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Abstract

To account for nonstationarity, channel characterization and system design methods that employ the non-wide-
sense stationary uncorrelated scattering (non-WSSUS) assumption are desirable. Furthermore, the inadequacy of the
Doppler shift operator to properly account for the frequency shift in wideband channel implies that the time-
frequency characterization methods that employ the Doppler shift operator are not appropriate for most wideband
channels. In this article, the statistical time-scale domain characterization of the non-WSSUS wideband channel is
presented. This approach employs the time scaling operator in order to account for frequency spreading, and also
emphasizes on the nonstationarity of the wideband channel. The non-WSSUS statistical assumption termed local-
sense stationary uncorrelated scattering (LSSUS) is presented and employed in characterizing the nonstationary
property of the time-varying wideband channel. The LSSUS channel model is then parameterized to provide useful
coherence and stationarity/nonstationarity parameters for optimal system design. Some application relevance of
the developed model in terms of channel capacity and diversity techniques are discussed. Measurement and
simulation results show that the assumption of ergodic capacity and the performance of various diversity
techniques depend on the degree of channel stationarity/nonstationarity. It is shown that the quantification of this
degree of stationarity through the channel parameters can provide a way of tracking channel variation and
allowing for adaptive application of diversity techniques and the channel capacity.
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1 Introduction
Time-varying channels are often modeled as stationary
random processes using the concept of the wide-sense
stationary uncorrelated scattering (WSSUS) assumption
[1]. This stationarity assumption leads to simplification
of transceiver design and may in some circumstances be
reasonable on physical grounds. In this case, the multi-
ple channel states presented by the mobility of the com-
munication terminal(s)/scatterer(s) have varying channel
statistics over the transmission duration, and it is
assumed that the variances among the statistics of the
multiple channels are insignificant, so they can be aver-
aged out over a wide range of interval. The assumption
of the statistical stationarity of the time-varying channel
allows for the definition of some channel parameters
that are employed in system designs.

Unfortunately, in practice the WSSUS assumption is
not often met. The nature of the time-varying channel
is such that the spatial structures of the multipath com-
ponents, i.e., their number, time-of-arrivals, angle-of-
arrivals (AOA), and magnitudes, change with time and
location, leading to nonstationary statistics [2,3]. More
also scattering by the same object as well as variation in
the AOA caused by mobility with respect to a statistical
stationary duration of reference may result in correlation
among scatterers. This condition violates the uncorre-
lated scattering assumption. And like stationarity, non-
stationarity also carries informative features of the
channel. Hence, developing approaches that would tap
into the information that can be obtained from nonsta-
tionary analysis of the channel will be of great merit to
optimal system design.
Typically, time-varying channels are characterized by

time and frequency dispersions. When using Doppler
shift as a measure of the channel’s frequency dispersion,
it is presumed that composite (multi-tone) signals or

* Correspondence: uche@utm.my
Wireless Communication Centre, Universiti Teknologi Malaysia, 81310 UTM,
Skudai, Johor, Malaysia

Chude-Okonkwo et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:123
http://asp.eurasipjournals.com/content/2011/1/123

© 2011 Chude-Okonkwo et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:uche@utm.my
http://creativecommons.org/licenses/by/2.0


subcarriers (in the case of multicarrier systems) passing
through the channel, experience the same amount of
frequency shift obtained with respect to the carrier fre-
quency fc. For narrow bandwidth composite signals, this
approximation may be practically true and the presenta-
tions in [2], sufficient. However, for wide-bandwidth sig-
nals, the Doppler approximation wholly fails since the
composite signals experience different Doppler shifts.
This is the case of ultrawideband (UWB) and under-
water acoustic (UWA) channels. Therefore, channel
characterization methods that do not depend on the
carrier frequency to obtain the measure of frequency
dispersion in wideband channels are much desired. One
of such method is the time-scale domain channel char-
acterization [4-10].
The delay-Doppler effects of time-varying channel are

