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Abstract

This article presents a new approach to the problem of simultaneous tracking of several people in low-resolution
sequences from multiple calibrated cameras. Redundancy among cameras is exploited to generate a discrete 3D
colored representation of the scene, being the starting point of the processing chain. We review how the initiation
and termination of tracks influences the overall tracker performance, and present a Bayesian approach to efficiently
create and destroy tracks. Two Monte Carlo-based schemes adapted to the incoming 3D discrete data are
introduced. First, a particle filtering technique is proposed relying on a volume likelihood function taking into
account both occupancy and color information. Sparse sampling is presented as an alternative based on a
sampling of the surface voxels in order to estimate the centroid of the tracked people. In this case, the likelihood
function is based on local neighborhoods computations thus dramatically decreasing the computational load of
the algorithm. A discrete 3D re-sampling procedure is introduced to drive these samples along time. Multiple
targets are tracked by means of multiple filters, and interaction among them is modeled through a 3D blocking
scheme. Tests over CLEAR-annotated database yield quantitative results showing the effectiveness of the proposed
algorithms in indoor scenarios, and a fair comparison with other state-of-the-art algorithms is presented. We also
consider the real-time performance of the proposed algorithm.

1 Introduction

Tracking multiple objects and keeping record of their
identities along time in a cluttered dynamic scene is a
major research topic in computer vision, basically fos-
tered by the number of applications that benefit from the
retrieved information. For instance, multi-person track-
ing has been found useful for automatic scene analysis
[1], human-computer interfaces [2], and detection of
unusual behaviors in security applications [3].

A number of methods for camera-based multi-person
3D tracking have been proposed in the literature [4-7]. A
common goal in these systems is robustness under occlu-
sions created by the multiple objects cluttering the scene
when estimating the position of a target. Single-camera
approaches [8] have been widely employed, but they are
vulnerable to occlusions, rotation, and scale changes of
the target. In order to avoid these drawbacks, multi-cam-
era tracking techniques exploit spatial redundancy
among different views and provide 3D information at the
actual scale of the objects in the real world. Integration
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of data extracted from multiple cameras has been pro-
posed in terms of a fusion at feature level as image corre-
spondences [9] or multi-view histograms [10] among
others. Information fusion at data or raw level has been
achieved by means of voxel reconstructions [11], polygon
meshes [12], etc.

Most multi-camera approaches rely on a separate ana-
lysis of each camera view, followed by a feature fusion
process to finally generate an output. Exploiting the
underlying epipolar geometry of a multi-camera setup
toward finding the most coherent feature correspondence
among views was first tackled by Miki¢ et al. [13] using
algebraic methods together with a Kalman filter, and
further developed by Focken et al. [14]. Exploiting epipo-
lar consistency within a robust Bayesian framework was
also presented by Canton-Ferrer et al. [9]. Other systems
rely on detecting semantically relevant patterns among
multiple cameras to feed the tracking algorithm as done
in [15] by detecting faces. Particle filtering (PF) [16] has
been a commonly employed algorithm because of its abil-
ity to deal with problems involving multi-modal distribu-
tions and non-linearities. Lanz et al. [10] proposed a
multi-camera PF tracker exploiting foreground and color
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information, and several contributions have also followed
this path: [4,7]. Occlusions, being a common problem in
feature fusion methods, have been addressed in [17]
using HMM to model the temporal evolution of occlu-
sions within a PF algorithm. Information about the track-
ing scenario can also be exploited toward detecting and
managing occlusions as done in [18] by modeling the
occluding elements, such as furniture, in a training phase
before tracking. It must be noted that, in this article, we
assume that all cameras will be covering the area under
study. Other approaches to multi-camera/multi-person
tracking do not require maximizing the overlap of the
field of view of multiple cameras, leading to the non-
overlapped multi-camera tracking algorithms [19].

Multi-camera/multi-person tracking algorithms based
on a data fusion before doing any analysis was pioneered
by Lopez et al. [20] by using a voxel® reconstruction of the
scene. This idea was further developed by the authors in
[5,21] finally leading to the present article. Up to our
knowledge, this is the first approach to multi-person track-
ing exploiting data fusion from multiple cameras as the
input of the algorithms. In this article, we first introduce a
methodology to multi-person tracking based on a colored
voxel representation of the scene as the start of the pro-
cessing chain. The contribution of this article is twofold.
First, we emphasize the importance of the initiation and
termination of tracks, usually neglected in most tracking
algorithms, that has indeed an impact on the performance
of the overall system. A general technique for the initia-
tion/termination of tracks is presented. The second contri-
bution is the filtering step where two techniques are
introduced. The first technique applies PF to input voxels
to estimate the centroid of the tracked targets. However,
this process is far from real-time performance and an
alternative, that we call Sparse Sampling (SS). SS aims at
decreasing computation time by means of a novel tracking
technique based on the seminal PF principle. Particles no
longer sample the state space but instead a magnitude
whose expectancy produces the centroid of the tracked
person: the surface voxels. The likelihood evaluation rely-
ing on occupancy and color information is computed on
local neighborhoods, thus dramatically decreasing the
computation load of the overall algorithm. Finally, effec-
tiveness of the proposed techniques is assessed by means
of objective metrics defined in the framework of the
CLEAR [22] multi-target tracking database. Computa-
tional performance is reviewed toward proving the real-
time operation of the SS algorithms. Fair comparisons
with state-of-the-art methods evaluated using the same
database are also presented and discussed.

