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Abstract

Explicit motion estimation is considered a major factor in the performance of classical motion-based super
resolution (SR) algorithms. To reconstruct video frames sequentially, we applied a dynamic SR algorithm based on
the Kalman recursive estimator. Our approach includes a novel measurement validation process to attain robust
image reconstruction results under inexplicit motion estimation. In our method, the suitability for high-resolution
pixel estimation is determined by the accuracy of motion estimation. We measured the accuracy of the image
registration result using the Mahalanobis distance between the input low-resolution frame and the motion
compensated high-resolution estimation. We also incorporate an effective scene change detection method
dedicated to the proposed SR approach for minimizing erroneous results when abrupt scene changes occur in the
video frames. According to the ratio of well-aligned pixels (i.e., motion is compensated accurately) to the total
number of pixels, we are able to detect sudden changes of scene and context in the input video. Representative
experiments on synthetic and real video data show robust performance of the proposed algorithm in terms of its
reconstruction quality even with errors in the estimated motion.

1. Introduction
In imaging devices and applications, we often have to
deal with degraded low resolution (LR) images due to
because of the theoretical and practical limits of imaging
devices. In visual surveillance and satellite imaging sys-
tems, certain regions of interest in the input video must
be magnified for more detailed analyses. However, it is
difficult to obtain satisfactory images using conventional
image zooming techniques and the interpolation meth-
ods. Expensive imaging devices capable of capturing
images of higher resolution or higher quality may not be
desirable for higher cost.
Nowadays, the super resolution (SR) algorithm has

been considered one of the most promising methods to
overcome the limits of imaging devices since it does not
induce any additional expensive hardware. The SR algo-
rithm is an image processing technique that can recover
an HR image from multiple LR images.

Researchers have investigated a variety of SR
approaches over the past last two decades in an attempt
to achieve better image reconstruction results [1,2]. SR
algorithms can be divided into two broad categories.
The first is motion-based SR which considers movement
between the LR image frames as a cue [3-9]. By making
certain assumptions in the image acquisition model, this
approach becomes straightforward and easy to imple-
ment. In this scheme, however, precise motion estima-
tion and compensation are very important to
reconstruct the HR image. Since the estimation of com-
plex motions of multiple objects in LR video is difficult
and time-consuming, new approaches have recently
been developed to avoid the high dependency of
motion-based SR on accurate motion estimation
[10-14]. These approaches constitute the second cate-
gory of SR algorithms and are referred to as motion-free
SR [15]. Instead of directly estimating the motion,
motion-free SR obtains spatial enhancement by incor-
porating cues such as blur.
Among the various motion-free SR approaches, the

example-based SR algorithm [11] is one of the most
promising methods. This method involves the concept
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of prior information to reconstruct HR image. They use
learned data sets of image patches capturing the rela-
tionship between LR and HR images and find appropri-
ate patches for estimating an HR image. However,
because a large amount of training data is required to
obtain a robust reconstruction results, example- or
learning-based SR incurs an enormous computational
load.
Daniel et al. [12] tried to handle this problem by com-

bining the motion- based SR and example-based SR.
Based on an assumption that patches in a single natural
image tend to recur many times in an image, their
approach uses LR/HR pairs of patches within and across
the scales of a single image. However, the quality of the
reconstructed image still depends on the accuracy of
motion estimation when compensating motions of the
patches. In addition, the desired LR/HR pairs of patches
might be insufficient when the observed image is small
or severely degraded. This makes it hard to apply their
approach to practical applications such as video surveil-
lance systems.
For the point of view of estimation criteria, SR algo-

rithms may be divided into static and dynamic SR [8].
Static SR fuses multiple LR images to reconstruct a sin-
gle HR image at a specific time point, while dynamic SR
exploits the temporal evolution which reconstructs the
HR image sequence. Dynamic SR requires relatively
lower memory and numbers of computations than static
SR, and is therefore regarded as being a more appropri-
ate approach for real-time applications.
In this article, we propose a robust dynamic motion-

based SR algorithm for LR video input. Our approach
iteratively fuses the pixel data from an LR image
sequence to estimate the pixel data of the HR image
sequence based on the Kalman recursive estimation [8].
To deal with the performance degradation because of
the inexplicit motion estimation, we suggest a validation
process to filter out the irregularly registered pixels
caused by inaccurate motion estimation. By implement-
ing the proposed validation method, our SR approach
was able to show robust HR image reconstruction
results, even when the motion estimates were not accu-
rate at the sub-pixel level. Moreover, abrupt changes in
the scene input video can be detected in this validation
process, so the fusion of pixels from two different scenes
can be prevented. Since the quality of the reconstructed
images is stable even with inaccurate motion estimation
with low memory usage (requires only two frame mem-
ory) because of the sequential estimation, and each
updated HR frame can be viewed during the estimation
process, our approach is suitable for practical applica-
tions, especially in visual surveillance systems.
The remainder of this article is structured as follows.

