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An effective biometric discretization approach to
extract highly discriminative, informative, and
privacy-protective binary representation
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Abstract

Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This
representative string ought to be discriminative, informative, and privacy protective when it is employed as a
cryptographic key in various security applications upon error correction. However, it is commonly believed that
satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always
definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves
discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does
not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties
of a binary representation extracted for cryptographic applications. In addition, we examine a number of
discriminative feature-selection measures for discretization and identify the proper way of setting an important
feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.
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1. Introduction
Binary representation of biometrics has been receiving
an increased amount of attention and demand in the
last decade, ever since biometric security schemes were
widely proposed. Security applications such as bio-
metric-based cryptographic key generation schemes
[1-7] and biometric template protection schemes [8-13]
require biometric features to be present in binary form
before they can be implemented in practice. However,
as security is in concern, these applications require bin-
ary biometric representation to be
• Discriminative: Binary representation of each user

ought to be highly representative and distinctive so that
it can be derived as reliably as possible upon every
query request of a genuine user and will neither be mis-
recognized as others nor extractable by any non-genuine
user.
• Informative: Information or uncertainty contained in

the binary representation of each user should be made
adequately high. In fact, the use of a huge number of

equal-probable binary outputs creates a huge key space
which could render an attacker clueless in guessing the
correct output during a brute force attack. This is extre-
mely essential in security provision as a malicious
impersonation could take place in a straightforward
manner if the correct key can be obtained by the adver-
sary with an overwhelming probability. Entropy is a
common measure of uncertainty, and it is usually a bio-
metric system specification. By denoting the entropy of
a binary representation as L, it can then be related to
the N number of outputs with probability pi for i = {1,...,

N} by L = −∑N
i=1 pilog2pi . If the outputs are equal-

probable, then the resultant entropy is maximal, that is,
L = log2 N. Note that the current encryption standard
based on the advanced encryption standard (AES) is
specified to be 256-bit entropy, signifying that at least
2256 possible outputs are required to withstand a brute
force attack at the current state of art. With the consis-
tent technology advancement, adversaries will become
more and more powerful, resulting from the growing
capability of computers. Hence, it is utmost important
to derive highly informative binary strings in coping
with the rising encryption standard in the future.
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• Privacy-protective: To avoid devastated consequence
upon compromise of the irreplaceable biometric features
of every user, the auxiliary information used for bit-
string regeneration must not be correlated to the raw or
projected features. In the case of system compromise,
such non-correlation of the auxiliary information should
be guaranteed to impede any adversarial reverse engi-
neering attempt in obtaining the raw features. Other-
wise, it has no difference from storing the biometric
features in the clear in the system database.
To date, only a handful of biometric modalities such

as iris [14] and palm print [15] have their features repre-
sented in the binary form upon an initial feature-extrac-
tion process. Instead, many remain being represented in
the continuous domain upon the feature extraction.
Therefore, an additional process in a biometric system is
needed to transform these inherently continuous fea-
tures into a binary string (per user), known as the bio-
metric discretization process. Figure 1 depicts the
general block diagram of a biometric discretization-
based binary string generator that employs a biometric
discretization scheme.
In general, most biometric discretization can be

decomposed into two essential components, which can
be alternatively described as a two-stage mapping
process:
• Quantization: The first component can be seen as a

continuous-to-discrete mapping process. Given a set of
feature elements per user, every one-dimensional feature
space is initially constructed and segmented into a num-
ber of non-overlapping intervals where each of which is
associated to a decimal index.

• Encoding: The second component can be regarded as
a discrete-to-binary mapping process, where the resul-
tant index of each dimension is mapped to a unique n-
bit binary codeword of an encoding scheme. Next, the
codeword output of every feature dimension is concate-
nated to form the final bit string of a user. The discreti-
zation performance is finally evaluated in the Hamming
domain.
These two components are governed by a static or a

dynamic bit allocation algorithm, determining whether
the quantity of binary bits allocated to every dimension
is fixed or varied, respectively. Besides, if the (genuine
or/and imposter) class information is used in determin-
ing the cut points (intervals’ boundaries) of the non-
overlapping quantization intervals, the discretization is
thus known as supervised discretization [1,3,16], and
otherwise, it is referred to as unsupervised discretization
[7,17-19].
On the other hand, information about the constructed

intervals of each dimension is stored as the helper data
during enrolment so as to assist reproducing the same
binary string of each genuine user during the verifica-
tion phase. However, similar to the security and the
privacy requirements of the binary representation, it is
important that such helper data, upon compromise,
should neither leak any helpful information about the
output binary string (security concern), nor the bio-
metric feature itself (privacy concern).

1.1 Previous works
Over the last decade, numerous biometric discretization
techniques for producing a binary string from a given

 
Figure 1 A biometric discretization-based binary string generator.
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set of features of each user have been reported. These
schemes base upon either a fixed-bit allocation principle
(assigning a fixed number of bits to each feature dimen-
sion) [4-7,10,13,16,20] or a dynamic-bit allocation prin-
ciple (assigning a different number of bits to each
feature dimension) [1,3,17-19,21].
Monrose et al. [4,5], Teoh et al. [6], and Verbitsky et

al. [13] partition each feature space into two intervals
(labeled by ‘0’ and ‘1’) based on a prefix threshold. Tuyls
et al. [12] and Kevenaar et al. [9] have used a similar 1-
bit discretization technique, but instead of fixing the
threshold, the mean of the background probability den-
sity function (for modeling inter-class variation) is
selected as the threshold in each dimension. Further,
reliable components are identified based on either the
training bit statistics [12] or a reliability (RL) function
[9] so that unreliable dimensions can be eliminated
from bits’ extraction.
Kelkboom et al. have analytically expressed the genu-

ine and imposter bit error probability [22] and subse-
quently modeled a discretization framework [23] to
analytically estimate the genuine and imposter Ham-
ming distance probability mass functions (pmf) of a bio-
metric system. This model is based upon a static 1-bit
equal-probable discretization under the assumption that
both intra-class and inter-class variations are Gaussian
distributed.
Han et al. [20] proposed a discretization technique to

extract a 9-bit pin from each user’s fingerprint impres-
sions. The discretization derives the first 6 bits from six
pre-identified reliable/stable minutiae: If a minutia
belongs to bifurcation, a bit “0” is assigned; otherwise, if
it is a ridge ending, a bit “1” is assigned. The derivation
of the last 3 bits is constituted by a single-bit discretiza-
tion on each of three triangular features. If the biometric
password/pin is used directly as a cryptographic key in
security applications, it will be too short to survive brute
force attacks, as an adversary would only require at
most 512 attempts to crack the biometric password.
Hao and Chan [3] and Chang et al. [1] employed a