2 Tracker design methodology
Typically, a multi-target tracking system can be depicted
as in Figure 1 and comprises a number of elementary
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Figure 1 Multi-person tracking scheme.
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modules. Although most articles present techniques that
contribute to filtering module, the overall architecture is
rarely addressed assuming that some blocks are already
available. In this section, this scheme will be analyzed
and some proposals for each module will be presented.
The filtering step, being our major contribution, will be
addressed in a separate section.

2.1 Input and output data

When addressing the problem of multi-person tracking
within a multi-camera environment, a strategy about
how to process this information is needed. Many
approaches perform an analysis of the images separately,
and then combine the results using some geometric con-
straints [10]. This approach is denoted as an information
combination by fusion of decisions. However, a major
issue in this procedure is dealing with occlusion and per-
spective effects. A more efficient way to combine infor-
mation is data fusion [23]. In our case, data fusion leads
to a combination of information from all images to build
up a new data representation, and to apply the algorithms
directly on these data. Several data representations aggre-
gating the information of multiple views have been pro-
posed in the literature such as voxel reconstructions
[11,24], level sets [25], polygon meshes [12], conexels
[26], depth maps [27], etc. In our research, we opted for
a colored voxel representation due to both its fast com-
putation and accuracy.

For a given frame in the video sequence, a set of N¢
images are obtained from the N cameras (see a sample
in Figure 2(a)). Each camera is modeled using a pinhole
camera model based on perspective projection with
camera calibration information available. Foreground
regions from input images are obtained using a segmen-
tation algorithm based on Stauffer-Grimson’s back-
ground learning and subtraction technique [28] as
shown in Figure 2(b).

Redundancy among cameras is exploited by means of a
Shape-from-Silhouette (SfS) technique [11]. This process
generates a discrete occupancy representation of the 3D
space (voxels). A voxel is labeled as foreground or back-
ground by checking the spatial consistency of its projec-
tion on the N¢ segmented silhouettes, and finally
obtaining the 3D binary reconstruction shown in Figure
2(c). We will denote this raw voxel reconstruction as V.
The visibility of a surface voxel onto a given camera is
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(c)

Figure 2 Input data generation example. (a) A sample of the original images. (b) Foreground segmentation of the input images employed by
the SfS algorithm. (c) Example of the binary 3D voxel reconstruction. (d) The final colored version shown over a background image.

(d)

assessed by computing the discrete ray originating from
its optical center to the center of this voxel using Bresen-
ham’s algorithm and testing whether this ray intersects
with any other foreground voxel. The most saturated
color among pixels of the set of cameras that see a sur-
face voxel is assigned to it. A colored representation of
surface voxels of the scene is obtained, denoted as V€.
An example of this process is depicted in Figure 2(d). It
should be taken into account that, without loss of gener-
ality, other background/foreground and 3D reconstruc-
tion algorithms may be used to generate the input data
to the tracking algorithm presented in this article.

The resulting colored 3D scene reconstruction is fed to
the proposed system that assigns a tracker to each target
and the obtained tracks are processed by a higher seman-
tic analysis module. Information about the environment
(dimensions of the room, furniture, etc.) allows assessing
the validity of tracked volumes and discarding false
volume detections.

Finally, the output of the overall tracking algorithm
will be a number of hypotheses for the centroid position
of each of the targets present in the scene.

2.2 Tracker state and filtering

One of the major challenges in multi-target tracking is
the estimation of the number of targets and their posi-
tions in the scene, based on a set of uncertain observa-
tions. This issue can be addressed from two perspectives.
First, extending the theory of single-target algorithms to
multiple targets. This approach defines the working state
space X as the concatenation of the positions of all Nt

targets as X =[xy, X..Xn;, | The difficulty here is the
time variant dimensionality of this space. Monte Carlo
approaches, and specifically PF approaches, to this pro-
blem have to face the exponential dependency between
the number of particles required by the filter and the
dimension of X', turning out to be computationally
infeasible. Recently, a solution based on random finite
sets achieving linear complexity has been presented [29].

Multi-target tracking can also be tackled by tracking
each target independently, that is to maintain Nt track-
ers with a state space Aj = x;. In this case, the system
attains a linear complexity with the number of targets,
thus allowing feasible implementations. However, inter-
actions among targets must be modeled in order to
ensure the most independent set of tracks. This
approach to multi-person tracking will be adopted in
our research.

2.3 Track initiation and termination

A crucial factor in the performance of a tracking system
is the module that addresses the initiation and termina-
tion of tracks. The initiation of a new tracker is inde-
pendent of the employed filtering technique and only
relies on the input data and the current state (position)
of the tracks in the scene. On the other hand, the termi-
nation of a new tracking filter is driven by the perfor-
mance of the tracker.

The initialization of a new filter is determined by the
correct detection of a person in the analyzed scene. This
process is crucial when tracking, and its correct opera-
tion will drive the overall system’s accuracy. However,
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despite the importance of this step, little attention is
paid to it in the design of multi-object trackers in the
literature. Only few articles explicitly mention this pro-
cess such as [30] that employs a face detector to detect
a person or [31] that uses scout particle filters to
explore the 3D space for new targets. Moreover, it is
assumed that all targets in the scene are of interest, i.e.,
people, not accounting for spurious objects, i.e., furni-
ture, shadows, etc. In this section, we introduce a
method to properly handle the initiation and termina-
tion of filters from a Bayesian perspective.