often modeled as taps of a time-varying filter [11,12]. In
the case of the narrowband channel, one tap is the sum
of many paths. Hence, it is acceptable to characterize
the time evolution of the individual taps using an auto-
correlation function (ACF) model which is assumed to
be independent across delay. Therefore, in non-WSSUS
characterization, the time evolution model of the nar-
rowband channel can be decomposed into the time evo-
lution of individual taps. This is not the case for the
UWB channel where taps are often composed of few or
no paths due to the fine time resolution. The fine time
resolution implies narrow delay bins which enable paths
to move fast from one tap to another [13]. Hence, the
time evolution of taps becomes correlated across delays.
In this case, the narrowband assumption of modeling
the stochastic process of taps independent across delay
no longer holds. So, the time evolution of the UWB
channel cannot be decomposed into the time evolution
of the individual taps, but of the individual paths. There-
fore, the non-WSSUS characterization of the narrow-
band channel will differ significantly from that of the
wideband channel.
In this article, we attempt to answer the following

questions. (1) How can the time-varying non-WSSUS
wideband channel be characterized in the time-scale
domain? (2) What are the necessary parameters and
information that can be obtained from the non-WSSUS
model? (3) How can such information be used in system
design in order to optimize performance? To address
these questions, we present the non-WSSUS time-scale
domain characterization method for time-varying wide-
band channel which employs the assumption that the
channel statistics are locally stationary. This method is
considered appropriate for wideband nonstationary
channels. The main contributions of this article which
sort to answer the three questions posed above are out-
lined as follows.

• A method of characterizing the non-WSSUS wide-
band channels using a statistical concept termed
LSSUS assumption is presented in the time-scale
domain. The LSSUS concept results primarily from
the designation of statistical intervals of quasi-statio-
narity and quasi-nonstationarity over which the
WSSUS and LSSUS assumptions can be jointly
defined. The closed-form expression for the LSSUS
channel is derived bearing in mind that the statio-
narity/nonstationarity interval is dependent on the
properties of the transmit signal and the wireless
channel. We note that this LSSUS closed-form
expression can be applied to most channels, but in
terms of merit, it is more appropriate for the charac-
terization of the wideband channels like acoustic,
sonic, UWB channels, and other emerging systems
operating at high fractional bandwidths; in which
case the concept of time scaling is more suitable
than Doppler shift. In the narrowband channel, the
LSSUS expression when presented in the time-fre-
quency domain can be deem to be equivalent to the
channel correlation function (CCF) in [2] as will be
explained in Section 4.
• To parameterize the non-WSSUS channel in time-
scale domain using the LSSUS assumption, a statio-
narity degree estimation method is presented. This
estimator uses the concept in [14] to quantify the
extent to which an ‘instantaneous’ scattering func-
tions deviates from a given one assumed to be statis-
tically stationary (WSSUS). The stationarity degree is
used to obtain condensed coherence and stationarity
parameters that are equivalent to those presented in
[2]. However, unlike in [2] the approach here
emphasizes on the frequency dependence of these
parameters, particularly, the coherence/stationarity
time.
• The illustration and application relevance of the
LSSUS concept to the time-varying wideband com-
munication systems is presented. Illustrative mea-
surement and simulation examples for the time-
varying UWB channel typical of the infostation
[15-17] environment are provided. And simulation
with numerical results in the case of a simplified
underwater communication scenario is also pre-
sented. These simulations and measurements are
used to show the merit and application of the
LSSUS concept to improving system performance by
the optimal application of ergodic capacity assump-
tion and diversity techniques.

The rest of this article is organized as follows. In Sec-
tion 2, the relevant studies that are related to the idea
developed in the article are presented. The basic time-
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scale channel model is specified in Section 3. In Section
4, the WSSUS characterization of the wideband channel
in the time-scale domain is presented. Section 5 is
devoted to the non-WSSUS characterization of the
time-varying wideband channel using the LSSUS
assumption. The estimation of the non-WSSUS channel
stationarity degree and the derivation of LSSUS channels
parameters are presented in Section 6. In Section 7, the
application relevance of the LSSUS model in relation to
channel ergodic capacity assumption and diversity tech-
niques is presented. In Section 8, measurement and
simulation examples are used to illustrate the concept
and application of the LSSUS model. Conclusions are
given in Section 9.

