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We present a fast method for road network extraction in satellite images. It can be seen as a transposition of the segmentation
scheme “watershed transform + region adjacency graph + Markov random fields” to the extraction of curvilinear objects. Many
road extractors which are composed of two stages can be found in the literature. The first one acts like a filter that can decide from
a local analysis, at every image point, if there is a road or not. The second stage aims at obtaining the road network structure. In the
method, we propose to rely on a “potential” image, that is, unstructured image data that can be derived from any road extractor
filter. In such a potential image, the value assigned to a point is a measure of its likelihood to be located in the middle of a road.
A filtering step applied on the potential image relies on the area closing operator followed by the watershed transform to obtain a
connected line which encloses the road network. Then a graph describing adjacency relationships between watershed lines is built.
Defining Markov random fields upon this graph, associated with an energetic model of road networks, leads to the expression of
road network extraction as a global energy minimization problem. This method can easily be adapted to other image processing
fields, where the recognition of curvilinear structures is involved.
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1. INTRODUCTION

Many different methods have been proposed to segment
curvilinear structures in 2D images, some of them being ded-
icated to road network extraction. We recall some of them
which are, to our humble opinion, the most promising ones:

(i) tracking by active testing by [1];
(ii) unifying snakes, region growing, and energy/Bayes/

MDL, so-called region competition, by [2];
(iii) defining Markovian field on a set of segments by [3];
(iv) dynamic programming for saliency optimization by

[4];
(v) using a Markov point process by [5].

These methods suffer from drawbacks. The saliency ap-
proach does not rely on a global optimization process.
Tracking-like approaches plainly cannot take into account
features extracted from image regions and require a start-
ing point; these approaches are thus limited to rather
easy segmentation problems. Markovian approaches are
often computationally expensive due to the high num-
ber of primitives—small segments—they have to handle.

Finally, region competition is also an expensive approach,
where both the region and variational flavors are not often
pertinent when objects are not regions.

In this paper, we detail the detection method for road
network previously introduced in [6], which overcomes
these drawbacks. Compared to the previous contribution,
the present document describes our road model, adds algo-
rithmic considerations, and shows how the method can be
adapted to other problems in pattern recognition.

This paper is organized as follows. First, Section 2 re-
calls some classical tools used in pattern recognition. Then,
Section 3 details the method we propose. Section 4 discusses
our results and compare them to the ones obtained using a
Markov point process. Finally, Section 5 concludes and gives
perspectives.

2. PRELIMINARIES

2.1. Watershed transform andminima removing

The watershed transform (WT) is the classical method
used for image segmentation in the field of gray-scale
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Figure 1: Watershed transform of a 1D gray-scale image. We begin by piercing the regional minima of the surface then we slowly flood it
with water. Where water coming from different basins meets, a dam is built. The resulting watershed transform is the set of dams.

Figure 2: Watershed transform of gray-scale images; the image is viewed as a 3D landscape and the watershed lines are the crest lines.

mathematical morphology. Figure 1 recalls the basic princi-
ple of the watershed transform by immersion.

A 2D gray-scale image is considered as a 3D landscape
(Figure 2). In this case, the watershed lines are the crest lines
and they separate adjacent catchment basins, that is, regions.
Since images have numerous minima, applying the water-
shed transform to an image leads to an over-segmentation.

A classical algorithm to suppress minima in images is the
morphological closing operator. When there is no prior in-
formation about the shape of image objects, closing is usu-
ally performed with a disk as structural element in order to
preserve isotropy. However, artifacts appear in resulting im-
ages: crest lines can strongly move when one wants to remove
many minima, that is, when filtering strength (i.e., the disk
radius) increases.

Conversely, an area closing operator does not present this
drawback. The underlying idea of this operator, defined by
Vincent in [7], is to remove connected components whose
area is smaller than a parameter λ, λ ∈ N. This morphologi-
cal filter is said to be “shape preserving”: it acts on connected
components thus it does not change the shape of the struc-
tures in the image. The gray-scale formulation relies on the
threshold superposition principle [7]; a fast implementation
of this operator is provided by [8].