2.3.1 Track initiation criteria

The 3D input data VY fed to the tracking system is
usually corrupted and presents a number of inaccuracies
such as objects not reconstructed, mergings among adja-
cent blobs, spurious blobs, etc. Hence, defining a track
initialization criterium based solely on the presence of a
blob might lead to poor performance of the system. For
instance, objects such as furniture might be wrongly
detected as foreground, reconstructed and tracked.
Instead, a classification of the blobs based on a probabil-
istic criteria can be applied during this initialization pro-
cess aiming at a more robust operation. Training of this
classifier is based on the development set of the used
database, together with the available ground truth
describing the position of the tracked objects.

Let XC6T = {Xl, ...,XNCT} be the ground truth positions
of the Ngr targets present in the scene of the develop-
ment set at a given instant. Once the reconstruction Y
is available, a connected component analysis is per-
formed over these data thus obtaining a set of K disjoint
components, C;, fulfilling:

V=Ua. (1)
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We will consider the region of influence of a target
with centroid x as the ellipsoid &£(x,y) with axis size s =
(Sxs Sy» 5;) centered at c.

A mapping is defined such that for every x; e XCT a
component C; is assigned. Let us denote [x](, . as the
x, y or z coordinate of vector x. The assignation process
is defined as follows: first, a region of influence £(xj,s)
with size s = (s, s,, [X;],) centered at ¢ = x; is placed in
the 3D space. The radii s, and s, are chosen to contain
an average person, s, = s, = 30 cm. Let us define the
operator |-| applied to a volume as the number of non-
zero voxels contained in it. Then, the assignation is
defined as

xj — argmax |£(x;,8) N Cil, (2)

that is to assign x; to the component with the largest
volume enclosed in the region of influence. It must be
noted that some x; might not have any C; associated due
to a wrong segmentation or faulty reconstruction of the
target. Moreover, the set of components not associated
to any ground truth position can be identified as spur-
ious objects, reconstructed shadows, etc.

Finally, we have grouped the set of connected compo-
nents C; in two categories: person and non-person. A
set of features are extracted from each of these compo-
nents, thus conforming the characteristics that will be
used to train a person/no-person binary classifier. This
set of extracted features is described in Table 1.

In order to characterize the objects to be tracked and
to decide the best classifier system, we have performed
an exploratory data analysis [32], which will allow us to
contrast the underlying hypotheses of the classifiers with
the actual data. Histograms of these features are com-
puted as shown in Figure 3 and scatter plots depicting
the cross dependencies among all features are

Table 1 Features employed by the person/no-person classifier where magnitude [)](x,} denotes the x, y, or z

coordinates of voxel )

Feature Expression

Weight

Gl Y VL
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Figure 3 Normalized histograms of the variables conforming the feature vector employed by the person/non-person classifier.
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computed. Observing Figure 3, we see that some vari-
ables are easily separable, i.e., weight, height, and
bounding box. Moreover, they show a low cross depen-
dency with other features.

A number of standard binary classifiers has been
tested and their performances have been evaluated,
namely Gaussian, Mixture of Gaussians, Neural Net-
works, K-Means, PCA, Parzen and Decision Trees
[33,34]. Due to the aforementioned properties of the sta-
tistic distributions of the features, some classifiers are
unable to obtain a good performance, i.e., Gaussian,
PCA, etc. Other classifiers require a large number of
characterizing elements, such as K-Means, MoG, or Par-
zen. Decision trees [33] have reported the best results.
Separable variables such as height, weight, and bounding
box size are automatically selected to build up a deci-
sion tree that yields a high recognition rate with a preci-
sion of 0.98 and a recall of 0.99 in our test database.

Another complementary criterium employed in the
initiation of new tracks is based on the current state of
the tracker. It will not be allowed to create a new track
if its distance to the closest target is below a threshold.
2.3.2 Track termination criteria
A target will be deleted if one of the following condi-
tions is fulfilled:

- If two or more tracks fall too close to one another,
this indicates that they might be tracking the same
target, hence only one will be kept alive while the
rest will be removed.

- If tracker’s efficiency becomes very low it might
indicate that the target has disappeared and should
be removed.

- The person/no-person classifier is applied to the
set of features extracted from the voxels assigned to
a target. If the classifier outputs a no-person verdict
for a number of frames, the target will be considered
as lost.

3 Voxel-based solutions

The filtering block shown in Figure 1 addresses the pro-
blem of keeping consistent trajectories of the tracked
objects, resolving crossings among targets, mergings
with spurious objects (i.e., shadows) and producing an
accurate estimation of the centroid of the target based
on the input voxel information. Although there is a
number of papers addressing the problem of multi-cam-
era/multi-person tracking, very few contributions have
been based on voxel analysis [20,21].

3.1 PF tracking

PF is an approximation technique for estimation pro-
blems where the variables involved do not hold Gaus-
sianity uncertainty models and linear dynamics. The
current tracking scenario can be tackled by means of
this algorithm to estimate the 3D position of a person x;
= (%, 5, z); at time ¢, taking as observation a set of
colored voxels representing the 3D scene up to time ¢
denoted as z,. ,. For a given target x,, PF approximates
the posterior density p(x;|z;.) as a sum of N, Dirac
functions:

p(xilz1e) & ) wd(x —x,), (3)

j=1
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where u/t are the weights associated to the particles,
fulfilling Z}w’t =1, and X’z their positions. For this type
of tracking problem, a sampling importance re-sampling
(SIR) PF is applied to drive particles along time [16].

Assuming importance density to be equal to the prior
density, weight update is recursively computed as

w ocw_yp (). @

SIR PF avoids the particle degeneracy problem by re-
sampling at every time step. In this case, weights are set

to u;i_l = N3, Vj; therefore,

w ocp (zx,) 5)

Hence, the weights are proportional to the likelihood
function that will be computed over the incoming
volume z,.