2. Related studies
Some of the existing studies related to the ideas pre-
sented in this article are as follows. In his seminal paper
[1], Bello highlighted on the discrepancy between the
WSSUS and non-WSSUS channels using the term
Quasi-WSSUS (QWSSUS). The QWSSUS assumption
implies that the channels statistics do not change within
a specific time and frequency interval. A more rigorous
and classical theoretical framework for the description
of the non-WSSUS channels was introduced by Matz
[2], where instead of the WSSUS scattering function, the
local scattering function (LSF), in consonance with the
concept of time-dependent spectrum for nonstationary
analysis, was defined. And the time-frequency CCF
appropriate for the non-WSSUS case was also deli-
neated. The LSF and CCF are given respectively as [2]

CH(t, f ; τ ,υ) =
∫ ∫

RL(t, f ;�t,�f )e−j2π(υ�t−τ�f )d�td�f (1)

and

AH(�t,�f ;�τ ,�υ) =
∫∫ ∫∫

CH(t, f ; τ ,υ)e−j2π(�υt−�τ f )

. × e−j2π(υ�t−τ�f )

(2)

where RL(t, f; Δt, Δf) is the autocorrelation of the
time-varying transfer function which in this case is
viewed as a nonstationary random process.
Equation 2 implies that AH(·) is the 4-D Fourier trans-

form of (1). Hence, the function AH(·) is a complete
characterization of the narrowband non-WSSUS chan-
nel. While the coherence parameters were defined using
the conventional approach in [11,12], the stationarity
parameters in time and frequency were defined as the
inverse of some normalized maximum delay and Dop-
pler spread weighted integrals, respectively. The direct
computation and measurement of AH(·) and subse-
quently, the stationarity parameters, are somewhat

obdurate. Therefore, to obtain stationarity time, the col-
linearity measure was used in [18] in order to character-
ize the non-WSSUS typical of highway and urban
scenarios. But, the collinearity measure falls short of tak-
ing the strict positivity of the LSF into account. Hence,
in [19], the time and frequency divergences of the non-
WSSUS vehicular channel at 5.2 GHz were character-
ized using spectral divergence measure. However, for
wide bandwidth applications the LSF and CCF do not
suffice since they are Doppler operator based and nar-
rowband oriented; and the obtained coherence and sta-
tionarity parameters will vary with frequency for every
single realization. And of course as stated earlier, the
fast movement of paths from one delay bin to another
suggests that the non-WSSUS model of narrowband
channels may be different from that of the wideband
channels. In [20], the concept of local regions of statio-
narity (LRS) of the mobile radio channel was presented
and used to obtain nonstationary information on the
power-delay profile of the channel. We note that this
concept of LRS inspired the definition of the stationarity
region adopted in this study.
Some of the existing studies on time-scale domain

channel characterization are available in [4-10]. In [4],
Weiss presented the use of wavelet theory in wideband
correlation processing, and the importance of wideband
processing in the wavelet (time-scale) domain. In [5,6],
the use of the concepts from wavelet transforms and
group theory to derive a linear time-varying system char-
acterization for wideband input signal was presented.
The canonical time-scale representation of the time-vary-
ing channel was proposed in [7]. In [8], the Mellin trans-
form-based time-scale was applied to address the issue of
joint-multipath scale diversity gain over dyadic time-scale
framework. A similar work directed toward achieving
joint scale-lag (delay) diversity in wideband mobile direct
spread spectrum systems was presented by Margetts et
al. [9]. In [10], the time-scale channel characterization
was presented in the wavelet domain. However, while all
these literatures projected the notion of time-varying
channel characterization using the time scaling operator,
the application of this method to actual channel parame-
terization was not discussed. More also, the authors of
[4-10] did not address the issue of statistical channel
characterization especially the case of non-WSSUS which
is the main focus of this study.