multi-bit supervised user-specific biometric discretiza-
tion scheme, each with a different interval-handling
technique. Both schemes initially fix the position of the
genuine interval of each dimension dimension around
the modeled pdf of the jth user: [μj-ksj, μj+ksj] and
then construct the remaining intervals based on a con-
stant width of 2ksj within every feature space. Here, μj
and sj denote mean and standard deviation (SD) of the
user pdf, respectively and k is a free parameter. As for
the boundary portions at both ends on each feature
space, Hao and Chan unfold every feature space arbitra-
rily to include all the remaining possible feature values
in forming the leftmost and rightmost boundary inter-
vals. Then, all the constructed intervals are labeled with

direct binary representation (DBR) encoding elements (i.
e. 310 ® 0112, 410 ® 1002, 510 ® 1012). On the other
hand, Chang et al. extend each feature space to account
for the extra equal-width intervals to form 2n intervals
in accordance to the entire 2n codeword labels from
each n-bit DBR encoding scheme.
Although both these schemes are able to generate bin-

ary strings of arbitrary length, they turn out to be
greatly inefficient, since the ad-hoc interval handling
strategies may probably result in considerable leakage of
entropy which will jeopardize the security of the users.
In particular, the non-feasible labels of all extra intervals
(including the boundary intervals) would allow an adver-
sary to eliminate the corresponding codeword labels
from her or his output-guessing range after observing
the helper data, or after reliably identifying the “fake”
intervals. Apart from this security issue, another critical
problem with these two schemes is the potential expo-
sure of the exact location of each genuine user pdf.
Based on the knowledge that the user pdf is located at
the center of the genuine interval, the constructed inter-
vals thus serve as a clue at which the user pdf could be
located to the adversary. As a result, the possible loca-
tions of user pdf could be reduced to the amount of
quantization intervals in that dimension, thus potentially
facilitating malicious privacy violation attempt.
Chen et al. [16] demonstrated a likelihood-ratio-based

multi-bit biometric discretization scheme which is like-
wise to be supervised and user specific. The quantiza-
tion scheme first constructs the genuine interval to
accommodate the likelihood ratio (LR) detected in that
dimension and creates the remaining intervals in an
equal-probable (EP) manner so that the background
probability mass is equally distributed within every
interval. The leftmost and rightmost boundary intervals
with insufficient background probability mass are
wrapped into a single interval that is tagged with a com-
mon codeword label from the binary reflected gray code
(BRGC)-encoding scheme [24] (i.e., 310 ® 0102, 410 ®
1102, 510 ® 1112). This discretization scheme suffers
from the same privacy problem as the previous super-
vised schemes owing to that the genuine interval is con-
structed based on the user-specific information.
Yip et al. [7] presented an unsupervised, non-user spe-

cific, multi-bit discretization scheme based on equal-
width intervals’ quantization and BRGC encoding. This
scheme adopts the entire BRGC code for labeling, and
therefore, it is free from the entropy loss problem.
Furthermore, since it does not make use of the user pdf
to determine the cut points of the quantization intervals,
this scheme does not seem to suffer from the aforemen-
tioned privacy problem.
Teoh et al. [18,19] developed a bit-allocation approach

based on an unsupervised equal-width quantization with
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a BRGC-encoding scheme to compose a long binary
string per user by assigning different number of bits to
each feature dimension according to the SD of each esti-
mated user pdf. Particularly, the intention is to assign a
larger quantity of binary bits to discriminative dimen-
sions and smaller otherwise. In other words, the larger
the SD of a user pdf is detected to be, the lesser the
quantity of bits will be assigned to that dimension and
vice versa. Nevertheless, the length of the binary string
is not decided based on the actual position of the pdf
itself in the feature space. Although this scheme is
invulnerable to the privacy weakness, such a deciding
strategy gives a less accurate bit allocation: A user pdf
falling across an interval boundary may result in an
undesired intra-class variation in the Hamming domain
and thus should not be prioritized for bit extraction.
Another concern is that pure SD might not be a pro-
mising discriminative measure.
Chen et al. [17] introduced another dynamic bit-allo-

cation approach by considering detection rate (DR)
(user probability mass captured by the genuine interval)
as their bit-allocation measure. The scheme, known as
DR-optimized bit-allocation (DROBA), employs an
equal-probable quantization intervals construction with
BRGC encoding. Similar to Teoh et al.’s dynamic bit
allocation scheme, this scheme assigns more bits to
more discriminative feature dimensions and vice versa.
Recently, Chen et al. [21] developed a similar dynamic
bit-allocation algorithm based on optimizing a different
bit-allocation measure: area under the FRR curve. Given
the bit-error probability, the scheme allocates bits dyna-
mically to every feature component in a similar way as
DROBA except that the analytic area under the FRR
curve for Hamming distance evaluation is minimized
instead of DR maximization.

1.2 Motivation and contributions
It has been recently justified that DBR- and BRGC-
encoding-based discretization could not guarantee a dis-
criminative performance when a large per-dimensional
entropy requirement is imposed [25]. The reason lies in
the underlying indefinite feature mapping of DBR and
BRGC codes from a discrete to a Hamming space, caus-
ing the actual distance dissimilarity in the Hamming
domain unable to be maintained. As a result, feature
points from multiple different intervals may be mapped
to DBR or BRGC codewords which share a common
Hamming distance away from a reference codeword, as
illustrated by the 3-bit discretization instance in Figure
2. For this reason, regardless of how discriminative the
extracted (real-valued) features could be, deriving discri-
minative and informative binary strings with DBR or
BRGC encoding will not be practically feasible.