Figure 3 illustrates the contour shifting/unshifting prop-
erties of both “classical” and area closing operators. Starting
from the classical house image, closing operators are applied
to its gradient norm image (GNI); the negatives of the re-
sults are depicted by images in Figures 3a and 3b. The water-
shed transform algorithm is then applied, which respectively
leads to images in Figures 3c and 3d. Please note that these
segmentation results contain the same number of regions.
However, contours are shifted when the classical closing is

involved, which is not the case with the area closing. More-
over, in the former case, regions have more uniform sizes and
are spread more uniformly over the image space than in the
latter case. This is another drawback since we prefer segmen-
tations that are more adapted to original image data.

2.2. Region adjacency graph and
Markov randomfields

A presently common framework to segment an image I or to
extract objects from I is based on the WT; it can be summa-
rized as follows.

(1) An image G of the gradient norm of I is computed.
Contours in the GNI, G, have high intensity values,
whereas regions have low intensity values.

(2) The WT is applied to G which results in a partition
of I into regions. The watershed lines follows crest
lines of G, that is, objects contours. This partition,
P, is an over-segmentation since G contains a greater
number of minima than the effective number of ob-
jects/regions to segment.

(3) The region adjacency graph (RAG) is extracted from P.
In such a graph, a node corresponds to a region (more
precisely, a catchment basin) and an edge between two
nodes indicates that these regions are adjacent. Extra
information may be put into the graph like statistical
estimations concerning regions of I which are then en-
closed in graph nodes, or saliency values of contours
estimated from I and added to graph nodes.

(4) The last step aims at grouping regions according to
given criteria in order to get a final segmentation. To
that aim, a Markov random field (MRF) is defined
onto the RAG and the segmentation process is handled
by a Markovian relaxation.
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Figure 3: Watershed transform results with the same final number of regions. (a) Closing of GNI (inverted) with a disk (r = 4, 3). (b) Area
closing of GNI (inverted) (a = 50). (c)W obtained from image (a). (d)W obtained from image (b).

This framework is powerful since it remains general—it
can be applied to various image segmentation problems—
and since the final segmentation results from a global process
on high-level image primitives (regions in that case). More-
over, it enables operational segmentations even when images
are over-sized and when objects are difficult to segment; for
instance, Géraud et al. [9] succeeded in segmenting inter-
nal brain structures from magnetic resonance images. This
framework has been discussed by many authors (see, e.g.,
[10, 11, 12, 13]), and a multiscale version of this framework
has been proposed in [14].

3. PROPOSEDMETHOD

The method we propose is composed of four steps, derived
from the ones described in Section 2.2 (see Figure 4 for an
overview of the proposed framework). They are illustrated
with a small part (700 × 380 pixels) of a Landsat image
from St. Johns city, Canada, having a 25m resolution and
7 spectral channels. This original image is under the follow-
ing copyright: “ c© 2000. Government of Canada with permis-
sion from Natural Resources Canada”; it can be fetched from
http://geogratis.cgdi.gc.ca/.

3.1. Preprocessing

The preprocessing step of our method aims at providing a
potential image. Having a high potential value assigned to a
point means that this point is very likely located in the cen-
ter of a road. On the contrary, having a low potential value
means that this point may not belong to a road. A poten-
tial value can be either a fuzzy degree (a membership value,

a possibility or necessity value, or a belief or plausibility
value), a probability, or a value resulting from estimators of
road presence.

In particular, the literature proposes a lot of road extrac-
tor filters. Some of them have been designed to a specific type
of satellite images, for a given imagery system, a given reso-
lution, and sometimes a given kind of scene—urban, rural,
and so forth. Some other filters are more or less adaptable to
the variability that can be found in satellite images. Depend-
ing on the resolution of images to be processed, these filters
are line detectors such as in [3, 15, 16] or more elaborated fil-
ters when roads appear to be thick such as in [17, 18]. In all
cases, we can derive from these filters a gray-level image cor-
responding to the magnitude of their response, which gives
us a potential image to work with.

In the case of low-resolution images, pixels with high po-
tential values indicate the possible presence of a road, and
the expected road network is one pixel thick. In the case of
high-resolution images, the highest values of filter response
are observed in the middle of roads. The road network topol-
ogy can then be represented by a one-pixel thick object, pass-
ing through the middle part of roads. Please note that we do
not aim at getting any local attributes of roads such as its
width, and so forth.

The main property of such potential images is that, in
both cases, the road network is located on crest lines of the
potential image.