In Section 2, we describe the image acquisition

modeling and basic concept of the dynamic SR process
using the Kalman filter framework. In Section 3, we
describe the proposed validation method for observed
image data, and in Section 4 the scene change detection
process developed for the robust sequential estimation
of HR video has been described. In Section 5, we
demonstrate both synthetic and real real-data experi-
ments. Section 6 concludes this effort and discusses
future study.

2. Dynamic SR
In this section, we review the dynamic SR approach pro-
posed in [8], which is based on the Kalman recursive
estimation. The main contribution of our approach will
be described in Sections 3 and 4.

2.1. Image acquisition modeling
Among the many different image acquisition models,
the following linear dynamic model is the most general
and well represents the process of obtaining an LR
image sequence:

X(t) = M(t)X(t − 1) +U(t), (1)

Y(t) = DBX(t) +W(t). (2)

We used the underscore notation to indicate a vector
derived from an image scanned in lexicographic order
[8]. Thus, the HR frame at time t, X(t) with a size of
[r2MN × 1] is the warped version of the previous HR
frame where r is the resolution-enhancement factor,
since M(t) with a size of [r2MN × r2MN], indicates the
existing motions between the two neighboring frames.
The [r2MN × 1] vector, U(t), can be explained as the
system noise that represents the accuracy of the motion
estimation. In Equation 2, Y(t) with a size of [MN × 1]
is the observed LR image at time t, and the [r2MN ×
r2MN] matrix, B, describes the blur operations resulting
from the sensor’s point spread function. The [MN ×
r2MN] matrix, D, reflects the downsample operation in
the image acquisition and saving. The [MN × 1] vector
W(t) is the measurement noise.
To apply Kalman filtering for estimating Xfrom Y, we

constrain the model with the following assumptions:
(i) Only translational (planar) motion is considered in

the input video.
(ii) The blur and downsampling operation are invar-

iant in time. This is why there are no time indices in B
and D.
(iii). Both the system and measurement noise are

assumed to be additive white Gaussian noise.
By substituting Z(t) = BX(t), we first estimate the

blurred version of the HR image, Z(t), with a size of
[r2MN × 1] and then deblur it to obtain the final clear
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HR image, X(t). The following two equations reflect the
changes resulting from incorporating the blurred opera-
tion B to generate the measurement Z(t) into Equations
1 and 2, where the [r2MN × 1] vector V(t) is the colored
version of the measurement noise U(t):

Z(t) = M(t)Z(t − 1) + V(t), (3)

Y(t) = DZ(t) +W(t). (4)

2.2. Kalman recursive for data fusion
Kalman filtering is the optimal method of estimating the
dynamic state in linear modeling as described above
[16]. The state to be estimated is the blurred HR image,
i.e., Z(t). By means of the Kalman filtering theories
[16,17], the update equations for the state vector and
covariance matrix can be derived as follows:

Ẑ(t) = Ẑ
M
(t)︸ ︷︷ ︸

prediction

+K(t)︸︷︷︸
gain

[Y(t) − DẐ
M
(t)︸ ︷︷ ︸

innovation

]

= M(t)Ẑ(t − 1) + K(t)[Y(t) − DM(t)Ẑ(t − 1)],

(5)

Cov(Ẑ(t)) = P(t)︸︷︷︸
prediction

−K(t) S(t)︸︷︷︸
innovation

KT(t)

= [I − K(t)D]P(t),

(6)

K(t) = P(t)DTS−1(t)

= P(t)DT[DP(t)DT + Cw(t)]−1,
(7)

where Ẑ(t) denotes the estimated state vector, i.e., the
blurred HR image. Equation 5 indicates that the final
estimate of the blurred HR image is the sum of the pre-

diction Ẑ
M
(t) (i.e., motion compensated version of the

previous estimate, M(t)Ẑ(t − 1) and innovation or mea-
surement residual (i.e., the difference between the new
observation, Y(t), and prediction) multiplied by K(t),
which is the Kalman gain defined as the ratio of the
prediction covariance P(t) to the innovation covariance S
(t). Analogously, the updated covariance of Ẑ(t) can be
derived as in Equation 6.
The procedures used to compute P(t) and S(t) are

shown in Equations 8 and 9, respectively. The prediction
covariance P(t) in Equation 8 reflects the accuracy of the

prediction for original HR image, Ẑ
M
(t). The innovation

covariance S(t) in Equation 9 reflects the accuracy of

prediction for an LR observation image, DẐ
M
(t).