Linearly separable Subcode (LSSC) [25] has been put
forward to resolve such a performance-entropy tradeoff
by introducing bit redundancy to maintain the perfor-
mance accuracy when a high entropy requirement is
imposed. Although the resultant LSSC-extracted binary
strings require a larger bit length in addressing an 8-
interval discretization problem as exemplified in Figure
3, mapping discrete elements to the Hamming space
becomes completely definite.
This article focuses on discretization basing upon the

fixed bit-allocation principle. We extend the study of
[25] to tackle the open problem of generating desirable
binary strings that are simultaneously highly discrimina-
tive, informative, and privacy-protective by means of dis-
cretization based on LSSC. Specifically, we adopt a
discriminative feature extraction with a further feature
selection to extract discriminative feature components;
an unsupervised quantization approach to offer promis-
ing privacy protection; and an LSSC encoding to achieve
large entropy without having to sacrifice the actual clas-
sification performance accuracy of the discriminative
feature components. Note that the preliminary idea of
this article has appeared in the context of global discre-
tization [26] for achieving strong security and privacy
protection with high training efficiency.
In general, the significance of our contribution is

three-fold:

 

Figure 2 An indefinite discrete-to-binary mapping from each
discrete-labelled quantization interval to a 3-bit BRGC
codeword. The labelg(b) in each interval on the continuous feature
space can be understood by “index number (associated codeword)”.
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a) We propose a fixed bit-allocation-based discreti-
zation approach to extract a binary representation
which is able to fulfill all the required criteria from
each given set of user-specific features.
b) Required by our approach, we study empirically
various discriminative measures that have been put
forward for feature selection and identify the reliable
ones among them.
c) We identify and analyze factors that influence
improvements resulting from the discriminative
selection based on the respective measures.

The structure of this article is organized as follows. In
the next section, the efficiency of using LSSC over

BRGC and DBR for encoding is highlighted. In section
3, detailed descriptions about our approach in generat-
ing desirable binary representation will be given and ela-
borated. In section 4, experimental results justifying the
effectiveness of our approach are presented. Finally, con-
cluding remarks are provided in Section 5.

2. The emergence of LSSC
2.1 The security-performance tradeoff of DBR and BRGC
Two common encoding schemes adopted for discretiza-
tion, before LSSC is introduced, are DBR and BRGC.
DBR has each of its decimal indices directly converted
into its binary equivalent, while BRGC is a special code
that restricts the Hamming distance between every con-
secutive pair of codewords to unity. Depending on the
required size S of a code, the length of both DBR and
BRGC are commonly selected to be nDBR = ⌈log2S⌉.
Instances of DBR and BRGC with different lengths
(nDBR and nBRGC respectively) and sizes S are shown in
Table 1. Here, the length of a code refers to the number
of bits in which the codewords are represented, while
the size of a code refers to the number of elements in a
code. The codewords are indexed from 0 to S-1. Note
that each codeword index corresponds to the quantiza-
tion interval index as well.
Conventionally, a tradeoff between discretization per-

formance and entropy length is inevitable when DBR or
BRGC is adopted as the encoding scheme. The rationale
behind was identified to be the indefinite discrete-to-
binary mapping behavior during the discretization pro-
cess, since the employment of an encoding scheme in
general affects only on how each index of the quantiza-
tion intervals is mapped to a unique binary codeword.
More precisely, one may carefully notice that multiple
DBR as well as BRGC codewords share a common
Hamming distance with respect to any reference code-
word in the code for nDBR and nBRGC ≥ 2, mapping pos-
sibly most initially well-separated imposter feature
elements from a genuine feature element in the index
space much nearer than it should be in the Hamming

Figure 3 A definite discrete-to-binary mapping from each
discrete-labelled quantization interval to a 7-bit LSSC
codeword. The labelg(b) in each interval on the continuous feature
space can be understood by “index number (associated codeword)”.

Table 1 A collection of nDBR-bit DBRs and nBRGC-bit BRGCs for S = 8 and 16 with [τ] indicating the codeword index.

Direct binary representation (DBR) Binary reflected gray code (BRGC)

nDBR = 3
S = 8

nDBR = 4
S = 16

nBRGC = 3
S = 8

nBRGC = 4
S = 16

[0] 000 [0] 0000 [8] 1000 [0] 000 [0] 0000 [8] 1100

[1] 001 [1] 0001 [9] 1001 [1] 001 [1] 0001 [9] 1101

[2] 010 [2] 0010 [10] 1010 [2] 011 [2] 0011 [10] 1111

[3] 011 [3] 0011 [11] 1011 [3] 010 [3] 0010 [11] 1110

[4] 100 [4] 0100 [12] 1100 [4] 110 [4] 0110 [12] 1010

[5] 101 [5] 0101 [13] 1101 [5] 111 [5] 0111 [13] 1011

[6] 110 [6] 0110 [14] 1110 [6] 101 [6] 0101 [14] 1001

[7] 111 [7] 0111 [15] 1111 [7] 100 [7] 0100 [15] 1000
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space. Taking 4-bit DBR-based discretization as an
example, the interval labelled with “1000”, located 8 inter-
vals away from the reference interval “0000”, is eventually
mapped to one Hamming distance away in the Hamming
space. Worse for BRGC, interval “1000” is located even
further (15 intervals away) from interval ‘0000’. As a result,
imposter feature components might be misclassified as
genuine in the Hamming domain and eventually, the dis-
cretization performance would be greatly impeded by such
an imprecise discrete-to-binary map. In fact, this defective
phenomenon gets more critical as the required entropy
increases, or as S increases [25].

2.2 LSSC
Linearly separable subcode (LSSC) [25] was put forward
to tackle the aforementioned inabilities of DBR and
BRGC effectively in fully preserving the separation of
feature points in the index domain when the eventual
distance evaluation is performed in the Hamming
domain. This code particularly utilizes redundancy to
augment the separability in the Hamming space for
enabling one-to-one correspondence between every
non-reference codeword and the Hamming distance
incurred with respect to every possible reference
codeword.
Let nLSSC denotes the code length of LSSC. An LSSC

contains S = (nLSSC + 1) codewords, that is a subset of
2nLSSC codewords (in total). The construction of LSSC
can be given as follows: Beginning with an arbitrary
nLSSC-bit codeword, say, an all zero codeword, the next
nLSSC codewords can be sequentially derived by comple-
menting a bit at a time from the lowest-order (right-
most) to the highest-order (leftmost) bit position. The
resultant nLSSC-bit LSSCs in fulfilling S = 4, 8 and 16
are shown in Table 2.
The amount of bit disagreement, or equivalently the

Hamming distance between any pair of codewords hap-
pens to be the same as the corresponding positive index
difference. For a 3-bit LSSC, as an example, the Ham-
ming distance between codewords “111” and “001” is 2,

which appears to be equal to the difference between the
codeword index “3” and “1”. It is in general not difficult
to observe that neighbour codewords tend to have a
smaller Hamming distance compared to any distant
codewords. Thus, unlike DBR and BRGC, LSSC ensures
every distance in the index space being thoroughly pre-
served in the Hamming space, despite the large bit
redundancy a system might need to afford. As reported
in [25], increasing the entropy per dimension has a tri-
vial effect on discretization performance through the
employment of LSSC, with the condition that the quan-
tity of quantization intervals constructed in each dimen-
sion is not too few. Instead, the entropy now becomes a
function of the bit redundancy incurred.