As an illustration, we have chosen a very simple poten-
tial image, the red channel (0.63–0.69 µm); it is depicted in
Figure 5. We stress again that more elaborated potential im-
ages can also be used.

http://geogratis.cgdi.gc.ca/
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Figure 4: Overview of the proposed framework; gray boxes symbolize parameters to be defined.

Figure 5: Gray-level potential field.

3.2. Filtering
The filtering step consists in computing an area closing of
the potential image and then running the WT (Section 2.1).
The potential image, once closed (Figure 6), has much fewer
minima than the “original” potential image (Figure 5) while
properly retaining crest lines location. Therefore, the re-
sulting watershed lines (Figure 7) include the road net-
work.

In Figure 7, the watershed lines resulting from different
values of area are depicted. Multiscale properties of this mor-
phological filtering can be observed: new curves (features) do
not appear when area (scale) increases and a feature which
is present at a given scale (watershed lines obtained with a
given area) is still present at a lower scale (in the watershed
lines obtained with a smaller area). This property is very im-
portant since the only parameter of this filtering step is the
area; even with a large value of the area, we are guaranteed to
have important roads included in watershed lines.

Please note that applying the WT to segment curvilinear
objects is not an original contribution. This idea is at least

Figure 6: Result of morphological closing (area = 500).

mentioned in [19],1 and in [20]. However, the original part
of our work comes from the use of a graph built from the
result of the WT. This new step is explained in the following
section.

3.3. Curve adjacency graph
Using the watershed lines, we build a curve adjacency graph
(CAG). A node of this graph (circles on Figure 8) represents
a shed, that is, a connected part of the watershed lines sepa-
rating two adjacent basins. An edge (gray lines on Figure 8)
is drawn between two nodes/sheds if one end of the first shed
is connected with an end of the second one through the wa-
tershed lines.

Edges coming to a node are divided into two groups, de-
pending on the shed end they are connected to (Figure 8a).

1See “3D segmentation of brain structures from MR images using mor-
phological approaches,” English version of part III-7 and Appendix C
of [19]; it is electronically available from http://www.lrde.epita.fr/people/
thierry.geraud/publications.html.

http://www.lrde.epita.fr/people/thierry.geraud/publications.html
http://www.lrde.epita.fr/people/thierry.geraud/publications.html
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(a) (b)
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Figure 7: Different strengths of filtering. (a) area = 10. (b) area = 100. (c) area = 1000. (d) area = 10 000.

(a) (b)

Figure 8: (a) For every node, edges are divided into two groups (gray and black lines) depending on the shed end they are connected to.
(b) Complete CAG.

This distinction, symbolized by disk-shaped and square-
shaped anchors in Figure 8, permits to properly handle in the
next step (Section 3.4) some geometrical constraints about
the road network.

Our algorithm to build this graph starts from the result
of a WT with labels. This watershed variant assigns a unique
label (an integer) to each region; the label “white” is assigned
to watershed lines. The basic idea of this algorithm consists
in visiting all the white pixels from neighbors to neighbors
and in creating new nodes when reaching a crossing point.
During this search, a label is assigned to each point of the
node, it is then used to link nodes together.

We denote byW the set of pixels which belong to water-
shed lines and by Vp the neighborhood of a point p ∈W .

Definition 1 (crossing point). Let Na denote the number of
adjacent regions of a point p ∈ W . p is a crossing point if
and only if Na > 2.

Na is computed by comparing the label assigned to each
pixel in the neighborhood of p. Figure 9 contains the values
of Na for an example image.

Using this definition, it is now easy to describe an iter-
ative algorithm which creates the CAG (Algorithm 1). The
presented version uses seeds to keep track of pixels where it
has to create new nodes. When it reaches a crossing point,
seeds are emitted for each neighbor, and when a seed is hit,
a new node is created. Figure 10 shows the result of the node
creation step, circles are seeds and crosses denote crossing
points.

Multiple crossing points and crossing points with too
many neighbors may cause problems during the graph build-
ing process. Examples of these kinds of configuration are cir-
cled in Figure 11.

The multiple crossing points configuration occurs when
two crossing points are adjacent; in this case Algorithm 1
would create a useless node and nodes would not be linked
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Figure 9: Number of adjacent regions.
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Figure 11: Potential difficulties.

correctly. The selected solution is not to emit any seed at a
crossing point p1 if another crossing point p2 is in its neigh-
borhood and to add the neighbors of p1 in the neighbors list
of p2. Thus the seed will be emitted once.