P(t) = E{[Z(t) − Ẑ
M
(t)][Z(t) − Ẑ

M
(t)]T}

= M(t)Cov(Ẑ(t − 1))MT(t) + Cv(t),
(8)

S(t) = E{[Y(t) − DẐ
M
(t)][Y(t) − DẐ

M
(t)]T}

= DP(t)DT + Cw(t).
(9)

Since the inversion of the covariance matrix in Equa-
tion 7 is very cumbersome and requires substantial
computation and memory, further assumptions are
needed to achieve a faster implementation. As proven in
[8], if the covariance matrix of V(t) denoted as Cv(t) and
the initial covariance Cov(Ẑ(0)) are diagonal, P(t) and

Cov(Ẑ(t)) become diagonal for all t. This enables a
pixel-by-pixel implementation, so all of the procedures
from Equations 1 to 9 can be computed as a single sca-
lar value (i.e., single pixel). A more detailed description
can be found in [8].
Once the covariances of the noise components Cw(t),

Cv(t), and Cov(Ẑ(0)) are initialized at time t = 0, they
are used to calculate P(t), S(t), and K(t). After K(t) is cal-
culated, the estimation of the HR image Ẑ(t) and its

covariance Cov(Ẑ(t)) is calculated recursively by the
Kalman filter update equations in Equations 5 and 6.
Since all of the covariance matrices are diagonal, we can
convert them into general image matrices (not lexico-
graphic ordered) to compute the Kalman gain on a
pixel-by-pixel basis. The graphical procedures of Equa-
tions 7-9 are illustrated in Figure 1. The additions, mul-
tiplication, and inversion in Figure 1 are element-wise
operations. Only MN elements of K(t) have non-zero
values, because of the up-sampling (zero-filling) of the
innovation covariance, S(t). This means that only MN
pixels are updated in Equation 5 when the new input
image frame Y(t) is measured.
To estimate and compensate the motions existing

among the input frames modeled by M(t), we adopt the
image registration method in frequency-domain [18]
since it is simple and accurate for translational motions.
It estimates the horizontal and vertical shifts in spatial
domain by computing the phase shift in the frequency
domain. Moreover, the frequency-domain approach ben-
efits when the aliasing effect exists in input LR frames.
To handle color video input, we apply the same Kal-

man filtering process to each RGB channel. Once the
blurred HR image, Ẑ(t), is estimated, the final clear HR

image, X̂(t), is reconstructed by the deblurring method.
The flow chart of the conventional dynamic SR algo-
rithm is illustrated in Figure 2.

3. Measurement validation
Explicit motion estimation is a major factor that affects
the performance of the motion-based SR algorithm as
mentioned in [13,14]. Various research efforts have been
dedicated to enable precise (sub-pixel accuracy) motion
estimation; however, the methods developed are
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insufficient to guarantee perfect motion compensation
and, even though perfect motion estimation is poten-
tially possible, it usually requires a large amount of
computation.
Some novel approaches not involving accurate motion

estimation were recently suggested in [10-14], but they
are not suitable for practical real-time surveillance sys-
tem applications because of their computation require-
ments. In this article, we added a validation method in
the sequential estimation process to enhance erroneous
reconstructed HR images caused by inexplicit motion
estimations.
When the motion estimation result is inaccurate (i.e.,

the reference and target frames are misaligned), the dif-
ference in the pixel intensity between the two corre-
sponding frames will be increased as depicted in Figure
3. With the dynamic linear modeling described in Sec-
tion 2, this difference in the pixel intensity can be repre-
sented by the distance in Equation 10:

d2(t) = [Y(t) − DẐ
M
(t)]TS−1(t)[Y(t) − DẐ

M
(t)]. (10)

d2(t) =
MN∑
k=1

d2k ,

where d2k (t) = [yk(t) − DkẐ
M
(t)]TS−1

k (t)[yk(t) − DkẐ
M
(t)].

(11)

Since we assume that all covariance matrices including
S(t) are diagonal, computing the distance of one mea-
sured frame at time t, d(t) which is referred to as the
’Mahalanobis distance’ or ’Statistical distance’, is the
same as computing the sum of the distances of each
pixel in that frame, dk(t), in Equation 11. yk(t) is the kth

pixel in a measured frame Y(t) and Sk(t) is the kth diag-
onal element of S(t). Dk is the kth row of the downsam-
pling operator D size of [1 × r2MN].
When the Kalman filter has at least been initialized

and the state vector is being estimated, the true observa-
tion at time t, given the measurements Yt-1 = {Y(1), ..., Y
(t-1)},, is normally distributed.

p[Y(t)|Yt−1] = N[DẐ
M
(t), S(t)]. (12)

Y(t) in Equation 12 is the measurement at time t and
Yt-1 is the sequence of measurements from the initial
time to time t - 1. Thus, Equation 12 represents that
the conditional probability of Y(t) given the measure-
ments up to time t - 1, namely Yt-1 is normally distribu-
ted with the mean equal to the predicted measurement