3. Desirable bit string generation and the
appropriate discriminative measures
In the literature review, we have seen that user-specific
information (i.e., user pdf) should not be utilized to
define cut points of the quantization intervals to avoid
reduction of possible locations of user pdf to the quan-
tity of intervals in each dimension. Therefore, strong
privacy protection basically limits the choice of quanti-
zation to unsupervised techniques. Furthermore, the
entropy-performance independence aspect of LSSC
encoding allows promising performance to be preserved
regardless of how large the entropy is augmented per
dimension, and correspondingly how large the quantity
of feature-space segmentation in each dimension would
be. Therefore, if we are able to extract discriminative
feature components for discretization, deriving discrimi-
native, informative, and privacy-protective bit strings
can thus be absolutely possible. Our strategy can gener-
ally be outlined in the four following fundamental steps:

i. [Feature Extraction]-Employ a discriminative fea-
ture extractor ℑ(·) (i.e., Fisher’s linear discriminant
analysis (FDA) [27], Eigenfeature regularization and
extraction (ERE) [28]) to ensure D quality features
being extracted from R raw features;
ii. [Feature Selection]-Select Dfs(Dfs <D <R) most
discriminative feature components from a total of D
dimensions according to a discriminative measure c
(·);
iii. [Quantization]-Adopt an unsupervised equal-
probable quantization scheme Q(·) to achieve strong
privacy protection; and
iv. [Encoding]-Employ LSSC for encoding ℰLSSC(·) to
maintain such discriminative performance, while
satisfying arbitrary entropy requirement imposed on
the resultant binary string.

This approach initially obtains a set of discriminative
feature components in steps (i) and (ii); and produces

Table 2 A collection of nLSSC-bit LSSCs for S = 4, 8 and 16
where [τ] denotes the codeword index.

nLSSC = 3
S = 4

nLSSC = 7
S = 8

nLSSC = 15
S = 16

[0] 000 [0] 0000000 [0] 000000000000000 [8] 000000011111111

[1] 001 [1] 0000001 [1] 000000000000001 [9] 000000111111111

[2] 011 [2] 0000011 [2] 000000000000011 [10] 000001111111111

[3] 111 [3] 0000111 [3] 000000000000111 [11] 000011111111111

[4] 0001111 [4] 000000000001111 [12] 000111111111111

[5] 0011111 [5] 000000000011111 [13] 001111111111111

[6] 0111111 [6] 000000000111111 [14] 011111111111111

[7] 1111111 [7] 000000001111111 [15] 111111111111111
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an informative user-specific binary string (with large
entropy) while maintaining the prior discriminative per-
formance in steps (iii) and (iv). The privacy protection is
offered by unsupervised quantization in step (iii), where
the correlation of helper data with the user-specific data
is insignificant. This makes our four-step approach to be
capable of producing discriminative, informative, and
privacy-protective binary biometric representation.
Among the steps, implementations of (i), (iii), and (iv)

are pretty straightforward. The only uncertainty lies in
the appropriate discriminative measure and the corre-
sponding parameter Dfs in step (ii) for attaining absolute
superiority. Note that step (ii) is embedded particularly
to supplement the restrictive performance led by
employment of unsupervised quantization. Here, we
introduce a couple of discriminative measures that can
be adopted for discretization and perform a study on
the superiority of such measures in the next section.

3.1 Discriminative measures X(·) for feature selection
The discriminativeness of each feature component is
closely related to the well-known Fisher’s linear discri-
minant criterion [27], where the discriminant criterion
is defined to be the ratio of between-class variance
(inter-class variation) to within-class variance (intra-
class variation).
Suppose that we have J users enrolled to a biometric

system, where each of them is represented by a total of

D-ordered feature elements v1ji, v
2
ji , ..., v

D
ji upon feature

extraction from each measurement. In view of potential
intra-class variation, the dth feature element of the jth
user can be modeled from a set of measurements by a

user pdf, denoted by f dj (v) where d Î {1, 2,...,D}, j Î {1,

2,...,J} and v Î feature space �
d . On the other hand,

owing to inter-class variation, the dth feature element of
the measurements of the entire population can be mod-
eled by a background pdf, denoted by fd(v). Both distribu-
tions are assumed to be Gaussian according to the
central limit theorem. That is, the dth-dimensional back-
ground pdf has mean μd and SD sd while the jth user’s

dth-dimensional user pdf has mean μd
j and variance σ d

j .

3.1.1. Likelihood ratio (c = LR)
The idea of using LR to achieve optimal FAR/FRR per-
formance in static discretization was first exploited by
Chen et al. [16]. The LR of the jth user in the dth
dimensional feature space is generally defined as

LRd
j =

f dj (v)

f d(v)
(1)

with the assumption that the entire population is suffi-
ciently large (excluding a single user should not have

any significant effect in changing the background distri-
bution). In their scheme, the cut points v1, v2 ∈ �

d of

the j-th user’s genuine interval int d
j in the dth-dimen-

sional feature space are chosen based on a prefix thresh-
old t, such that

intdj = {[v1, v2] ∈ Vd | LRd
j ≥ t} (2)

The remaining intervals are then constructed equal-
probably, that is, with reference to the portion of back-
ground distribution captured by the genuine interval.
Since different users will have different intervals con-
structed in each feature dimension, this discretization
approach turns out to be user specific.
In fact, the LR could be used to assess discriminativity

of each feature component efficiently, since max(f dj (v))

is reversely proportional to (σ d
j )

2 because
∫
f dj (v)dv = 1 ,

or equivalently the dth dimensional intra-class variation;
and fd(v) is reversely proportional to the dth dimen-
sional inter-class variation, which imply

LRd
j = max

(
f dj (v)

f d(v)

)
∝ max

(
inter - class variation
intra - class variation

)
, j ∈ {1, 2, ..., J}, d ∈ {1, 2, ...,D} (3)