In the second potentially dangerous configuration, the
visiting order can lead to the omission of a link. Indeed if,
for example, the algorithm visits—in this order—pixels la-
beled “1,” “3,” and “2” of Figure 11, the adjacent labels of the
crossing point (pixel “2”) would be (following the labeling
of Figure 10) only “4”and “6”: we would have lost the infor-
mation needed to create the edge with the node “5.” We now
suppose that the algorithm visits pixels “1,” “2,” and “3,” the
adjacent labels of “2” would be “4,” “5,” and “6”: we would
be able to link the node “5” with its adjacent nodes. The re-
tained solution is to sort neighbors in such a way that the
algorithm visits crossing points before any other neighbor.

Figure 12 shows the graph built using our algorithm.

(1) Let I denote the input image,

T a stack of points (will be used to store the pixels to

explore), E a 2D array of booleans initialized to false
(will be used to store the seeds),

L a 2D array of nodes (will be used to store the label of
each of the points of the watershed lines),

n a node,

p the first pixel of a watershed line,

G the resulting graph

(2) push(T , p)

(3) /∗ create nodes ∗/

(4) while T �= ∅ do

(5) p ← pop(T)

(6) L[p]← label(n)

(7) if p ∈ E, then

(8) n← new node(G)

(9) end if

(10) let NeighW denote the set of neighbors of p inW

(11) for all s ∈ NeighW do

(12) if E[s] = true, then

(13) E[s] = false

(14) end if

(15) end for

(16) push(T , NeighW )

(17) if p is a crossing point, then

(18) for all s ∈ NeighW do

(19) E[s]← true

(20) end for

(21) end if

(22) end while

(23) /∗ create edges ∗/

(24) for all crossing points p do

(25) let Vp denote the set of neighbors of p inW

(26) for all si ∈ Vp do

(27) for all s j ∈ Vp do

(28) if i �= j, then

(29) add edge(G,L[si],L[s j])

(30) end if

(31) end for

(32) end for

(33) end for

Algorithm 1: Building a CAG: basic algorithm.

3.4. Markovian relaxation

Extracting road networks now turns out to be a graph label-
ing problem that can be solved by modeling it using MRFs.
Two types of information can be used to distinguish whether
a node of the CAG is a road or not. The first one concerns the
shape of the considered node and the values of the pixels of
the potential image. For instance, we can assume that roads
are straight lines with a high and almost constant potential
value along the shed. The way roads are organized constitutes
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Figure 12: Built graph.

another type of information which can be used to recognize
them. For instance, a road is, most of the time, linked to an-
other road and does not stop abruptly. This idea can be ex-
pressed locally since the observation of the adjacent sheds of
a node s is enough to know if s is realistically linked to the
road network.

As we will later see in more detail, this feature of our
graph labeling problemmade it suitable to bemodeled with a
MRF. MRFs have been widely used in image processing since
1984 (see [21]); our use is close to Tupin’s one [3] who used
them to label a graph made up of small straight segments ex-
tracted from SAR images in order to extract road networks.

We first recall some basic results about MRFs. We denote
by S the set of sites, by Y the observation field, by X the result
field, by Xs and Ys their respective restriction to a given node
s, by xs and ys their realization, and by XNs the restriction of
X to the neighborhood of s. The variable xs has a Boolean
realization where 1 means is road and 0 means not road.

Definition 2 (MRF). Y is a MRF if and only if

P
(
Ys = ys

∣∣Xr = xr , r ∈ S, r �= s
)

= P
(
Ys = ys

∣∣xr , r ∈ YNs

)
.

(1)

Definition 3 (Gibbs distribution). LetU(x) denote an energy
function. A Gibbs distribution takes the following form:

P(X = x) = 1
Z
exp

(−U(x)
)
, (2)

where Z is a normalizing constant called the partition func-
tion. The energy U(x) can be defined as the sum of clique
potentials Vc(x) over all possible cliques C:

Uc(x) =
∑
c∈C

Vc(x). (3)

In this case, we call a Gibbs random field (GRF) a random
field whose distribution obeys a Gibbs distribution:

P(X = x) = 1
Z
exp

(−Uc(x)
)

= 1
Z
exp

(
−
∑
c∈C

Vc(x)

)
.