DẐ
M
(t) and the covariance equal to the innovation cov-

ariance S(t). The theoretical description for this can be
found in the sections on the Kalman filter in [16,17].
In the proposed SR algorithm, we attempt to detect

any ’misalignment’ at the pixel level but not at the
frame level, meaning that we want to exclude only those
pixels that are misaligned in the measured frame, not all
of the pixels in the measured frame that are misaligned.
By incorporating the concept from [17] and from the
ideas of the validation methods or data association for
target tracking field in [19,20], we may define a valida-
tion region V(g) for a measured pixel as in Equation 13:

V(γ ) = {yk(t) : d2k (t) ≤ γ }, k = 1, 2, ...,MN. (13)

By fixing the threshold g at all times for every pixel,
the validation region V(g) is dependent only on the

Figure 1 Graphical illustration of computing Kalman gain.
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threshold g, but not on the time t or pixel index k.
Whenever the pixel data from the input LR image at
each time instant (i.e., yk(t) for all k) are observed, we
compute each distance dk(t) in Equation 11 and filter
out the pixels falling out of the region in Equation 13.
In other words, only those pixels whose distance is
below the threshold are considered valid. So, this proce-
dure regards the pixels that lie outside of the validation
region as outliers, i.e., misaligned, hence they are
excluded from the data fusion process. This is the so-
called ’Measurement Validation’ method and it is
applied right before the pixel data fusion process in
Equations 5 and 6 in our SR approach illustrated in Fig-
ure 4.
As represented in Equations 5 and 6, K(t) determines

the amount of updates required for estimating Ẑ(t) and

Cov(Ẑ(t)). In the proposed measurement validation
method, only valid pixel values should be used in the
update equations. When K(t) is equal to zero, no
updates will be made in Equations 5 and 6, thus the
estimations for Ẑ(t) and Cov(Ẑ(t)) are only dependent
on the prediction terms. In our implementation, after
the new measurement is obtained, i.e., MN pixels are
observed at time t, each pixel is investigated to deter-
mine whether or not it falls inside the validation region
in Equation 13. After we determine the misaligned pix-
els among MN pixels, we can prevent them from being
used in the update equations by setting those elements

Figure 2 Flow chart of conventional dynamic SR algorithm.

(a) (c)

(e)

(b)

(d)

(a)Reference frame
(b)Good alignment
(c)Bad alignment
(d)Difference image 

between (a) and (b)
(e)Difference image 

between (a) and (c)

Figure 3 Pixel intensity difference increases when
misalignment occurs.

Figure 4 The flow chart of the proposed dynamic SR
algorithm.
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of K(t), whose indices correspond to the indices of misa-
ligned pixels, to zero.
Under the Gaussian assumption, the validation region

V(g) is chi-square distributed with the number of
degrees of freedom equal to the dimension of the mea-
surement. The chi-square distribution table gives the
probability mass:

P(γ ) = p{yk(t) ∈ V(γ )}, k = 1, 2, ...,MN. (14)

P(g) is the probability that the measurement will fall
inside the validation region for various values of g and
dimensions of yk(t). Since the degree of freedom (DoF)
for a single pixel is one, we can select the threshold g in
Table 1. Therefore, we can control the range of the
valid region by varying the threshold value, g, obtained
from the chi-square table for the desired confidence
level [17]. For example, if we set g to 2.71,a the probabil-
ity that the measurement falls inside of the validation
region will be 90%. In the proposed method, the thresh-
old is set to 15.1 which means that there is a 99.99%
chance that d2k (t) will be less than or equal to 15.1. So,
the threshold value is not directly related to the image
dynamic range, but to the range of the statistical dis-
tance of the image pixel. The bigger the threshold that
is selected, the wider the validation region. In other
words, the probability that the measured pixels are
determined as misaligned will decrease as the threshold
becomes larger.

4. Scene change detection
Since the dynamic SR algorithm recursively fuses the
pixel data from the sequentially observed images, it is
highly likely for an erroneous HR estimation result to
occur when the scene or contents of two adjacent
frames are totally different. This problem arises fre-
quently when the input LR video contains many differ-
ent scenes or the motions in it are too large to be
estimated. There is no possible motion between differ-
ent frames from different scenes and, hence, these
frames can never be aligned correctly. Even though the
measurement validation method can detect and filter
out misaligned pixels, fusing pixels from two different
scenes is not a desired situation.
Instead of applying one of the conventional scene

change detection methods [21,22], we suggest a simple

but effective way to detect a sudden change of scene in
the input LR video by exploiting the statistical distance
already discussed in the previous section.
The proposed method detects abrupt scene changes

between adjacent frames by computing the proportion
of invalid pixels with respect to the total number of pix-
els in the observed LR frame of size [M × N]:

1
MN

MN∑
k=1

I(dk(t)) ≥ Th, where I(dk(t)) =
{
1 if d2k (t) > γ .
0 otherwise. (15)

In this article, we set the threshold value, Th to 0.3,
which means that about 30% of the pixels from the cur-
rent input LR frame are different from those of the pre-
vious frame. This threshold value is determined
experimentally with more than ten real video data con-
taining scene changes. If a sudden scene change is
detected with this method, we reset the estimation pro-
cess (i.e., reinitialize the Kalman filter). The procedure is
summarized in Figure 4.