Therefore, adopting Dfs dimensions with maximum LR
would be equivalent to selecting Dfs feature elements
with maximum inter- over intra-class variation.
3.1.2. Signal-to-noise ratio (c = SNR)
Signal-to-noise ratio (SNR) could possibly be another
alternative to discriminative measurement, since it is a
measure that captures both intra-class and inter-class
variations. This measure was first used in feature selec-
tion by a user-specific 1-bit RL-based discretization
scheme [12] to sort the feature elements which are iden-
tified to be reliable. However, instead of using the
default average intra-class variance to define SNR, we
adopt the user-specific intra-class variance to compute
the user-specific SNR for each feature component to
obtain an improved precision:

SNRd
j =

(σ d)
2

(σ d
j )

2 =
(
inter - class variance
intra - class variance

)
, j ∈ {1, 2, ..., J}, d ∈ {1, 2, ...,D} (4)

3.1.3. Reliability (c = RL)
Reliability was employed by Kevenaar et al. [9] to sort
the discriminability of the feature components in their
user-specific 1-bit-discretization scheme. Thus, it can be
implemented in a straightforward manner in our study.
The definition of this measure is given by

RLdj = 1/2

⎛
⎜⎝1 + erf

⎛
⎜⎝ | μd

j − μd |√
2(σ d

j )
2

⎞
⎟⎠

⎞
⎟⎠ ∝ max

(
inter - class variation
intra - class variation

)
,

j ∈ {1, 2, ..., J}, d ∈ {1, 2, ...,D}

(5)
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where erf is the error function. This RL measure
would produce a higher value when a feature element

has a larger difference between μd
j and μd relative to

σ d
j . As a result, a high RL measurement indicates a

high discriminating power of a feature component.
3.1.4. Standard deviation (c = SD)
In dynamic discretization, the amount of bits allocated
to a feature dimension indicates how discriminative the
user-specific feature component is detected to be.
Usually, a more discriminative feature component is
assigned with a larger quantity of bits and vice versa.

The pure user-specific SD measure σ d
j signifying intra-

class variance, was adopted by Teoh et al. as a bit-allo-
cation measure [18,19] and hence may serve as a poten-
tial discriminative measure.
3.1.5. Detection rate (c = DR)
Finally, unlike all the above measures that depend solely
on the statistical distribution in determining the discri-
mination of the feature components, DR could be
another efficient discriminative measure for discretiza-
tion that takes into account an additional factor: the
position of the user pdf with reference to the con-
structed genuine interval (the interval that captures the
largest portion of the user pdf) in each dimension. This
measure, as adopted by Chen et al. in their dynamic bit-
allocation scheme [17], is defined as the area under
curve of the user pdf enclosed by the genuine interval
upon the respective intervals construction in that
dimension. It can be described mathematically by

δdj (S
d) =

∫
int d

j
f dj (v)dv (6)

where δdj denotes the jth user’s DR in the dth dimen-

sion and Sd denotes the number of constructed intervals
in the dth dimension.
To select Dfs discriminative feature dimensions prop-

erly, schemes employing LR, SNR, RL, and DR measures
should take dimensions with the Dfs largest measure-
ments

{di | i = 1, ...,Dfs} = argmax
Dfs maxvalues

[χ(v1j1, v
1
j2, ..., v

1
jI), ...,χ(v

D
j1, v

D
j2, ..., v

D
jI )], d1, ..., dDfs ∈ [1,D],Dfs < D, (7)

while schemes employing SD measure should adopt
dimensions with the Dfs smallest measurements:

{di | i = 1, ...,Dfs} = argmin
Dfs min values

[χ(v1j1, v
1
j2, ..., v

1
jI), ...,χ(v

D
j1, v

D
j2, ..., v

D
jI )], d1, ..., dDfs ∈ [1,D],Dfs < D. (8)

We shall empirically identify discriminative measures
that can be reliably employed in the next section.

3.2 Discussions and a summary of our approach
In a biometric-based cryptographic key generation appli-
cation, there is usually an entropy requirement L

imposed on the binary output of the discretization
scheme. Based on a fixed-bit-allocation principle, L is
equally divided by D dimensions for typical equal-prob-
able discretization schemes and by Dfs dimensions for
our feature selection approach. Since the entropy per
dimension l is logarithmically proportional to the num-
ber of equal-probable intervals S (or lfs &Sfs for our
approach) constructed in each dimension, this can be
written as

l = L/D = log2S for typical EP discretization scheme (9)

or

lfs =
⌈
L/Dfs

⌉
=

⌈
lD/Dfs

⌉
= log2Sfs for our approach (10)

By denoting n as the bit length of each one-dimen-
sional binary output, the actual bit length N of the final
bit string is simply N = Dn; while for LSSC-encoding-
based schemes where nLSSC = (2l - 1) bits, and for our
approach where nLSSC(fs) = (2lfs − 1) bits, the actual bit
length NLSSC and NLSSC(fs) can respectively be described
by

NLSSC = DnLSSC = D(2l − 1) (11)

and

NLSSC(fs) = DfsnLSSC(fs) = Dfs(2lfs − 1) (12)

With the above equations, we illustrate the algorith-
mic description of our approach in Figure 4. Here, g
and d* are dimensional variables, and || denotes binary
concatenation operator.

4. Experiments and analysis
4.1. Experiment set-up
Two popular face datasets are selected to evaluate the
experimental discretization performance in this section:
FERET
This employed dataset is a subset of the FERET face
dataset [29], in which the images were collected under
varying illumination conditions and face expressions. It
contains a total of 1800 images with 12 images for each
of 150 users.
FRGC
The adopted dataset is a subset of the FRGC dataset
(version 2) [30], containing a total of 2124 images with
12 images for each of the 177 identities. The images
were taken under controlled illumination condition.
For both datasets, proper alignment is applied to the

images based on standard face landmarks. Owing to
possible strong variation in hair style, only the face
region is extracted for recognition by cropping the
images to the size of 30 × 36 for FERET dataset and 61
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× 73 for FRGC dataset. Finally, histogram equalization is
applied to the cropped images.
Half of each identity’s images are used for training,

while the remaining half are used for testing. For mea-
suring the system’s false acceptance rate (FAR), each
image of the corresponding user is matched against that
of every other user according to its corresponding image
index, while for the False Rejection Rate (FRR) evalua-
tion, each image is matched against every other images
of the same user for every user. In the subsequent

experiments, the equal error rate (EER) (error rate
where FAR = FRR) is used for comparing the discretiza-
tion performance among different discretization
schemes, since it is a quick and convenient way to com-
pare the performance accuracy of the discretizations.
Basically, the performance is considered to be better
when the EER is lower.
The experiments can be divided into three parts: The

first part identifies the reliable discriminative feature
selection measures among those listed in the previous