3. System model
In general, for transmit signal x(t) and received signal y
(t), the continuous time-scale and time-frequency repre-
sentation of the linear time-varying (LTV) channel H
are, respectively, given by
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y(t) =
∫∫

WH(τ , s) a(t) x
(
(t − τ )/s

)
dτ ds/s2 (3)

y (t) =
∫∫

SH(τ ,υ)a(t) x (t − τ ) ej2πυtdτ dυ (4)

where a(t) is the amplitude. The terms

WH(τ , s) =
∫

y(t) a(t) x
(
(t − τ )/s

)
dt and

SH(τ ,υ) =
∫

h(τ , t) e−j2πυt dt denote the delay-scale

(wideband) spreading function [8-10,21] and the delay-
Doppler spreading function [21], respectively. While the
latter is interpreted as the reflectivity of the scatterers
associated to propagation delay τ and Doppler shift υ,
the former is interpreted as the reflectivity of the scat-
terers associated to delay τ and scale shift (or time scal-
ing) s.
The scale s = (c ± v)/(c ∓ v) is related to frequency by

s{fp} = {fp}(c ± v)/(c ∓ v), p = 1, 2, ..,P. (5)

The term {fp} in (5) is the frequency vector of length P
comprising stepwise of all the frequency components of
the transmitted signal. Indeed, the pairs of Equations 3
and 4 are equivalent in some applications, but are not
in some others. The distinction lies with the interaction
between the transmit signal x(t) and the channel H.
This interaction determines whether a system is narrow-
band or wideband.
The narrowband-wideband assumption is often made

in two aspects: (1) the relationship between signal band-
width Bsig and coherence bandwidth Bc [12]. (2) the
relationship between Bsig and fc. In the first aspect, a
general constraint Bsig < <fc is imposed, and the narrow-
band assumption is then upheld when the inequality Bsig

<Bc is satisfied, otherwise, the system under considera-
tion is wideband. With the imposition of the constraint
Bsig < <fc, the pair of Equations 3 and 4 are equivalent
and WH(τ, s) ≡ SH(τ, υ) irrespective of whether the sys-
tem is wideband or narrowband in this context. In the
second aspect which is the focus of this article, no con-
straint is imposed and narrowband assumption is then
made when (Bsig/fc) <Bf, where Bf (typically 0.2), is called
the fractional bandwidth [22,23], otherwise, the system
is wideband. For the rest of this article, narrowband and
wideband are referred to in the context of this second
aspect.
For the narrowband assumption, {fp} can be approxi-

mated to fc in (5) so that time scaling is equivalent to
Doppler shift and WH(τ, s) ≡ SH(τ, υ) is valid. In the
case of wideband, this equivalence is invalid and WH(τ,
s) is the appropriate valid channel response. Wireless

communication systems like UWB [22,23] and UWA
channels [24,25] are wideband in this context.
It can be seen from (3) that the time-scale representa-

tion establishes a one-to-one correspondence between
the received signal and the delay-scale spreading func-
tion. This one-to-one correspondence allows one to
read up condense parameters and useful features
directly from the channel response. However in practice,
such correspondence is not feasible due to the stochastic
nature of the channel. In order to obtain condensed and
useful parameters from this random process, some
assumptions can be made in order to define an interval
over which the randomness of the channel can be
deemed to be statistically stationary. In view of that, let
∪ be the universal set of all stochastic processes, there
exist the subsets of ∪ whose statistical properties vary
with certain degrees in respect to the variations within
some intervals Jk, k = 1, 2,.., K. If we define the partition
Jk as the countable collection of subintervals, then we
can denote the interval for which some statistical prop-
erties of a process under observation are assumed to be
stationary, as J(v). One of the popular statistical proper-
ties used in channel characterization is the mean and
the ACF [1].