Finally, the best state at time ¢, X, is derived based on
the discrete approximation of Equation 3. The most
common solution is the Monte Carlo approximation of
the expectation as

NP . .
% = E[xi|z1.] & ) wix,. 6)

j=1

Basically, in the PF operation loop two steps must be
defined: likelihood evaluation and particles propagation.
In the following, we present our proposal for the PF
implementation.

3.1.1 Likelihood evaluation
Binary and color information contained in z, will be

employed to define the likelihood function p(zt|x];)

relating the observation z, with the human body
instance given by particle XL 1 <j < Np- Two partial

likelihood functions, praw (dei) and pcolor (Vﬂx];),

will be combined linearly to produce p (zt|x’;> as:

p(2) = Apras (Vilx) + (1 = pcotor (VEIX) . (7)

Factor A controls the influence of each term (fore-
ground and color information) in the overall likelihood
function. Empirical tests have shown that A = 0.8 pro-
vides satisfactory results. A more detailed review of the
impact of color information in the overall performance
of the algorithm is addressed in Section5.1.

Likelihood associated to raw data is defined as the
ratio of overlap between the input data V), and the ellip-

soid 5{ defined by particle x]; (see Section 2.3.1)
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as

\v,mgg'

praw (Vilx) = ®)

&l

For a given target k, an adaptive reference histogram
H’: of the colored surface voxels is available. This histo-

gram is constructed using the YCbCr color space due to
its robustness against light variations. The number of
bins per channel will drive the ability of the system to
distinguish between different color blobs; for our experi-
ments, 21 bins per channel have been set empirically.
The color likelihood function is constructed as

peotor (VEIX) =B (HE H (VN €l)), )

where B(-) is the Bhattacharya distance and H(-) stands
for the color histogram extraction operation of the
enclosed volume. Update of the reference histogram is
performed in a linear manner following the rule:

HY = ol + (1-)H (VN E), (10)

where &£F stands for the ellipsoid placed in the cen-

troid estimation X, and « is the adaptation coefficient.
In our experiments, & = 0.9 provided satisfactory results.
3.1.2 Particle propagation

The propagation model has been chosen to be a Gaus-
sian noise added to the state of the particles after the

re-sampling step: X{+1
corresponding to N is proportional to the maximum
variation of the centroid of the target and this informa-
tion is obtained from the development part of the test-
ing dataset. More sophisticated schemes employ
previously learnt motion priors to drive the particles
more efficiently [6]. However, this would penalize the
efficiency of the system when tracking unmodeled
motions patterns and, since our algorithm is intended
for any motion tracking, no dynamical model is adopted.
3.1.3 Interaction model

Let us assume that there are Nt independent tracked
targets. However, they are not fully independent since
each tracker can consider voxels from other targets in
both the likelihood evaluation and the 3D re-sampling
step, resulting in target merging or identity mismatches.
In order to achieve the most independent set of track-
ers, a blocking method to model interactions is consid-
ered. Some blocking proposals can be found in 2D
tracking related studies [6] and an extension to the 3D
domain is proposed. Blocking methods rely on penaliz-
ing particles whose associated ellipsoid model overlaps
with other targets’ ellipsoid as shown in Figure 4.

= x, + N. The covariance matrix P
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(a) (b)
Figure 4 Particles from the tracker A (yellow ellipsoid) falling

into the exclusion zone of tracker B (green ellipsoid) will be
penalized by a multiplicative factor oz € [0, 1].

Hence, blocking information can also be considered
when computing the particle weights for the kth target
as

Nr
k.j k j <kl
w’ =p (ztlx[]) | | ) (xhl,xkl), (11)
=1
I

where if_l stands for the estimation of the PF at time

t - 1 for target k and ¢(-) is the blocking function defin-
ing exclusion zones that penalize particles from target /
falling into the exclusion zone of target k. In this parti-
cular case, considering that people in the room are
always sitting or standing up, this zone can be con-
strained to the xy plane. The proposed function is

(st -1 (6] -] [).

where k ocs;? is the parameter that drives the sensi-

bility of the exclusion zone.

3.2 SS tracking

In the presented PF tracking algorithm, likelihood eva-
luation can be computationally expensive, thus render-
ing this approach unsuitable for real-time systems.
Moreover, data are usually noisy and may contain
merged blobs corresponding to different targets. A new
technique, SS, is proposed as an efficient and flexible
alternative to PF.

Assuming a homogeneous 3D object, it can be proved
that its centroid can exactly be computed based only on
the surface voxels, since the interior voxels do not pro-
vide any relevant information. Hence, this centroid can
be estimated through a discrete version of Green’s theo-
rem on the surface voxels [35,36], while other
approaches obtain an accurate approximation of the
centroid using feature points (see [37] for a review). A
common assumption of these techniques is the
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availability of surface data extracted beforehand, hence a
labeling of the voxels in the scene should be available.
By assuming that the object under study presents a cen-
tral symmetry in the xy plane, the computation of the
centroid can be done as an average of the positions of
the surface voxels:

X Ve X Vi
%= Vev, VeV (13)
Vil Vil

3.2.1 Degree of mass and degree of surfaceness
Let us model the human body as an ellipsoid as pre-
viously done in the PF approach. In order to test the
robustness of the centroid computation of Equation13
against missing data, we studied the error committed
when only a fraction of these input data is employed. A
number of voxels (surface or interior voxels in each
case) is randomly selected and employed to compute
the centroid. Then, the error is computed showing that
the surface-based estimation is more sensitive than the
estimation using interior voxels (see Figure 5). However,
this proves that the centroid can be computed from a
number of randomly selected surface voxels still achiev-
ing a satisfactory performance. This idea is the underly-
ing principle of the SS algorithm.