Figure 4 Our fixed-bit-allocation-based discretization approach.
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section. The second part examines the performance of
our approach and illustrates that replacing LSSC with
DBR- or BRGC-encoding scheme in our approach
would achieve a much poorer performance when high
entropy is imposed because of the conventional perfor-
mance-entropy tradeoff of DBR- and BRGC-encoding-
based discretization; The last part scrutinizes and reveals
how one could attain reliable parameter estimation, i.e.,
Dfs, in achieving the highest possible discretization
performance.
The experiments were carried out based on two differ-

ent dimensionality-reduction techniques: ERE [28] and
FDA [27], and two different datasets: FRGC and FERET.
In the first two parts of the experiments, 4453 raw
dimensions of FRGC images and 1080 raw dimensions
of FERET images were both reduced to D = 100 dimen-
sions. While for the last part, the raw dimensions of
images from both datasets were reduced to D = 50 and
100 dimensions for analytic purpose. Note that EP
quantization was employed in all parts of experiment.

4.2. Performance assessment
4.2.1. Experiment Part I: Identification of reliable feature-
selection measures
Based on the fixed-bit-allocation principle, n bits are
assigned equally to each of the D feature dimensions. A
Dn-bit binary string is then extracted for each user
through concatenating n-bit binary outputs of the indi-
vidual dimensions. Since DBR as well as BRGC is a code
which comprise the entire 2n n-bit codewords for label-
ling S = 2n intervals in every dimension, the single-
dimensional l can be deduced from (9) as

l = log2S = log22
n = n. (13)

The total entropy L is then equal to the length of the
binary string:

L =
∑D

d=1
l =

∑D

d=1
n = Dn. (14)

Note that L = 100, 200, 300 and 400 correspond to n
= 1, 2, 3 and 4, respectively, for each baseline scheme
(D = 100). For the feature-selection-based discretization
schemes to provide the same amount of entropy (with
nfs and lfs denoting the number of bits and the entropy
of each selected dimension, respectively), we have

L =
∑Dfs

d=1
lfs =

∑Dfs

d=1
nfs = Dfsnfs. (15)

With this, L = 100, 200, 300 and 400 correspond to lfs
= nfs = 2, 4, 6 and 8 respectively, for Dfs = 50. This
implies that the number of segmentation in each
selected feature dimension is now larger than the usual
case by a factor of 2n−nfs .

For LSSC encoding scheme which utilizes longer
codewords than DBR and BRGC in each dimension to
fulfil a system-specified entropy requirement, the rela-
tion between bit length nLSSC and single-dimensional
entropy l can be described by

nLSSC = S − 1 = 2l − 1; (16)

and for our approach, we have

nLSSC(fs) = 2lfs − 1 = 2�L/Dfs� − 1 (17)

from (10).
For the baseline discretization scheme of EP + LSSC

with D = 100, L = Dl = Dlog2(nLSSC + 1) = 100log2
(nLSSC + 1). Thus, L = {100, 200, 300, 400} corresponds
to l = {1, 2, 3, 4}, nLSSC = {1, 3, 7, 15} and the actual
length of the extracted bit string is DnLSSC = {100, 300,
700, 1500}. While for the feature-selection schemes
with Dfs = 50 where L = Dfslfs = Dfslog2(nLSSC(fs)+1) =
50log2(nLSSC(fs)+1), L = {100, 200, 300, 400} corre-
sponds to lfs = {2, 4, 6, 8}, nLSSC(fs) = {3, 15, 63, 255}
and the actual length of the extracted bit string
becomes DfsnLSSC(fs) = {150, 750, 3150, 12750}. The
implication here is that when a particularly large
entropy specification is imposed on a feature selection
scheme, a much longer LSSC-generated bit string will
always be required.
Figure 5 illustrates the EER performance of (I) EP +

DBR, (II) EP + BRGC, and (III) EP + LSSC discretiza-
tion schemes which adopt different discriminative mea-
sures-based feature selections with respect to that of the
baseline (discretization without feature selection where
Dfs = D) based on (a) FERET and (b) FRGC datasets.
“Max” and “Min” in each subfigure are referred to as
whether Dfs largest or smallest measurements were
adopted corresponding to each feature selection method,
as illustrated in (7) and (8).
A great discretization performance achieved by a fea-

ture-selection scheme basically implies a reliable mea-
sure for estimating the discriminativity of the features.
In all the subfigures, it is noticed that the discretization
schemes that select features based on the LR, RL, and
DR measures give the best performance among the fea-
ture selection schemes. RL seems to be the most reliable
discriminative measure, followed by LR and DR. In con-
trast, SNR and SD turn out to be some poor discrimina-
tive measures that could not guarantee any
improvement compared to the baseline scheme.
When LSSC encoding in our 4-step approach (see

Section 3) is replaced with DBR in Figure 5Ia, Ib; and
BRGC in Figure 5IIa, IIb, RL-, LR-, and DR-based fea-
ture selection schemes manage to outperform the
respective baseline scheme at low L. However, in most
cases, these DBR- and BRGC-encoding-based
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discretization schemes with feature selection are found
to underperform their baseline eventually when high
entropy requirement is imposed. The reason is that the
utilized dimensions in such feature selection schemes

are reduced by half, causing the partitioning on each
feature space to be augmented more rapidly by a factor
of 2n−nfs and thus yielding relatively increasing impreci-
sion of discrete-to-binary mapping as the entropy

(Ia)  (Ib) 

 
(IIa)  (IIb) 

(IIIa)  (IIIb)  
Figure 5 EER performance of EP + DBR, EP + BRGC, and EP + LSSC discretizations with feature selection (Dfs = 50) applied on FDA-
extracted features. (a) FERET and (b) FRGC datasets were adopted. The baseline is referred to as the reference scheme without feature-
selection capability (discretization of all D = 100 feature dimensions).
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requirement increases. For this reason, significant per-
formance degradation with respect to the baseline can
finally be noticed at L = 400 in Figure 5Ia, Ib, IIa.
Hence, when entropy increases, the EER performance
lines of RL-, LR- and DR-based feature-selection
schemes usually have steeper increments (degradation)
than that of the baseline.
On the other hand, in Figure 5IIIa, IIIb where LSSC

encoding is adopted, it is observed that RL-, LR- and
DR-based feature-selection schemes outperform their
baseline consistently for all values of L, except for DR-
based feature selection scheme, when L ≤ 200 in Fig-
ure 5IIIa. This particularly justifies that precise dis-
crete-to-binary mapping of LSSC is essential to enable
an effective feature selection-incorporated discretiza-
tion process when a large entropy requirement is
imposed.