4. WSSUS characterization
Definition 1: A process is called wide-sense stationary
(WSS) if it’s first two moments are independent of abso-
lute time t on a defined interval J(v). Such process is
delineated if there is some partition for which the
expression J(v) = Jk, ∀k is valid and provides time inde-
pendence with respect to the mean and ACF.
If we denote the observation interval in general by J,

then from Definition 1, we can identify two different
time instants, t and t’ over which the WSS assumption
is defined. Let J(v) = t’-t, if we incorporated the US
assumption into the model, then for two given scale
instants s ≠ 0 and s’ ≠ 0, the ACF depends only on Δτ =
τ’- τ and Δs = s’-s. The ACF of the time-scale channel is
then given by

RW,wssus(τ , s,�τ ,�s) = E[WH(τ , s) WH
∗(τ ′, s′)]

= E[WH(τ , s) WH
∗(�τ + τ ,�s + s)]

(6)

In (6), ‘*’ denotes conjugation and E[.] is the expecta-
tion operator. However, for simplicity we assume that x
(t) is real so that for the rest of this article, the conjuga-
tion ‘*’ can be neglected. Hence,

RW,wssus(τ , s,�τ ,�s) = E
{∫ ∫ [

y(t) y(�t)
] [

a(t)a(�t)
]

.
[
x
(
t − τ

s

)
x
(

�t − �τ − τ

�s + s

)]
dt d�t

} (7)
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It can easily be shown that

RW ,wssus(τ , s,�τ ,�s) =
∫

Ry(�t)a(�t) x
(

�t − �τ − τ

�s + s

)

d�t.
∫

δ(t) a(t)x
(
t − τ

s

)
dt

=
〈
Ry,X

(τ ,s)
�τ ,�s

〉
�t

〈
δ,X(τ ,s)

〉
t

(8)

where

X(τ ,s)
�τ ,�s = a(�t) x

(
�t − �τ − τ

�s + s

)
, and

X(τ ,s) = a(t)x
(
t − τ

s

)
.

The first inner product on the right-hand-side (RHS)
of (8) is called the delay-scale scattering function
(DSSF)

Pwssus(τ , s) =
〈
Ry,X

(τ ,s)
�τ ,�s

〉
�t

(9)

The inner product
〈
δ,X(τ ,s)

〉
t
is an approximation of

δ(Δ τ)δ(Δs) which implies that at each different delay
the distribution is simply a scaled version of the trans-
mitted signal. The function Pwssus(τ, s) has compact sup-
port defined on the set h = {smin ≤ s ≤ smax, τmin ≤ τ ≤
τmax} where smin and smax are the minimum and maxi-
mum scale spreads, respectively, and, τmin and τmax are
the minimum and maximum delay spreads, respectively.
Equation 9 is comparable to the delay-Doppler scat-

tering function SH(τ ,υ) =
∫

RH(�t, τ ) e−j2πυ�td�t ,

where RH(Δt, τ) ≡ ∏(Ry(Δt)) is the delay cross-power
density. The term ∏ is a filter or window operator
whose output is dependent on the particular filter, |τ|
and x(t). The conventional WSSUS condensed para-
meters [12] like the coherence bandwidth Bc and coher-
ence time Tc can be used to quantify the channel
dispersion bearing in mind the relation between fre-
quency and scale as stated in (5). While the delay
spread/Bc in both SH(τ, υ) and Pwssus(τ, s) are equivalent,
their similarity in terms of frequency spread/Tc is deri-
vable from the inverse relation between frequency and
scale [4]. Thus, it suffices that SH(τ, υ) ≡ Λ-(PLSSUS(τ, s))
where Λ- is the scale-to-Doppler conversion operator.
This implies that while the computation of SH(τ, υ) is
dependent on the carrier frequency, the realization of
Pwssus(τ, s) is independent of the carrier frequency or
any reference frequency. Therefore, different values of
Tc can be obtained for different values of frequencies,
from a single Pwssus(τ, s) realization. The variation of
coherence time with frequency is depicted in Figure 1
for a typical wideband channel at a reference mobile
speed of 5 m/s. This figure shows that Tc computed at

fc vary significantly with Tc at other frequencies within a
defined wide bandwidth.