Let us estimate the centroid of an object by analyzing
a randomly selected number of voxels from the whole
scene, denoted as W. An approach to the computation
of the centroid would be

W)W
oSS ey,
‘ > o) 0 PUY T loitw e,
WeWw,

where p(W) gives the mass density of voxel W.
Since it is assumed that all voxels have the same mass,
this is a binary function that checks the occupancy of a
given voxel. Hence, only the fraction of (randomly
selected) voxels inside the object will contribute to the
computation of the centroid. Equation14 can be rewrit-

ten as
2 ~ p(W)
2 > P

WeWw, We

[W]x= Z ﬁ(W)[W]xz(15)

WeWw,

where p(WW) can be considered as the normalized
mass contribution of voxel W to the computation of
the centroid. If function p(WV) takes values in the range
[0,1] we may consider it as the “degree of mass” of W or
the importance of voxel W into the calculation of %;.
Then, p(W) might be considered as a normalized
weight assigned to W. Since we stated that the centroid
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can be computed using surface voxels, Equation13 can
be also posed as

y ps(W) By
X, ~ Wik = psOW) Wik,
WeWw, Wgw, p(W) WEZVV, (16)

where ps(W) € [0, 1] measures the “degree of surface-
ness” of voxel W. Within this context, functions p(-)
and pg(-) might be understood as pseudo-likelihood
functions and Equations 16 and 15 as a sample-based
representation of an estimation problem.
3.2.2 Difference with particle filters
There is an obvious similarity between these representa-
tion and the formulation of particle filters but there is a
significant difference. While particles in PF represent an
instance of the whole body, our samples (W € W) are
points in the 3D space. Moreover, particle likelihoods
are computed over all data while sample pseudo-likeli-
hoods will be computed in a local domain.

The presented concepts are applied to define the SS
algorithm. Let yi € R3 a point in the 3D space and

o! € R its associated weight measuring the pseudo-

likelihood of this position being part of the object or
part of its surface. Under certain assumptions, it is
achieved that the centroid can be computed as

NS
X ~ Zwb’ltr
i=1
where Ny is the number of sampling points. When

using SS we are no longer sampling the state space
since yi cannot be considered an instance of the cen-

(17)

troid of the target as happened with particles, x’;, in PF.
Hence, we will talk about samples instead of particles
and we will refer to {(yi, a)};)}isl as the sampling set.
This set will approximate the surface of the kth target,
VS, and will fulfill the sparsity condition Ny <« ‘Vs'k‘ .

4 SS implementation

In order to define a method to recursively estimate X,
N
i=1
has to be set. Essentially, the proposal is to follow the
PF analysis loop (re-sampling, propagation, evaluation,

from the sampling set {(y}, w!)}.", 2 filtering strategy
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and estimation) with some opportune modifications to
ensure the convergence of the algorithm.

4.1 Pseudo-likelihood evaluation

Associated weight w’t to a sample y! will measure the
likelihood of that 3D position to be part of the surface
of the tracked target. When computing the pseudo-like-
lihood, surface has been chosen instead of interior vox-
els, based on the efficiency of surface samples to
propagate rapidly as will be explained in the next sec-
tion. As in the defined PF likelihood function, two par-
tial pseudo-likelihood functions®, praw (Vily!) and

PColor (Vtclyi), are linearly combined to form p (z,|y;') as

p (Zt|ylt) = A PRaw (thy;) + (1 - )‘)pCOIOI (Vtclyi) . (18)

Partial likelihoods will be computed on a local domain
centered in the position yi. Let C (yi, q, r) be a neighbor-
hood of radius r over a connectivity ¢ domain on the 3D
orthogonal grid around a sample place in a voxel posi-
tion y'. Then, we define the occupancy and color neigh-
borhoods around y as O =V,NC(y,qr) and

=vence (vi, g, 1), respectively.

For a given sample y; occupying a single voxel, its
weight associated to the raw data will measure its likeli-

hood to belong to the surface of an object. It can be
modeled as

[eA ‘
—1]. (19)

wvl _1_
PRa ( th ’|C erqr )|

Ideally, when the sample y;' is placed in a surface, half
of its associated occupancy neighborhood will be occu-
pied and the other half empty. The proposed expression
attains its maximum when this condition is fulfilled.

Function pcolor (Vly}) can be defined as the likeli-
hood of a sample belonging to the surface correspond-
ing to the kth target characterized by an adaptive
reference color histogram HF:

peotor (VEIy:) = D (M, €)). 20)

Since C{; contains only local color information with

reference of the global histogram HF, the distance D(.)
is constructed toward giving a measure of the likelihood
between this local colored region and H¥. For every

voxel in CJ;, it is decided whether it is similar to H}" by
selecting the histogram value for the tested color and
checking whether it is above a threshold y or not.
Finally, the ratio between the number of similar color
and total voxels in the neighborhood gives the color
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similarity score. Since reference histogram is updated
and changes over time, a variable threshold y is com-
puted, so that the 80% of the values of H}"
into account.

One of the advantages of the SS algorithm is its com-
putational efficiency. The complexity to compute

are taken

p (zly}) is quite reduced since it only evaluates a local
neighborhood around the sample in comparison with
the computational load required to evaluate the likeli-
hood of a particle in the PF algorithm. This point will
be quantitatively addressed in Section5.2.

