(|h|2 − ε2
)

= 1
2

(
w − hS−1u

)H
S
(
w − hS−1u

)
− |h|

2

2
uHS−1u + λ

(|h|2 − ε2
)
.

(10)

Since S is positive definite and Hermitian, H(w) is mini-
mized by putting

w = λh

∆

(
R +

λ

∆

∫ θd+∆

θd−∆
c(θ)cH(θ)dθ

)−1 ∫ θd+∆

θd−∆
c(θ)dθ.

(11)

The constraint (8) is rewritten as

0 = wH

(∫ θd+∆

θd−∆
c(θ)c(θ)Hdθ

)
w −wH

(∫ θd+∆

θd−∆
c(θ)dθ

)
h

−
(∫ θd+∆

θd−∆
c(θ)Hdθ

)
wh∗ + 2∆

(|h|2 − ε2
)
,

(12)

where “∗” denotes the complex conjugate. The Lagrange
multiplier λ can be determined by substituting (11) into (12)
and then solving it for λ. However, the closed-form solution
is difficult to obtain due to its nonlinearity.
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When the generalized singular value decomposition of R
is obtained, the value of λ can be determined by finding a
root of a nonlinear equation, referred to as “secular equa-
tion” [19, 20]. A standard root-finding technique such as
Newton’s method is applicable to the solution of the non-
linear equation. Both root-finding algorithms and singular
value decomposition algorithms use iterative methods, in
which an iterative scheme is continued until convergence is
obtained, that is, until the new value is very close to the
previous value. When R changes with time as often hap-
pens, root-finding and singular value decomposition need to
be performed at each time step. The iterative methods re-
quire O(N2) computation time per iteration. The compu-
tational complexity increases with an increase in the num-
ber of iterations. Moreover, the use of the iterative meth-
ods at each time step is not suited for adaptive array pro-
cessing where the maximum processing time is crucial. We
thus derive the adaptive computation algorithm by applying
second-order Taylor series approximations to the nonlinear
equation. We here consider a single constraint to derive the
adaptive algorithm, as shown in (5). When there are multi-
ple (L) direction constraints, we can use a similar technique
to derive the adaptive algorithm by replacing c and ccH by
c1 + · · ·+ cL and c1cH1 + · · ·+ cLcHL , respectively, in (9), (10),
(11), and (12).

3.2. Computation of weight vector

We define the N-dimensional vectors p, q, and r as

p = c
(
θd
)
, q = dc(θ)

dθ

∣∣∣∣
θ=θd

, r = d2c(θ)
dθ2

∣∣∣∣
θ=θd

,

(13)

and the (N ×N) matrices G, V−1, and Q3 as

G = rpH + 2qqH + prH, (14)

V−1 = (R + 2λppH
)−1 = R−1 − 2λR−1ppHR−1

1 + 2λpHR−1p
, (15)

Q3 =
(
I +

∆2λ

3
V−1G

)−1
. (16)

Using the second-order Taylor series expansion, we approxi-
mately have

∫ θd+∆

θd−∆
c(θ)cH(θ)dθ

= 2∆c
(
θd
)
cH
(
θd
)
+
∆3

3
d2

dθ2
c(θ)cH(θ)

∣∣∣∣
θ=θd

+ · · ·

≈ 2∆ppH +
∆3

3
G,

∫ θd+∆

θd−∆
c(θ)dθ � 2∆p +

∆3

3
r.

(17)

Substituting (17) into (11) yields

w � λh

∆

{
R +

λ

∆

(
2∆ppH +

∆3

3
G
)−1}(

2∆p +
∆3

3
r
)

= λh
(
R + 2λppH +

∆2λ

3
G
)−1(

2p +
∆2

3
r
)

= λh
(
I +

∆2λ

3
V−1G

)−1
V−1

(
2p +

∆2

3
r
)

= λhQ3V−1
(
2p +

∆2

3
r
)
.