(4)

Finally, the Hammersley-Clifford theorem establishes the
equivalence of MRF and GRF.

We can now switch back to our labeling problem. The
labeling is an inverse problem: finding a realization x of X ,
assigning the labels to the nodes, using y, and the input data.
We can use the maximum a posteriori (MAP) and search for
the configuration x̂ which maximizes the probability P(X =
x|Y = y).

Using Bayes’ theorem, we can write

P
(
X = x|Y = y

) = P
(
Y = y|X = x

)
P(X = x)

P(Y = y)
. (5)

P(Y = y) is a constant which does not depend on the real-
ization of x. We suppose that in the observation field every
node is independent:

P
(
Y = y|X = x

) =∏
s

P
(
Ys = ys

∣∣Xs = xs
)
. (6)

As X is a MRF, we can write P(X = x) = (1/Z) exp(−U(x)).
Combining (2), (5), and (6) we get

P
(
X = x|Y = y

)∝ P
(
Y |X)P(X)

∝ elnP(Y |X)−U(X)

∝ e−U(x|y),

(7)

where

U
(
x|y) =∑

s∈S
− lnP

(
ys|xs

)
+
∑
c∈C

Vc(x). (8)

Consequently the a posteriori distribution is a Gibbs distri-
bution and from the Hammersley-Clifford theorem the con-
ditional field P(X|y) is a MRF. We are looking for the config-
uration which maximizes P(X = x|Y = y), therefore the one
which minimizesU(x|y): the road extraction is expressed as
an energy minimization problem.

By defining P(ys|xs) = exp(UD(ys|xs)), (6) and (8) lead
to

P
(
Xs = xs

∣∣Ys = ys
)∝ exp

(−UD
(
ys
∣∣xs) +Uc

(
YNs

))
. (9)

The first energy term, UD(ys|xs), models a priori knowl-
edge about roads; we will call it the data energy. As a node
designates a small piece of the watershed lines, that is, a set
of points, we can have measures associated with every node,
such as the curvature of this piece of line, its “potential”mean
value (measured from the potential image), its contrast with
respect to adjacent regions, its saliency [22], and so forth.

We first define a measure of the curvature. Let N be the
number of points in a shed, we assume that the list of points
is ordered (from the start of the shed to its end). The local
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Figure 13: Values Uσκs , Uc̄s , Up̄s , and U∆ p̄s associated with each shed (darkest sheds have the lowest energy); sheds with an energy lower than
the mean energy are two pixels wide. (a) Variance deviation of the local curvature: Uσκs . (b) Mean contrast: Uc̄s . (c) Mean potential: Up̄s .
(d) Mean variation of potential: U∆ p̄s .

discrete curvature at the ith point of the list pi = (xi; yi) ∈ N2

can be computed using

κi =
√(

yi−1 − 2yi + yi+1
)2

+
(
xi−1 − 2xi + xi+1

)2
. (10)

Curvature is not sufficient to characterize the shape of a
road: for example, a portion of a circle could be a regular road
but it has a constant nonzero curvature. On the other side,
highly oscillating sheds are not roads and have a nonzero cur-
vature. Another criterion is the variance σκ of the curvature
κ:

σκ = 1
N

N∑
i=1

(
κi − c̄i

)2
, (11)

where c̄i denotes the mean of the curvature for a shed.
This measure is combined with some other ones based

mainly on the potential values pi at point i. In our model the
data energy UD(x) for a node x is a function of

(i) mean potential p̄s = (1/N)
∑N

i=1 pi along the shed;
(ii) mean variation ∆ p̄s = (1/N)

∑N
i=0 |pi− pi−1| of poten-

tial along the shed;

(iii) mean curvature κ̄s = (1/N)
∑N

i=0 κi of the shed;
(iv) variance σκs of the local curvature;
(v) mean contrast between each point of the shed and its

neighbors:

c̄s = 1
N

N∑
i=1


 1
card

(
Vi
) ∑

v∈V

(
pi − pv

), (12)

where Vi denotes the neighborhood of point i.