The parameters defining the neighborhood were set to
q = 26 and r = 2 yielding to satisfactory results. Larger
values of the radius r did not significantly improve the
overall algorithm performance but increased its compu-
tational complexity.

4.2 Sample propagation and 3D discrete resampling
A sample yi placed near a surface will have an asso-

ciated weight w]t with a high value. It is a valid assump-

tion to consider that some surrounding positions might
also be part of this surface. Hence, placing a number of

new particles in the vicinity of x¥ would contribute to

progressively explore the surface of a voxel set. This
idea leads to the spatial re-sampling and propagation
scheme that will drive samples along time in the surface
of the tracked target.

Given the discrete nature of the 3D voxel space, it will
be assumed that every sample is constrained to occupy
a single voxel or discrete 3D coordinate and there can-
not be two samples placed in the same location. Re-
sampling is mimicked from PF so a number of replicas
proportional to the normalized weight of the sample are
generated. Then, these new samples are propagated and
some discrete noise is added to their position meaning
that their new positions are also constrained to occupy
a discrete 3D coordinate (see an example in Figure 6).
However, two re-sampled and propagated particles may

" ) oy
a1 o ‘ : O
! ;;-_-,:/l

(a) (b)
Figure 6 Example of discrete re-sampling and propagation (in
2D). (a) A sample is re-sampled and its replicas are randomly
placed occupying a single voxel. (b) Two re-sampled samples fall in
the same position (red cell) and one of them (blue) performs a
random search through the adjacent voxels to find an empty
location.
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fall in the same 3D voxel location as shown in Figure 6.
In such case, one of these particles will randomly
explore the adjacent voxels until reaching an empty
location; if there is not any suitable location for this par-
ticle, it will be dismissed.

The choice of sampling the surface voxels of the
object instead of its interior voxels to finally obtain its
centroid is motivated by the fact that propagating sam-
ples along the surface rapidly spread them all around
the object as depicted in Figure 7. Propagating samples
on the surface is equivalent to propagate them on a 2D
domain, hence the condition of not placing two samples
in the same voxel will make them to explore the surface
faster (see Figure 6). On the other hand, interior voxels
propagate on a 3D domain, thus having more space to
explore and therefore becoming slower to spread all
around the volume (see Figure 6). Although both
(pseudo-)likelihoods should produce a fair estimation of
the object’s centroid, both sampling sets must fulfill the
condition to be randomly spread around the object
volume, otherwise the centroid estimation will be biased.
4.2.1 Interaction model
The flexibility of a sample-based analysis may, sometimes,
lead to situations where particles spread out too much
from the computed centroid. In order to cope with this
problem, a intra-target samples’ interaction model is
devised. If a sample is placed in a position such that

H [Yi]x,y - [it_l]x,yH > § it will be removed (that is to

assign ! = 0) and we set the threshold as J = as,, with s,
= 30 cm. Factor o = 1.5 produced accurate results in our
experiments.

The interaction among targets is modeled in similar
way as in the PF approach. Formulas in Equations 11
and 12 are applied to samples with the appropriate scal-
ing parameter k.

5 Results and evaluation
In order to assess the performance of the proposed track-
ing systems, they have been tested on the set of
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benchmarking image sequences provided by the CLEAR
Evaluation Campaigns 2007 [22]. Typically, these evalua-
tion sequences involved up to five people moving around
in a meeting room. This benchmarking set was formed
by two separate datasets, development, and evaluation,
containing sequences recorded by five of the participating
partners. A sample of these data can be seen in Figure 8.
The development set consisted in 5 sequences of an
approximate duration of 20 min each, while the evalua-
tion set was formed by 40 sequences of 5min each, thus
adding up to 5 h of data. Each sequence was recorded
with four cameras placed in the corners of the room and
a zenithal camera placed in the ceiling. All cameras were
calibrated and had resolutions ranging from 640 x 480 to
756 x 576 pixels at an average frame rate of fy = 25fps.
The test environments were a 5 x 4 m rooms with
occluding elements such as tables and chairs. Images of
the empty rooms were also provided to train the back-
ground/foreground segmentation algorithms.

Metrics proposed in [4] for multi-person tracking eva-
luation have been adopted, namely the Multiple Object
Tracking Precision (MOTP), which shows tracker’s abil-
ity to estimate precise object positions, and the Multiple
Object Tracking Accuracy (MOTA), which expresses its
performance at estimating the number of objects, and at
keeping consistent trajectories. MOTP scores the aver-
age metric error when estimating multiple target 3D
centroids, while MOTA evaluates the percentage of
frames where targets have been missed, wrongly
detected or mismatched.

The aim of a tracking system would be to produce
high values of MOTA and low values of MOTP thus
indicating its ability to correctly track all targets and
estimate their positions accurately. When comparing
two algorithms, there will be a preference to choose the
one outputting the highest MOTA score.

5.1 Results
To demonstrate the effectiveness of the proposed multi-
person tracking approaches, a set of experiments were

(a) Reference

(b) Interior based likelihood

Figure 7 Sample positions evolution and centroid estimation. Likelihood based on: (a) interior voxels, or (b) surface voxels.

(c) Surface based likelihood
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(e)

Figure 8 CLEAR [22]evaluation dataset sample. Images from
several partners showing a common indoor conference room

configuration involving several participants.
A J

conducted over the CLEAR 2007 database. The develop-
ment part of the dataset was used to train the initiation/
termination of tracks modules as described in Section
2.3 and the remaining test part was used for our
experiments.