5. Experimental results
We evaluated the performance of the proposed dynamic
SR algorithm with synthetic and real video data. The
threshold for measurement validation was set to 15.1 for
all experiments, which represents that a confidence
probability of 99.99% according to the chi-square distri-
bution table. For the deblurring method in the last step
of the proposed SR algorithm, we used the classical but
effective Wiener filter approach with a constant noise-
to-signal ratio (NSR) to reduce the computation com-
plexity. The parameter NSR for the Wiener filter was
tuned to obtain the best performance in all experiments.

5.1. Synthetic video data test
In this experiment, we tested the proposed algorithm
with synthetic LR video data. We generated LR color
videos by simulating the image acquisition procedure
described in Section 2.1. The test video in Figure 5 was
downloaded from the website of the author in [8]b and
the test videos in Figures 6 and 7 were captured by a
commercial surveillance camera, SHC-730N, courtesy of
Samsung Techwin Co., Ltd., Korea. We downsampled
the original videos by a factor of two after blurring
them with a 3 × 3 Gaussian kernel whose variance was
equal to 1. Finally, we generated LR videos by adding
Gaussian noise to achieve its signal-to-noise ratio (SNR)
of 30 dB. The size of all three LR videos was 160 × 120
and they contained only global translational motions.
The test LR videos are super-resolved by a factor of two
through the proposed algorithm and the method in [8].
The method in [8] was implemented directly from the

MATLAB GUI (http://users.soe.ucsc.edu/~milanfar/soft-
ware/superresolution.html). According to [8], they used

Table 1 Chi-square distribution table

DoF P = 0.9 P = 0.99 P = 0.999 P = 0.9999

1 2.71 6.63 10.8 15.1

2 4.61 9.21 13.8 18.4

10 16.0 23.2 29.6 35.6

100 118 136 149 161
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the image registration algorithm in [23] which is differ-
ent from the algorithm we exploited. As mentioned in
the earlier sections and previous related studies, the
major factor contributing to the reconstruction image
result of the multi-frame SR algorithm is the accuracy
of the image registration. Thus, if a different image
registration algorithm is used in the reference method,
we cannot say that the improved HR image result is
completely because of the proposed measurement vali-
dation. For a fair comparison, we also implemented the
method in [8] using the frequency-domain image regis-
tration algorithm [18] which is used in the proposed
method. Therefore, we compared the proposed method
with two reference methods, one from the author’s web-
site and the other from our own implementation by
modifying the image registration part. In addition, we
applied the Wiener filter to the method in [8], instead
of the bilateral-total variation (BTV) regularization to
see the effect of the measurement validation only. The
quality of the reconstructed HR image is evaluated
quantitatively with the PSNRc (Peak SNR) metric.
We enlarged the 100 × 80 sections of the original,

simulated LR, bicubic interpolated, and reconstructed

video frames for better visual quality evaluation. The
images in Figure 5 are the 90th frames and the images
in Figure 6 are the 60th frames of each input video. In
the reconstructed HR frames in Figures 5 and 6, there
are some artifacts because of the motion estimation
error, such as periodic teeth along horizontal and verti-
cal lines or stair-case phenomena along diagonal lines.
The motion estimation error may become large when
the size of an image is too small, or the motion is too
large. Because the only difference between the methods
in Figure 5d,e is the image registration algorithm, the
slightly better quality of Figure 5e can be attributed to
the better performance of the algorithm in [18]. As
shown in Figures 5f and 6f, the image quality of the HR
result with the proposed method is enhanced more than
the results in Figures 5e and 6e. The corresponding
PSNR values are listed in Table 2. When compared to
the results obtained with the method in [8], the jagged-
ness of the edges and corners is substantially reduced.
Even though the same image registration algorithm was
used for the results in Figure 5e,f, the result obtained
with the proposed method is visually superior. This
demonstrates the effectiveness of the proposed

Figure 5 The synthetic webcam video data result: (a) Original frame. (b) LR frame. (c) Bicubic interpolated frame. (d) Reconstructed HR
frames by applying the method in [8] with the image registration algorithm in [23]. (e) Reconstructed HR frames by applying the method in [8]
with the image registration algorithm in [18]. (f) Reconstructed HR frames by applying the proposed method.
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measurement validation method. Analogously, the same
analysis can be applied to the results in Figure 6.
In the experiment corresponding to the results in Fig-

ure 7, we enhanced the spatial resolution of the LR
video by a factor of two. In Figure 7, only 160 × 130
zoomed sections of the results are depicted. There is lit-
tle difference in performance between the results
obtained with and without the measurement validation
(Figure 7c,d, respectively) because the image registration
was quite accurate. To test the performance of the mea-
surement validation, we intentionally added alignment
errors to the aligned LR frames beyond the 60th frame.
The HR image at the 90th frame without the measure-
ment validation in Figure 8a was significantly degraded
because of the registration errors. On the contrary, the
resulting HR image obtained with the measurement vali-
dation was less affected by the registration errors as
shown in Figure 8b. In Figure 8c, one can see that the
number of misaligned pixels determined by the thresh-
old in Equation 13 increases after the 60th frame. This
tells us that the measurement validation method
becomes more effective when a large amount of image
registration errors occurs.