(18)

Putting the N-dimensional vectors vr , vq, and vp as

vp = ∆2λ

3
V−1p, vq = 2∆2λ

3
V−1q, vr = ∆2λ

3
V−1r,

(19)

the matrix Q3 in (18) is rewritten as

Q3 =
(
I + vrpH + vqqH + vprH

)−1
. (20)

Therefore, we can compute Q3 in O(N2) computation time
by recursive use of the matrix inversion lemma:

Q1 = I− vrpH

1 + pHvr
,

Q2 = Q1 −
Q1vqqHQ1

1 + qHQ1vq
,

Q3 = Q2 −
Q2vprHQ2

1 + rHQ2vp
.

(21)

3.3. Computation of Lagrangemultiplier

We define several real values as

α = pHR−1p, β = pHR−1q, γ = pHR−1r,

ξ = α
(
γ + γ∗

)
+ 2|β|2, ϕ = |h|

ε
, v = 1 + 2λα.

(22)

Then we have

pHV−1p = α

v
,

pHV−1q = β

v
,

pHV−1r = γ

v
,

phV−1GV−1p = ξ

v2
.

(23)

Neglecting small quantities of order ∆4 in (16), we approxi-
mately have

Q3 =
(
I +

∆2λ

3
V−1G

)−1
� I− ∆2λ

3
V−1G. (24)
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Substituting (24) into (18) yields

w � λh
(
I− ∆2λ

3
V−1G

)
V−1

(
2p +

∆2

3
r
)

� λhV−1
(
2p− 2λ∆2

3
GV−1p +

∆2

3
r
)
.

(25)

We now obtain two different ways of computing w, that is,
(18) and (25). The weight vector computed by (18) is more
accurate than the one by (25), because (18) is derived using
only approximations (17). We thus use (18) in the computa-
tion of w and (25) in the computation of λ.

Using (17), (23), and (25), we can approximately have

wH

(∫ θd+∆

θd−∆
c(θ)c(θ)Hdθ

)
w

= ∆λ2|h|2
(
8α2

v2
+
8
(
ξ − v|β|2)
3v3

∆2
)
,(∫ θd+∆

θd−∆
c(θ)dθ

)
w

= ∆λh
(
4α
v

+
2
(
ξ − 2v|β|2)
3αv2

∆2
)
.

(26)

Substituting (26) into (12) yields

λ2|h|2
(
4α2

v2
+
4
(
ξ − v|β|2)
3v3

∆2
)

− λ|h|2
(
4α
v

+
2
(
ξ − 2v|β|2)
3αv2

∆2
)
+ |h|2

= ε2.

(27)

After some manipulation, (27) is reduced to(
1− v2

ϕ2

)
+ ∆2 (v − 1)

3α2v

(|β|2(v + 1)v − ξ
) = 0. (28)

Solving (28) for v yields

v = ϕ +
ϕ− 1
6α2

{
ϕ(ϕ + 1)|β|2 − ξ

}
∆2. (29)

Thus we have

λ = v − 1
2α

= ϕ− 1
2α

+ ∆2 (ϕ− 1)
12α3

{
ϕ(ϕ + 1)|β|2 − ξ

}
. (30)

We see that the Lagrange multiplier is expressed indepen-
dently of the weight vector w. We can now obtain the closed-
form solution to the constrained minimization problem (4),
(5).

3.4. Summary of the proposed adaptive algorithm

To follow changing interference environment, we recursively
estimate R−1 by

R−1t = 1
1− µ

(
R−1t−1 −

µR−1t−1xtx
H
t R

−1
t−1

(1− µ) + µxHt R
−1
t−1xt

)
, (31)

t = 1, 2, . . .

R−1t = 1
1− µ

(
R−1t−1 −

µR−1t−1xtxHt R
−1
t−1

(1− µ) + µxHt R−1t−1xt

)
α = pHR−1t p

β = pHR−1t q

γ = pHR−1t r

ξ = α
(
γ + γ∗

)
+ 2|β|2

λ = ϕ− 1
2α

+ ∆2 (ϕ− 1)
12α3

{
ϕ(ϕ + 1)|β|2 − ξ

}
V−1 = R−1t − 2λR−1t ppHR−1t

1 + 2λpHR−1t p

vp = ∆2λ

3
V−1p

vq = 2∆2λ

3
V−1q

vr = ∆2λ

3
V−1r

Q1 = I− vrpH

1 + pHvr

Q2 = Q1 −
Q1vqqHQ1

1 + qHQ1vq

Q3 = Q2 −
Q2vprHQ2

1 + rHQ2vp

wt = λhQ3V−1
(
2p +

∆2r
3

)