First, the multi-camera data are pre-processed per-
forming the foreground and background segmentations
and 3D voxel reconstruction algorithm. In order to ana-
lyze the dependency of the tracker’s performance with
the resolution of the 3D reconstruction, several voxel
sizes were employed s, = {2,5,10,15} cm. A colored
version of these voxel reconstructions was also gener-
ated, according to the technique introduced in Section
2.1. Then, these data were the input fed to the PF and
SS proposed approaches.

In both types of filters, SS or PF, three parameters
drive the performance of the algorithm: the voxel size
Sy, the number of samples N, or particles Ny, and the
usage of color information. Experiments carried out
explore the influence of these parameters in the MOTP,
precision in cm., and MOTA, tracker accuracy (in % of
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correctly tracked targets), shown in Figure 9. Some
remarks can be drawn

- Number of samples/particles: There is a depen-
dency between the MOTP score and the number of par-
ticles/samples, especially for the SS algorithm. The
contribution of a new sample to the estimation of the
centroid in the SS has less impact than the addition of a
new particle in the PF, hence the slower decay of the
MOTP curves for the SS than for the PF. Regarding the
MOTA score, there is not a significant dependency with
N; or N,,. Two factors drive the MOTA of an algorithm:
the track initiation/termination modules, that mainly
contributes to the ratio of misses and false positives,
and the filtering step that has an impact to the mis-
matches ratio. The low dependency of MOTA with Nj
or N, shows that most of the impact of the algorithm in
this score is due to the particle/sample propagation and
interaction strategies rather than the quantity of parti-
cles/samples itself. Moreover, the influence in the
MOTA score is tightly correlated with the track initia-
tion/termination policy. This assumption was experi-
mentally validated by testing several classification
methods (mixture of Gaussians, PCA, Parzen, and K-
Means) in the initiation/termination modules yielding to
a drop in the MOTA score proportional to their ability
to correctly classify a blob as person/no-person.

- Voxel size: Scenes reconstructed with a large voxel
size do not capture well all spatial details and may miss
some objects thus decreasing the performance of the
system (both in SS and PF). It can be observed that
MOTP and MOTA scores improve as the voxel size
decrease.

- Color features: Color information improves the per-
formance of SS and PF in both MOTP and MOTA
scores. First, there is an improvement when using color
information for a given voxel size, specially for the SS
algorithm. Moreover, the smaller the voxel size the most
noticeable difference between the experiments using raw
and color features. This effect is supported by the fact
that color characteristics are better captured when using
small voxel sizes. The performance improvement when
using color in the SS algorithm is more noticeable since
samples are placed in the regions with a high likelihood
to be part of the target. For instance, this effect is more
evident in cases where the subject is sitting and the par-
ticles concentrate in the upper body part, disregarding
the part of the chair. In the SS algorithm, MOTP score
benefits from this efficient sample placement. PF algo-
rithm is constrained to evaluate the color likelihood in
the ellipsoid defined in Equation 9 thus not being able
to differentiate between parts of the blob that do not
belong to the tracked target. Color information used
within the filtering loop leads to a better distinguishabil-
ity among blobs, thus reducing the mismatch ratio and
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Figure 9 MOTP and MOTA scores for the SS and the PF techniques using raw and colored voxels. Several voxel sizes sv = {2, 5, 10, 15}

slightly improving the MOTA score. Merging of adja-
cent blobs or complex crossing among targets is also
correctly resolved. An example of the impact of color
information is shown in Figure 10 where the usage of
color avoids the mismatch between two targets. This
effect is more noticeable when targets in the scene are
dressed in different colors.

We can compare the results obtained by SS and PF
with other algorithms evaluated using the same CLEAR
2007 database whose scores are reported in Table 2.
Most of these methods exploited multi-view information
with the exception of [31] that only used the zenithal
camera facing the associated distortion and perspective
problems. PF is the most employed technique due to its
suitability to the characteristics of this problem although
Kalman filtering used by [15] provided fair results when
fed by higher semantical features extracted from the
input data (in this case, faces). Note the low FP score
for this system as a consequence of the unlikely event of
detecting a face in a spurious object. A 3D voxel recon-
struction was used as the input data in [5] together with
a simple track management system. The rest of the

methods [7,31] relied on a fixed human body appear-
ance model similar to the ellipsoidal region of interest
used in our PF proposal. However, the novelty of these

Raw features

Color features

t t+1

t+2

Figure 10 Zenithal view of two comparative experiments
showing the influence of color in the SS algorithm. The cross-
over between two targets is correctly tackled when using color
information whereas using only raw features leads to a mismatch
and, afterwards, a track loss (white ellipsoid) and the initiation of a
new one (cyan ellipsoid).
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Table 2 Results presented at the CLEAR 2007 [22] by
several partners

Method MOTP MOTA FP Miss MM
(mm) (%) (%) (%) (cases)

Face detection+Kalman filtering 91 5066 0699 3089 246
[15]

Appearance models+PF [7] 141 5962 1858 2066 1.14
Upper body detection+PF [31] 155 69.58 1450 1509 083
Zenithal camera analysis+PF [31] 222 5494 2024 2374 108
Voxel analysis+Heuristic tracker 168 3049 40.19 2774 158
[5]

Voxel analysis+PF (best case) 147 7456 1403 1048 091
Voxel analysis+SS (best case) 144 8150 0934 0870 046

Multi-camera information is used to track multiple people using several
methods

methods is the strategies to combine the information
coming from the analysis of different views without per-
forming any 3D reconstruction. Comparing the best
proposed tracking system [31]° with our two
approaches, we obtain a relative improvement of A
(MOTP, MOTA)ss = (7.63,17.13)% and A(MOTP,
MOTA)pg = (5.16,7.15)%.