Figure 6 The synthetic surveillance video data result: (a) Original frame. (b) LR frame. (c) Bicubic interpolated frame. (d) Reconstructed HR
frames by applying the method in [8] with the image registration algorithm in [23]. (e) Reconstructed HR frames by applying the method in [8]
with the image registration algorithm in [18]. (f) Reconstructed HR frames by applying the proposed method.

Figure 7 The synthetic video data result: (a) Bicubic interpolated
frame. (b) Reconstructed 90th HR frame using the method in [8,23].
(c) Reconstructed 90th HR frame using the method in [8,18]. (d)
Reconstructed 90th HR frame using the proposed method. The
PSNR are 19.91, 21.09, 23.94, and 24.02 dB, respectively.
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5.2. Real video data test
In the next experiment, our algorithm is evaluated with
real video data captured by a surveillance camera, cour-
tesy of Adyoron Intelligent Systems Ltd., Tel Aviv,
Israel. We increased the spatial resolution of the real LR
video by a factor of two in the vertical and horizontal
directions. The input size of the video frame was 138 ×
115 and, therefore, the resulting size of the recon-
structed video frame is 276 × 230, as shown in Figure 9.
Figure 9d demonstrates the superior performance of the
proposed algorithm compared to the conventional
methods in Figure 9b,c. Especially, the jagged edges
because of the wrong translational motion estimation
are clearly reduced in Figure 9c. This is the contribution
of the measurement validation process.
In the case of a small input size, the effect of filtering

misaligned pixels becomes more remarkable, as shown
in the experimental results of Figure 10. In general, pre-
cise motion estimation is more difficult when the input
image is small, since the number of pixels, i.e., features
or information is insufficient to achieve a good align-
ment. The visual quality of the results without the mea-
surement validation in Figure 10c,g is worse than the
Bicubic interpolated results in Figure 10b,f.
Assuming that a sufficient number of LR frames are

available and the proper image registration algorithm is
used for compensating the motions existing among the
LR frames, multi-frame SR generally outperforms the
single image interpolation method. In the extreme case
where we do not register the LR frames at all, the esti-
mated HR image result will be worse than the Bicubic
interpolation result. However, if we apply the measure-
ment validation while still not registering all LR frames,
the HR image result will be almost the same as the
initial estimated HR image since most of the unregis-
tered LR pixels will be regarded as invalid. Thus, if we
set the initial estimated HR image as the Bicubic inter-
polated one of the initial LR frames, the HR image
result obtained with the proposed method cannot be
worse than the Bicubic interpolation result even though
most of the LR data are excluded.
If all of the frames are aligned perfectly or well

enough to fall in the preset validation region, all of the
measured pixel values will contribute to the HR image
estimation process. The benefit of the measurement
validation process is that it prevents the misaligned
pixel values from contributing to the HR image estima-
tion. By setting the confidence level for the image

Table 2 PSNR of experiment in Figures 5 and 6.

Output size Bicubic interpolation Farsiu [8] + [21](without MV) Farsiu [8] + [17](without MV) Proposed (with MV)

320 × 240 5(c), 19.44 dB 5(d), 19.33 dB 5(e), 18.84 dB 5(f), 23.95 dB

6(c), 19.79 dB 6(d), 20.98 dB 6(e), 21.56 dB 6(f), 24.73 dB

Figure 8 The synthetic video data result: (a) Reconstructed 90th
HR frame using the method without measurement validation. (b)
Reconstructed 90th HR frame using the method with measurement
validation. (c) The number of misaligned pixels for each frame. We
artificially added registration errors from the 60 to 90th frames.
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registration result (i.e., the threshold for the validation
region), we can exclude undesired updates of the pixel
values. Thus, it becomes more beneficial when there is a
higher possibility of misalignment because of the poor
performance of the image registration algorithm or
because of the existence of LR frames with fast motion.
This is the reason why the results obtained with the
proposed method in Figure 10d,h show more robust
performance when large motion estimation errors occur
frequently.

5.3. Scene change detection performance test
In this experiment, we evaluate the proposed scene
change detection method. We created LR videos con-
taining four different scenes. The input size is 50 × 50
and the spatial resolution ratio was increased by a factor

(a)

(c)

(b)

(d)
Figure 9 Real video data result: (a) Bicubic interpolated frame. (b) Reconstructed 40th HR frame using the method in [8,23]. (c) Reconstructed
40th HR frame using the method in [8,18]. (d) Reconstructed 40th HR frame using the proposed method. Note that the artifact because of
misalignment around the edges are effectively removed in (d).