Algorithm 1: Proposed adaptive algorithm.

where Rt is the estimates of R at time t and µ is a forget-
ting factor such that µ � 1. The computational complexity
per sample is of order N2. The direct computation of (31)
causes the problem of numerical stability when using a short
word-length processor. The use of the numerically stable up-
dating scheme based on the UD or square-root decomposi-
tion may be helpful. But we avoided the problem by using
floating-point double precision arithmetics in the following
simulation.

Algorithm 1 summarizes the proposed algorithm that re-
cursively computes the weight vector wt from the array in-
put xt in O(N2) computation time. It is here noted that p,
q, r, and ϕ can be computed a priori. We can consider that
the true and approximated solutions are very close to each
other because (18) and (30) are derived using second-order
Taylor series approximations. This will be verified through
computer simulations below.

4. COMPUTER SIMULATION

We consider a desired signal with a frequency 100MHz, a
power 1, and a DOA θd = 90◦, and an interference with a
frequency 100MHz, a power 10, and a DOA θi = 150◦. We
set h = 1, N = 4, ∆ = 0.5◦, ε = 0.02, T = 2 nanoseconds. We
chose the element spacing equal to one-half wavelength, and
added a white noise with mean 0 and variance 0.01(= σ2n) to
the array input.
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When the desired signal st is coming from a direction θ,
the covariance matrix of the array input is represented by

R(θ) = E
[
xtxHt

] = E
[∣∣st∣∣2]c(θ)c(θ)H. (32)

Let the optimal weight vector computed off-line be wo. The
array pattern with respect to θ is then represented by

G(θ) = E
[∣∣yt∣∣2] = wH

o R(θ)wo = E
[∣∣st∣∣2]∣∣wH

o c(θ)
∣∣2.
(33)

Figure 1 shows the array pattern of the robust array. We see
that the array antenna places a null in the direction of the
interference, 150◦, while keeping a large antenna response to
the desired direction, 90◦.

The array input xt is decomposed into the sum of the
desired signal component dt, the interference component it,
and the observation noise component et . The powers of dt,
it, and et are expressed as

Pd = wHE
[
dtdTt

]
w, Pi = wHE

[
itiTt
]
w,

Pe = wHE
[
eteTt

]
w,

(34)
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Figure 3: SINR for various values of ε. (a) True solution. (b) Ap-
proximated solution.

respectively. The signal-to-interference-plus-noise ratio
(SINR) is then defined by

SINR = Pd
Pi + Pe

. (35)

Let the actual and prescribed DOAs of the desired signal be
θr and θd, respectively. We put θd = 90◦ to design the con-
straint vector c, and computed the weight vector w for vari-
ous values of θr . Figure 2 plots the SINR as the function of θr .
The result for the conventional array computed by (3) is also
shown for comparison purposes. It is found that the robust
array offers a flat SINR in the look direction, although there
is a tradeoff in the noise rejection capability of the processor
in look directions which are far away from the desired signal.

Figure 3 shows the SINRs for ε = 0.01, 0.02, and 0.05
with ∆ = 0.5◦, where Figures 3a and 3b are the results of the
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Figure 4: SINR for various values of ∆. (a) True solution. (b) Ap-
proximated solution.

exact and approximated solutions, respectively, and P(a, b)
denotes the result for ε = a and ∆ = b. The exact solution
was obtained by (11) and (12), and the approximated solu-
tion was obtained by (18) and (30). We see that robustness
against look-direction errors is increased as ε is smaller, while
resolution capability of the desired and interference signals is
decreased. Therefore, we have to make a tradeoff between ro-
bustness and resolution capability in determining the value
of ε. We also see that the exact and approximated solutions
are very close to each other.