4.2.2. Experiment Part II: Performance evaluation of EP +
LSSC discretization with RL-, LR- and DR-based feature-
selection capabilities
Figure 6 depicts the (a) EER plots and (b) ROC plots of
EP + DBR, EP + BRGC, and EP + LSSC discretization
schemes with reliable feature-selection schemes (identi-
fied in part I) applied to ERE-extracted features from (I)
FERET, and (II) FRGC datasets.
From the EER plots in Figure 6Ia, IIa, it is noticed that

DBR and BRGC baselines share a common behavior-the
deterioration of EER performance as L, or l for every
dimension, or proportionally S for every dimension
increases. Such an observation justifies the imprecise
discrete-to-binary mapping of DBR- and BRGC-encod-
ing-based discretization. Because the fact that the differ-
ence between any pair of interval indices is not equal to
the Hamming distance incurred between the

 
(Ia)  (Ib)  

(IIa)  (IIb)  
Figure 6 EER and ROC performances of EP + DBR, EP + BRGC, and EP + LSSC discretizations with reliable feature selection (Dfs = 50)
ERE feature extraction and FERET and FRGC datasets were adopted. The baseline is referred to as the reference scheme without feature-
selection capability (discretization of all D = 100 feature dimensions).
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corresponding DBR and BRGC codeword labels, the
separation of feature components in the Hamming
domain will eventually become poorer when more and
more segmentations are applied to each single-dimen-
sional feature space.
On the other hand, LSSC baseline has its performance

stabilized, although with some trivial fluctuations, con-
sistently in Figure 6IIa; and beyond L = 300(l = 3) in
Figure 6Ia. Similar performance trend (except with ear-
lier stabilization beyond L = 200 (lfs = 4) can be
observed with LSSC encoding-based discretizations with
LR-, RL-, and DR-based feature selection in these two
subfigures. This observation basically implies that, irre-
spective of the entropy requirement imposed on the dis-
cretization output, the performance led by
discriminative feature selection can reliably be pre-
served. Therefore, along with the employment of an
unsupervised quantization approach, binary strings that
fulfil all three desired criteria: discriminative, informa-
tive, and privacy protective can potentially be derived.
From both EER and ROC plots in Figure 6, the perfor-

mance curves of LSSC-encoding-based discretizations
with LR-, RL-, and DR-based feature selection are very
close to one another. It is believed that such a trivial
performance discrepancies among them are probably
caused by the slight fluctuation inherent to LSSC-based
schemes as the entropy requirement is increased. At L =
300, the outperformance of feature-selection schemes to
the baseline can averagely be quantified by 2% in Figure
6Ia and 8% in Figure 6IIa. With 0.1% FAR, approxi-
mately 5% GAR improvement in Figure 6Ib and 10%
GAR improvement in Figure 6IIb are observed.
For LSSC-encoding-based discretization, it is worthy

of note that the improvements of RL-, DR-, and LR-dis-
criminative feature selections in FERET dataset is less
significant compared to those in FRGC dataset. This
could be explained by the fact that decision made by a
feature-selecting process on a given set of features may
not be ideal due to indefinite pdf estimation from a lim-
ited number of training samples. Some indiscriminative
feature dimensions may be mistakenly selected. Vice
versa, some significantly discriminative dimensions may
be excluded by mistake for a similar reason. Therefore,
to what extent the influence of a feature selection on a
certain baseline performance would greatly depend on
the accuracy of the pdf estimation which could range
distinctively in accordance with different extracted sets
of features. In other words, the quality of the unselected
feature dimensions decides the amount of improvement
with respect to the baseline. If the excluded feature
dimensions are truly the least discriminative dimensions,
then the improvement will be the greatest. Otherwise, if
the excluded feature dimensions are somehow discrimi-
native, the improvement will be minor; or even worse,

performance deterioration could occur. This signifies
that the user pdf modelled from as many representative
training samples as possible to avoid such trivial
improvement or deterioration scenarios. This implies
that there is a higher number of less-discriminative
ERE-extractable feature components from FRGC dataset
than from FERET dataset, where the improvement
attained in FRGC-based experiment is generally higher
than in FERET-based experiment when the exclusion of
those less-discriminative components is precisely made.
4.2.3. Experiment part III: A meticulous analysis on EP +
LSSC discretization with LR-, RL- and DR-based feature-
selection capability
We have seen in part II that the performance of LSSC-
based discretization will be driven into a stable state
with a trivial level of fluctuations beyond a certain
entropy threshold. On the basis of this observation, it is
interesting to find out whether it is possible to estimate
a proper range of Dfs values to achieve the lowest possi-
ble EER in practice for all kinds of experiment settings;
and what are the other aspects that a practitioner should
take note when selecting Dfs in the real world imple-
mentation. We shall address these issues in the sequel
based on LR, RL, and DR discriminative measures that
have proven their usefulness in the previous subsections.
In the last part of our experiment, we have varied the

number of users (60 and 200 users for FERET dataset;
and 75 and 150 users for FRGC dataset) and the num-
ber of extracted dimensions (D = 50 for FDA; and D =
100 for ERE) to observe the performance of the discreti-
zation schemes in relation to Dfs. The objective for the
former parameter variation is to find the minimum Dfs

that could possibly represent a large/small number of
users globally; however, for the latter variation, our aim
is to examine the improvement of the feature-selection
schemes with respect to the baseline in accordance with
large/small value of D.
Figure 7 depicts the stable-state performance (for lfs =

6) of EP + LSSC feature selection schemes based on two
different numbers of (I) FDA- and (II) ERE-extracted
features and two different number of users involved in
(a) FERET and (b) FRGC datasets. Besides this, a sum-
mary of the best Dfs value associated with the lowest
EER is provided in Table 3 to identify the minimum
number of dimensions to represent each specific num-
ber of users efficiently.
In Figure 7, an interesting observation applied to all

performance curves is that the EER of each discretiza-
tion scheme initially decreases until some minimum
point(s) before rebounds again, as the number of
selected dimensions increases. To explain why this
could happen, one needs to first understand that an effi-
cient representation of a given number of users often
requires at least a minimal amount of feature
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dimensions to be utilized to avoid any bit pattern being
similarly repeated among other users. Taking perfor-
mance curves in Figure 7Ia, IIa as an instance, using Dfs