(a) (d)

(g)

(c)

(e) (h)

(b)

(f)

Figure 10 Small size real video data result: (a, e) 90th LR frames
with sizess of 50 × 50. (b, f) Bicubic interpolated frames. (c, g)
Super-resolved by a factor of four with the methods in [8,23]. (d, h)
Reconstructed frames using the proposed method.
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of four. The upper images in Figure 11 are 30 frames
after the scene change occurred without using the pro-
posed scene change detection method. When the
incoming frames are different from the previously
reconstructed frame, two different scenes are overlapped
with each other. This artifact can easily be addressed by
resetting the SR process when the current input frame
belongs to a different scene. In this case, most of the
pixels from the changed scene will be considered as
invalid ones by the proposed measurement validation
method. Consequently, the ratio of invalid pixels will
cross the preset threshold with high probability.
The lower images in Figure 11 are the reconstructed

frames at the same time instant as the upper ones. The
scene change was detected when the ratio of invalid pix-
els is below the threshold value, Th, in Equation 15
which was set to 0.3; hence, the SR process was reinitia-
lized. The artifact in Figure 11a-c is eliminated by fusing
the pixel data from the same scene. In Figure 12, the
blue line represents the number of invalid pixels for the
input video frames and the red line is the preset thresh-
old. The scene changes abruptly three times at frames
#91, #241, and #361.

6. Conclusions
In this article, we proposed a robust dynamic SR algo-
rithm to alleviate the performance degradation because
of inaccurate motion estimation and sudden scene
changes. We adopted the dynamic SR algorithm based
on the Kalman filter approach, because of its effective-
ness when applied to real-time applications. When the
size of the output super-resolved image is about 200 ×
200, the proposed dynamic SR algorithm estimates the

HR images sequentially at a speed of over 20 fps while
necessitating a memory size corresponding to only two
frames.
In the case of misalignment caused by motion estima-

tion error, the proposed measurement validation
method determines whether each of the pixels is suita-
ble for data fusion or not with the statistical distance of
intensity. It is preferable to set the pixels with a large
distance as invalid and filter them out after the estima-
tion process enters the steady state. Otherwise, the esti-
mated HR pixels tend to remain the same as the
previous LR pixel since every input pixel with a large
intensity difference would be filtered out and, hence, the
update process in Kalman filtering would be prevented.
The starting point of the measurement validation and
the appropriate threshold remain as an ongoing research
topic.
In addition, we developed a scene change detection

method to handle various input videos containing one
or more scene changes. By virtue of the proposed scene
change detection method, we can handle input video
containing more than one scene. Adaptive threshold set-
ting for the scene change detection method is preferable
for robust detection performance, and so this remains as
a future study. Throughout this study, we fixed, defined
a relatively large validation region, V(g), whose threshold
is equal to 15.1, because we assumed that the image
registration algorithm performs well enough to align
most of the LR frames correctly. If we can predict the
accuracy of image registration, we can control the vali-
dation region by varying the threshold, g.
As shown in the several representative experiments, a

considerable degree of enhancement and the restoration
of the deteriorated visual information can be achieved
by the proposed SR algorithm. Especially, for input

(a) (c)

(e)

(b)

(d) (f)

Figure 11 Effect of scene change detection method: (a-c) 120,
270, and 390th reconstructed frames without the scene change
detection method, respectively. (d-f) Well-reconstructed frames
exploiting proposed scene change detection method.
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images of small size, such as human face and license
plate images, the proposed SR algorithm is appropriate
for real-time visual surveillance applications considering
the processing speed and the visual quality of the recon-
structed image.

Endnotes
aThe threshold value has no digital unit since d(t) is a
normalized random variable (i.e., statistical distance).
bThe test video can be downloaded from http://users.
soe.ucsc.edu/~milanfar/software/sr-datasets.html. cThe
PSNR of two images Xand Yof size M by N is defined as

PSNR(dB) = 10log10((255
2 × MN)/

∥∥X − Y
∥∥2
2 ).

Acknowledgements
This research was supported by the Seoul R&BD Program (WR080951).

Author details
1School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-
Gu, Seoul 136-701, Korea 2Office of Naval Research, Arlington, VA, USA

Competing interests
The authors declare that they have no competing interests.