Energy terms are then built using these measures. For in-
stance if κ̄ and p̄ denote the mean curvature and the mean
potential for all the sheds, we can buildUk andUp as follows:

Uκ
(
xs|ys

) =

κs if ys = 1,

κ̄ otherwise,

Up(xs|ys) =

1− ps if ys = 1,

1− p̄ otherwise.

(13)

Using these notations, the data energy term can be written as

UD
(
xs|ys

) = a1 ·Up + a2 ·U∆p + a3 ·Uκ

+ a3 ·Uσκ + a4 ·Uc̄,
(14)

where a1, a2, a3, and a4 denote coefficients which need to be
adjusted. Values of Uσκs , Uc̄s , Up̄s , and U∆ p̄s for the image of
Figure 5 are depicted in Figure 13. In order to obtain a low
energy for each shed belonging to the road network, we need
the four criteria. But the distinction power of Uσκs and Uc̄s is
better than that of Up̄s and U∆ p̄s . Consequently, best results
are obtained when a3 and a4 are greater than a1 and a2.

The second energy term,Uc(YNs) deals with labeling con-
textual information; we will call it the prior energy. We use a
model rather close to the Potts model.We first recall the latter
for a set of labels l ∈ Λ and a clique c:

Uc =
∑

c=(i, j)
βδ
(
li, l j

)
, (15)

where

δ
(
li, l j

) =

1 if li = l j ,

0 otherwise.
(16)
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Figure 14: Prior energy: configurations with a good energy in Potts’ model but undesirable in our road model.

Table 1

Configuration Probability Prior energy

1 1
? High 0.0

2 1
?

Medium 0.2

n 1
?

Low 1.0

2 2
?

Low 1.0

With β < 0, energy decreases when the neighbors of a node n
have the same label as that of n.

To model a road network, we have a similar need: if a
node is linked to two nodes labeled as “road” but has high
data energy, we would like to label it as road. However some
configurations like those of Figure 14 would have a low en-
ergy level in the Potts’ model but can not occur in a road
model. This is why we need to distinguish connections com-
ing from one side of the shed and those which come from
the other side. Table 1 summarizes the different cases and the
corresponding prior energy.

Finally, the simulated annealing algorithm [23] is em-
ployed to find a configuration of minimal energy. The
metropolis sampler and a linear temperature decrease sched-
ule have been used in our experiments.

Details about these classical algorithms can be found in
any optimization textbook.

4. RESULTS

4.1. Commented results and implementation issues

We have validated our method on about a dozen of Land-
sat images. Applying the whole road extraction process to an
image having 2×106 pixels takes less than twenty seconds on
a 1.7GHz personal computer running GNU/Linux. A repre-
sentative result is depicted in Figure 15.

Figure 15: Final MRF labeling.

While a rigorous comparative study would require a
whole paper by itself, some clues allow us to hypothesize that
our method is among the fastest and most accurate avail-
able. The morphological filtering step relies on the area clos-
ing and the WT, which are well-studied algorithms that have
efficient implementations. The optimization step, which re-
lies on the simulated annealing algorithm, can be slow if the
graph used contains too many nodes. However, our frame-
work builds—and that’s one of its main aspects—a small,
though accurate, graph.

In particular, our method is sped up when the area pa-
rameter increases, since the CAG is becoming smaller. Filter-
ing often leads to information loss, but with area = 500 for
our 25m resolution test image, we obtain a very lightweight
graph (about 126 nodes; see Table 2) and the filtering step
only prevents us from extracting loops in road network
whose area is less than 0.3 km2. Our method is therefore
rather insensitive to data simplification.

As a reference, the framework proposed by Tupin et al.
[3] typically works on graphs made up of tens of thousands
of nodes. This leads to a slower optimization process. Simi-
larly, Markov points processes like the one used in [24] (see
Section 4.2) require a longer optimization step than the pro-
posed method.

It should be noted that contrary to some other methods
(for instance, in [25]), no attempt has currently been made
to recover partially occluded roads. If the road followed by a
watershed line stops, the latter will move towards the closest
high potential (Figure 16), which has no reason to be corre-
lated with the path of the occluded road. This situation leads
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Table 2

Area Number of sheds Number of links
2000 33 51
1000 72 120
500 126 211
250 239 434
100 535 984
50 1038 1948
10 5074 9533

to sheds with a part corresponding to a road and a chaotic
part, therefore the associated data energy is not significant.