In order to visually show the performance of the SS
algorithm, some videos corresponding to the most chal-
lenging tracking scenarios have been made available at
http://www.cristiancanton.org.
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5.2 Computational performance

Comparing obtained metrics among different algorithms
can give an idea about their performance in a scenario
where computational complexity is not taken into
account. An analysis of the operation time of several
algorithms under the same conditions and the produced
MOTP/MOTA metrics might give a more informative
and fairer comparison tool. Although there is not a
standard procedure to measure the computational per-
formance of a tracking process, we devised a method to
assess the computational efficiency of our algorithms to
present a comparative study.

The RTFfactor associated with a performance measure
MOTP/MOTA (in both vertical axes) of the SS and PF
algorithms when dealing with raw and colored input
voxels is presented in Figure 11. This factor indicates a
proportional measure of the speed of the algorithm
where RTF = 1 stands for real-time operation while RTF
> 1 and RTF < 1 indicate a faster or slower perfor-
mance, respectively. Each point of every curve is the
result of an experiment conducted over all the CLEAR
data set associated to a number of samples/particles of
each algorithm.

The first noticeable characteristic of these charts is
that, due to the computational complexity of each algo-
rithm, when comparing SS and PF algorithms under the
same operation conditions, the RTF associated with SS
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Figure 11 Computational performance comparison between PF and SS using several voxel sizes sy, = {2, 5, 10, 15} cm and features
(raw or colored voxels). MOTP and MOTA scores are related to the real-time factor (RTF) showing the computational load required by each
algorithm to attain a given tracking performance.
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is always higher than the associated with PF. Similarly,
the computational load is higher when analyzing colored
than raw inputs. All the plotted curves attain lower RTF
performance values as the size of the voxel s, decreases
since the amount of data to process increases (note the
different RTF scale ranges for each voxel size in Figure
11). Regarding the MOTP/MOTA metrics, there is a
common tendency to a decrease in the MOTP and an
increase in the MOTA as the RTF decreases. The
separation between the SS and PF curves is bigger as
the voxel size decreases since the PF algorithm has to
evaluate a larger amount of data.

The observation of these results yields the conclusion
that the SS algorithm is able to produce a similar and,
in some cases, better results than the PF algorithm with
a lower computational cost. For example, using s, = 5
cm, a MOTP score of around 165 mm can be obtained
using SS with a RTF ten times larger than when using
PF and similarly with the MOTA score.

6 Conclusions

In this article, we have presented a number of contribu-
tions to the multi-person tracking task in a multi-cam-
era environment. A block representation of the whole
tracking process allowed to identify the performance
bottlenecks of the system and address efficient solutions
to each of them. Real-time performance of the system
was a major goal hence efficient tracking algorithms
have been produced as well as an analysis of their
performance.

The performance of these systems has thoroughly
been tested over the CLEAR database and quantitatively
compared through two scores: MOTP and MOTA. A
number of experiments have been conducted toward
exploring the influence of the resolution of the 3D
reconstruction and the color information. Results have
been compared with other state-of-the-art algorithms
evaluated with the same metrics using the same testing
data.

The relevance of the initiation and termination of fil-
ters have been proved, since these modules have a
major impact on the MOTA score. However, most arti-
cles in the literature do not specifically address the
operation of these modules. We proposed a statistical
classifier based on classification trees as a way to discri-
minate blobs between the person/no-person classes.
Training of this classifier was done using data available
in the development part of the employed database and a
number of features (namely weight, height, top in z-axis,
bounding box size) were extracted and provided as the
input to the classifier. Another criterium such as a
proximity to other already existing tracks was employed
to create or destroy a track. Performance scores in
Table 2 for the PF and SS systems present the lowest
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values for the false positives (FP) and missed targets
(Miss) ratios hence supporting the relevance of the
initiation and termination of tracks modules.

Two proposals for the filtering step of the tracking
system have been presented: PF and SS. An independent
tracker was assigned to every target and an interaction
model was defined. PF technique proved to be robust
and leaded to state-of-the-art results but its computa-
tional load was unaffordable for small voxel sizes. As an
alternative, SS algorithm has been presented achieving a
similar and, in some occasions, better performance than
PF at a smaller computational cost. Its sample-based
estimation of the centroid allowed a better adaptation to
noisy data and distinguishability among merged blobs.
In both PF and SS, color information provided a useful
cue to increase the robustness of the system against
track mismatches thus increasing the MOTA score. In
the SS, color information also allowed a better place-
ment of the samples allowing to distinguish among
parts belonging to the tracked object and parts of a
merging with a spurious object, leading to a better
MOTP score.

Future research within this topic involves multi-modal
data fusion with audio data toward improving the preci-
sion of the tracker, MOTP, and avoid mismatches
among targets, thus improving the MOTA score.

End notes
*Analogously to the pixel definition (picture element) as
the minimum information unit in a discrete image, the
voxel (volume element) is defined as the minimum infor-
mation unit in a 3D discrete representation of a volume.

PFor the sake of simplicity in the notation, pseudo-
likelihood functions will be denoted as p(-) instead of
defining a specific notation for it.

“When selecting the best system, the MOTA score is
regarded as the most significant value.
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