Received: 28 February 2011 Accepted: 15 November 2011
Published: 15 November 2011

References
1. SC Park, MK Park, MG Kang, Super-resolution image reconstruction: a

technical overview. IEEE Signal Proc. Mag. 20(3), 21–36 (2003). doi:10.1109/
MSP.2003.1203207

2. M Elad, A Feuer, Restoration of a single superresolution image from several
blurred, noisy, and undersampled measured images. IEEE Trans. Image
Process. 6(12), 1646–1658 (1997). doi:10.1109/83.650118

3. M Elad, Y Hel-Or, A fast super-resolution reconstruction algorithm for pure
translational motion and common space-invariant blur. IEEE Trans. Image
Process. 10(8), 1187–1193 (2001). doi:10.1109/83.935034

4. S Farsiu, D Robinson, M Elad, P Milanfar, Fast and robust multiframe super
resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004). doi:10.1109/
TIP.2004.834669

5. M Elad, A fast super-resolution reconstruction algorithm for pure
translational motion and common space-invariant blur. IEEE Trans. Image
Process. 10(8), 1187–1193 (2001). doi:10.1109/83.935034

6. S Farsiu, M Elad, P Milanfar, Multiframe demosaicing and super-resolution of
color images. IEEE Trans. Image Process. 15(1), 141–159 (2006)

7. M Elad, A Feuer, Super-resolution reconstruction of image sequences. IEEE
Trans. Pattern Anal. Mach. Intell. 21(9), 817–834 (1999). doi:10.1109/
34.790425

8. S Farsiu, M Elad, P Milanfar, Video-to-video dynamic super-resolution for
grayscale and color sequences. EURASIP J. Appl. Signal Process, 1–15 (2006).
Article ID 61859

9. B Narayanan, RC Hardie, KE Barner, M Shao, A computationally efficient
super-resolution algorithm for video processing using partition filters. IEEE
Trans. Circuits Syst. Video Technol. 17(5), 621–634 (2007)

10. M Protter, M Elad, H Takeda, P Milanfar, Generalizing the nonlocal-means to
super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51
(2009)

11. W Freeman, T Jones, E Pasztor, Example-based super-resolution. Comput.
Graph. Appl. 22(2), 56–65 (2002). doi:10.1109/38.988747

12. D Glasner, S Bagon, M Irani, Super-resolution from a single image, in
International Conference on Computer Vision (ICCV) (2009)

13. M Protter, M Elad, Super resolution with probabilistic motion estimation.
IEEE Trans. Image Process. 18(8), 1899–1904 (2009)

14. H Takeda, P Milanfar, M Protter, M Elad, Super-resolution without explicit
subpixel motion estimation. IEEE Trans. Image Process. 18(9), 1958–1975
(2009)

15. S Chaudhuri, J Manjunath, Motion-free Super-Resolution (Springer, 2005)
16. L Louis, Statistical Signal Processing (Scharf, Addison-Wesley Pub. Co, 1991)
17. Y Bar-Shalom, TE Fortmann, Tracking and Data Association (Academic Press,

Inc, 1988)
18. P Vandewalle, S Susstrunk, M Vetterli, A frequency domain approach to

registration of aliased images with application to super-resolution. EURASIP
J. Appl. Signal Process, 1–14 (2006). Article ID 71459

19. BH Ku, YH Lee, WY Hong, H Ko, Suppressing ghost targets via gating and
tracking history in Y-shaped passive linear array sonars. IEEE Trans. AES.
47(3), 1605–1616 (2011)

20. H Ko, IK Lee, JH Lee, D Han, Effective multi-vehicle tracking in nighttime
condition using imaging sensors. IEICE Trans-Inform. Syst. E86-D(9),
1887–1895 (2003)

21. E El-Qawasmeh, Scene change detection schemes for video indexing in
uncompressed domain. Informatica 14(1), 19–36 (2003)

22. C Ngo, T Pong, R Chin, H Zhang, Motion-based video representation for
scene change detection. Int. J. Comput. Vis. 50(2), 127–142 (2002).
doi:10.1023/A:1020341931699

23. JR Bergen, P Anandan, KJ Hanna, R Hingorani, Hierarchical model-based
motion estimation, in Proceedings of European Conference on Computer
Vision (ECCV ‘92), Santa Margherita Ligure, Italy 237-252 (1992)

doi:10.1186/1687-6180-2011-103
Cite this article as: Kim et al.: Robust video super resolution algorithm
using measurement validation method and scene change detection.
EURASIP Journal on Advances in Signal Processing 2011 2011:103.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Kim et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:103
http://asp.eurasipjournals.com/content/2011/1/103

Page 12 of 12

http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
http://www.ncbi.nlm.nih.gov/pubmed/18285235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18285235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15462143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15462143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16435545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16435545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19095517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19095517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19447705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19473940?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19473940?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Dynamic SR
	2.1. Image acquisition modeling
	2.2. Kalman recursive for data fusion

	3. Measurement validation
	4. Scene change detection
	5. Experimental results
	5.1. Synthetic video data test
	5.2. Real video data test
	5.3. Scene change detection performance test

	6. Conclusions
	Endnotes
	Acknowledgements
	Author details
	Competing interests
	References