A way to address this problem is to split nodes associated
to an incoherent energy. For example, a node can have a low
energy if we take into account its first ten points, and a high
one for the remaining points. We could split this node in two,
then create an artificial node which would link the first ten
points with the closest shed in the direction they point to.

Another conceivable improvement is to add a postpro-
cessing step to the framework. This step would “reconstruct”
sheds which have an associated energy below a given thresh-
old or create the artificial nodes previously described.

We have developed ourmethod with our C++ image pro-
cessing library Olena [26]. Olena is a free software under
the GNU public licence (GPL) and can be downloaded from
our web site http://www.lrde.epita.fr. Olena provides a wide
range of objects:

(i) images structures: 1D, 2D, or 3D images and graphs;
(ii) safe data types: integers, floating values and different

color encodings;
(iii) utility objects: points, iterators, and so forth.

Olena also provides fast implementation of algorithms and is
a generic library. An algorithm is written once while accept-
ing various input types. Olena can thus be used in different
fields of image processing and pattern recognition. Source
code of our method implementation is available on the In-
ternet on our web site.

4.2. Comparisonwith another approach

Figure 17 is the result of the method proposed in [24] ap-
plied to the image depicted in Figure 5. This method is based
on stochastic geometry and reversible jump Monte Carlo
Markov chains (RJMCMC) dynamic.

The authors considered that roads consist of a thin net-
work which can be approximated by connected lines seg-
ments. They build a marked point process using the Candy
model as a prior model and a likelihood term based on sta-
tistical hypothesis tests. This leads to a MAP estimator of the
road network which is used in conjunction with a simulated
annealing algorithm to get the final result.

The result depicted in Figure 17 needed about one hour
of computation on a 1GHz computer running GNU/Linux
to be extracted. Since the method proposed in this work
found the result shown in Figure 15 in less than thirty sec-
onds on a similar computer, we can safely argue that our ap-
proach is faster.

Result

Watershed

Figure 16: Roads partially occluded are not recovered.

Figure 17: Results from a Markov object process.

Another significant advantage of the proposed method is
that we do not assume that roads can be approximated by
connected straight lines; this leads to more natural results in
rural areas, where roads are often curved.

However, relying on a Markov object process is a more
flexible approach than ours since it is easier to model
and introduce various kinds of information in such a pro-
cess.

4.3. Framework adaptation

The proposed recognition framework is not limited to road
network extraction; it can also easily be adapted to segment
some other curvilinear objects, as depicted in Figure 18. We
briefly show in this section the steps that need to be modified
for a given segmentation application.

The preprocessing step depends on the particular appli-
cation and on the original image data. For instance, when the
original image contains a curve to be segmented and when
this curve is dark pixels on white background, the poten-
tial image can be as simple as the original image once in-
verted.

Setting the area parameter of the morphological filtering
step also depends on both application and data. As explained
in Section 2.1, this parameter removes image local minima.

http://www.lrde.epita.fr
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(a)

(b)

Figure 18: Examples of other applications of the proposed framework: (a) wires segmentation, (b) form segmentation.

Thus, considering theWT result, this parameter has an influ-
ence on merging small catchment basins. When a curvilinear
object contains a loop, this loop can disappear if its area is
lower than the area parameter value.

Finally, defining the energies for the MRFs is also data
dependent. Features associated with nodes—a priori knowl-
edge about piece of curvilinear objects—are numerous; the
ones related to prior energy express knowledge about the
global shape of the curvilinear objects and the connections
between its different parts; for instance, a feature can be a
continuity measure when the object is a smooth curve or, in
the contrary, a measure that ensures that the object is only
composed of straight lines and π/2 breaks.

5. CONCLUSION

We have presented a method to extract road networks from
satellite images. We have transposed the recognition scheme
“watershed transform + region adjacency graph + Markov
random fields,” described in Section 2.2 and which is dedi-
cated to image segmentation, to the problem of road network
recognition. To that aim, we propose a recognition scheme
that is, as far as we know, original: “area opening + water-
shed transform + curve adjacency graph + Markov random
fields.”

This recognition scheme is a global optimization process
so it provides robust and reproducible results. Moreover, it
is general and can easily be adapted to other image process-
ing fields where the recognition of curvilinear structures is
involved.
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