= 5 to represent 60 users and 200 users are apparently
not as effective as using Dfs = 12, even though Dfs = 12
could have utilized seven additional less-discriminative
dimensions which may, in an intuitive sense, give a
lower classification performance. Beyond the optimal Dfs

value that produces the minimum-EER performance,
this is where our prior elucidation holds: the more the
less-discriminative dimensions are being utilized, the
worse the discretization performance would be.
In Table 3, it is noticed that determining the mini-

mum Dfs which best represent any specific number of
users for all kinds of experiment settings is infeasible.
This can be seen from the contradiction that FDA-
extracted features with D = 50 requires merely 10, 15,
and 12 feature dimensions minimally to best represent
200 users from the FERET database for LR-, RL-, and
DR-discriminative measures respectively; while ERE

extracted features with D = 100 requires at least 20, 25
and 20 features to efficiently represent only 75 users
from FRGC database for the three selection measures,
respectively. We believe that this could be influenced by
different distribution of discriminative measurements for
all users according to different feature-extraction
methods.
Nonetheless, given a particular quantity of users under

an experiment setting, determining the proper value of
Dfs should not only rely on the performance aspect. In
fact, the amount of bit redundancy should also be taken
into consideration. Recall in the previous subsection
that the lower the Dfs is set, the higher the bit redun-
dancy per user a system would have to afford in order
to fulfill a specified system entropy. Therefore, a practi-
cal strategy would be to identify the system capability in
processing bit redundancy of all users before setting the
exact value of Dfs subject to the condition that the value
of Dfs should not be chosen too small to avoid ineffi-
cient user-representation problem.

  
(Ia) (Ib) 

 
(IIa) (IIb) 

Figure 7 The stable-state performance of EP + LSSC discretization with feature selection using FERET and FRGC datasets. Experiments,
based on two different numbers of (I) FDA- and (II) ERE-extracted features and two different numbers of users, were evaluated.

Lim and Teoh EURASIP Journal on Advances in Signal Processing 2011, 2011:107
http://asp.eurasipjournals.com/content/2011/1/107

Page 14 of 16



4.3. Summary
In a nutshell, our findings can be summarized in the fol-
lowing aspects:

• BRGC- and DBR-encoding schemes are not appro-
priate for being employed to generate highly discrimi-
native, informative, and privacy protective bit strings
due to its inability to uphold the perfect discrete-to-
binary mapping behavior for performance preserva-
tion when high entropy requirement is imposed.
• Since LSSC-encoding scheme is able to maintain
the discriminativity of the (selected) feature compo-
nents and drive it into a stable state (with insignifi-
cant fluctuations) irrespective of how high the
entropy requirement could be, this encoding scheme
appears to be extremely useful when it comes to dis-
criminative and informative bit-string generations.
• Our approach integrates high-quality feature
extraction, discriminative feature selection, unsuper-
vised quantization and LSSC encoding to address
the performance, security, and privacy criteria of a
binary representation. Among the five discriminative
measures in our evaluation, LR, RL, and DR

measures exhibit promising discretization perfor-
mance when they are adopted in our approach.
• In general, the improvement amount of our feature-
selection-based approach with reference to the base-
line can be influenced by the following three factors:

› The quality of the discriminative measures -
LR, RL, and DR are among the reliable ones.
› The accuracy of pdf estimations that could
greatly affect the decision of feature selection - it
all depends on how reliable and representative
the training samples are.
› The discriminativity of the unselected feature
dimensions - the noisier such feature dimensions
are, the higher the improvement would be.

• A tradeoff exists between the redundancy of the bit
string and the tunable value of the free parameter Dfs.
The lower Dfs is set, the higher the bit redundancy
results. Thus, the bit redundancy-processing capability
should always be considered before by a system practi-
tioner when setting Dfs, rather than minimizing it arbi-
trarily with the aim of attaining the minimum-EER
performance. Note also that over-minimizing Dfs may
lead to inefficient user representation.

5. Conclusion
In this article, we have proposed a four-step approach to
generate highly discriminative, informative, and privacy-
protective binary representations based on a fixed-bit-
allocation principle. The four steps include discrimina-
tive feature extraction, discriminative feature selection,
equal-probable quantization, and LSSC encoding.
Although our binary strings are capable of fulfilling the
desired criteria, the binary strings could be significantly
longer than any typical static bit-allocation approach
due to the employment of LSSC encoding and feature
selection, thus requiring advanced storage and proces-
sing capabilities of the biometric system. We have inves-
tigated a couple of existing measures to identify reliable
candidates for discretization. Experimental results
showed that LR, RL, and DR are among the best discri-
minative measures and a discretization scheme that
employ any of these feature-selection measures could
guarantee a substantial amount of performance
improvement compared to the baseline. The free para-
meter for feature selection, that is, the number of
selected dimensions Dfs should be cautiously fixed. This
parameter should not be set too small to avoid ineffi-
cient user representation problem and enormous bit
redundancy overhead. Also, it should not be fixed too
large to avoid trivial improvement relative to the
baseline.

Table 3 A glance of the best Dfs that produces the lowest
EER in accordance with settings of experiment part III.

Feature Extraction/
dataset

Discriminative measure (no.
users)

Dfs (Best EER
(%))

FDA (D = 50)/FERET LR (200) 10-15(12.60)

RL (200) 15-30(14.00)

DR (200) 12-20(14.60)

LR (60) 10-20(4.60)

RL (60) 12-20(4.90)

DR (60) 12-20(4.80)

ERE (D = 100)/FERET LR (200) 20-40(2.00)

RL (200) 20-25(1.76)

DR (200) 20-50(2.45)

LR (60) 10(1.67)

RL (60) 20(1.68)

DR (60) 20(1.82)

FDA (D = 50)/FRGC LR (150) 12(23.05)

RL (150) 12(21.97)

DR (150) 15(22.40)

LR (75) 12(21.64)

RL (75) 12(21.12)

DR (75) 12(20.93)

ERE (D = 100)/FRGC LR (150) 20-25(11.47)

RL (150) 15-25(11.35)

DR (150) 15-30(12.35)

LR (75) 20(9.56)

RL (75) 25(9.00)

DR (75) 20(10.63)
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