Figure 4 shows the SINRs for ∆ = 0.3◦, 0.5◦, and 1.0◦

with ε = 0.02. We see that robustness against look-direction
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Figure 5: SINR for various values of SNR. (a) True solution. (b)
Approximated solution.

errors is increased as ∆ is larger, while resolution capability is
decreased. Figure 5 shows the SINRs for σ2n = 0.01, 0.1, and
1 with ε = 0.02 and ∆ = 0.5◦, where Q(c) denotes the result
for σ2n = c. Figure 6 shows the SINRs forN = 4, 6, and 8 with
ε = 0.02, ∆ = 0.5◦, σ2n = 0.01, where R(d) denotes the result
for N = d. We see that robustness is decreased as σ2n is larger
or N is larger. We also see that the exact and approximated
solutions are very close to each other except for the case of
N = 8.

We quantitatively evaluated the approximation errors of
the Lagrange multiplier and the weight vector computed by
the proposed algorithm. Table 1 summarizes the true and
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Figure 6: SINR for various numbers of array elements. (a) True solution. (b) Approximated solution.

Table 1: Approximation accuracies.

N σ2
n ε ∆ λ̂ λ |w − ŵ|2 |w − ŵ|2/|w|2

4 0.01 0.02 0.5 24.6107 24.5686 7.44582e-08 2.97194e-07

4 0.01 0.01 0.5 49.963 49.6534 3.14965e-07 1.23124e-06

4 0.01 0.03 0.5 16.2252 16.2136 3.14146e-08 1.28040e-07

4 0.01 0.05 0.5 9.52998 9.52965 1.02032e-08 4.33819e-08

4 0.01 0.02 0.3 24.5805 24.5686 1.33783e-09 5.35673e-09

4 0.01 0.02 1 24.7523 24.5986 1.51836e-05 5.86991e-05

4 0.1 0.02 0.5 25.1836 25.1605 9.75074e-10 3.91061e-09

4 1 0.02 0.5 30.9070 30.9052 1.31363e-11 5.27997e-11

6 0.01 0.02 0.5 24.5654 24.5569 3.25641e-06 1.92091e-05

8 0.01 0.02 0.5 24.5626 24.5561 2.76087e-05 0.000189067

approximated Lagrange multipliers, the squared error be-
tween the true and approximated weights, and the normal-
ized error. The approximation is found to be very accurate.
Figure 7 plots the normalized error between the true and ap-
proximated weights as the function of the angle width ∆,
where Figure 7a is the result for ε = 0.01, 0.02, 0.05, Figure 7b
is the result for σ2n = 0.01, 0.1, 1, and Figure 7c is the result for
N = 4, 6, 8. It is evident that the normalized error increases
with an increase of ∆.

Finally, we compared the robust array trained by the pro-
posed algorithm to the conventional array trained by the SMI
algorithm in convergence performance. Figure 8 depicts the
convergence trajectories of the SINR, where Figures 8a and
8b are the results for θr = 90◦ and θr = 91◦, respectively.
We used the same parameters as in Figure 2. We see from
Figure 8a that both methods show almost the same perfor-
mance in the absence of look-direction errors. We see from

Figure 8b that the conventional method fails when there is
a mismatch between the prescribed and actual DOAs, while
the proposed method exhibits almost the same convergence
performance due to its robustness against look-direction er-
rors.

5. CONCLUSION

We have derived the adaptive weight computation algorithm
for the robust array antenna based on the SMI technique by
using second-order Taylor series approximations. The adap-
tive algorithm can recursively compute the weight vector
in only O(N2) computation time. Simulation results have
shown that we have to tune parameters ∆ and ε so that a
good tradeoff between robustness and resolution capability
is achieved, and that robustness depends upon the array size
and the SNR.
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Figure 7: Approximation accuracies: (a) Case I (ε =
0.01, 0.02, 0.05). (b) Case II (σ2

n = 0.01, 0.1, 1). (c) Case III
(N = 4, 6, 8).
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Figure 8: Convergence comparisons. (a) θr = 90◦. (b) θr = 91◦.

The inequality constraint for the case of broadband
sources was considered in [14, 16]. Using the same approx-
imation method, the result for a narrowband source will be
extended to broadband sources.
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