5. Non-WSSUS characterization
Definition 2: A process is called local-sense stationary
(LSS) if there exist some partitions for which at least
one interval say Ji is considered to be WSS, J(v) = Ji.
Within this ‘locally’ stationary interval Ji the second-
order statistics are approximately independent of time,
but vary slowly in time across all other intervals for
which J(v) ≠ Jk ≠ i. Thus, the autocorrelation is WSS at Ji
but non-WSS at all other intervals Jk ≠ Ji.
For all other processes with gross time varying statisti-

cal properties over all J for which no J(v) can be ascer-
tained for practical purposes, the nonstationary process
is defined.
Definition 2 is related to that of the locally stationary

random processes introduced by Silverman [26], and the
uniformly bounded linearly stationary (u.b.l.s) processes
introduced by Tjøstheim and Thomas [27]. As it was
pointed out in [27], the above definition is the same as
saying that the u.b.l.s processes can be obtained by filter-
ing WSS processes. Hence, the LSS process has the desir-
able property of including WSS process as a special case.
The relation among the various subsets of the statistical

processes is shown in Figure 2. Thus, a little above the
upper bound of strict-sense stationarity lies the quasi-sta-
tionary region and a little below the lower bound of non-
stationarity lies the quasi-nonstationary region.
From Definition 2, we can identify three different time

instants, t, t’, and t“ over which the LSS assumption is
defined. Within the quasi-stationary intervals for two
time instants t and t’, the second-order channel statistics
are constant over Δt = |t’-t|. However, the statistics vary
across the quasi-nonstationary interval J = |t“-t| over
which LSS is defined. If we extend the above statements
to the concept of uncorrelated scattering (US), then it
can easily be shown that, t“-t = Δ(t + Δt)+ Δt, Δs = |s’-
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Figure 1 Variation of coherence time with frequency.
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s|, s“-s = Δ(s + Δs)+ Δs, Δ τ = | τ’- τ| and τ“- τ = Δ (τ +
Δτ) + Δτ. Therefore, the ACF for the LSSUS is given for
some spatial displacement �

−→r by

RW ,LSSUS(τ , s,�τ ,�s;��r) = E[W(τ , s) W∗(τ ′′, s′′)] (10)

= E[W(τ , s) W∗(�(τ + �τ )

. + �τ + τ ,�(s + �s) + �s + s)]
(11)

With the assumption of a real x(t) it can easily be
shown that

RW ,LSSUS(τ , s,�τ ,�s;��r) = 〈
Ry, .X

(τ ,s)
�(τ+�τ)+�τ ,�(s+�s)+�s

〉
�(t+�t)+�t

〈
δ,X(τ ,s)

〉
t

(12)

where X(τ ,s)
�(τ+�τ)+�τ ,�(s+�s)+�s = a(�(t + �t) + �t + t)

. x
(
(�(t + �t) + �t + t) − (�(τ + �τ ) + �τ + τ )

�(s + �s) + �s + s

)

and X(τ ,s) = a(t)x
(
t − τ

s

)
.

The first inner product term in (9) is called the local-
sense scattering function (LSSF):

PLSSUS(τ , s) =
〈
Ry,X

(τ ,s)
�(τ+�τ)+�τ ,�(s+�s)+�s

〉
�(t+�t)+�t

(13)

The scattering function PLSSUS(τ, s, Δτ, Δs) completely
characterizes the LSSUS channel. In relation to (8),
there exist some Γ > 0 such that

∥∥∥〈Ry,X
(τ ,s)
�τ ,�s

〉
�t

∥∥∥2 ≤ �

∥∥∥∥〈Ry,X
(τ ,s)
�(τ+�τ)+�τ ,�(s+�s)+�s

〉
�(t+�t)+�t

∥∥∥∥
2

(14)

Implicitly for small values of spatial displacement

�
−→r the terms Δ(t + Δt), Δ(s + Δs), and Δ(τ + Δτ) in

(8) become insignificant, Γ = 1, and (13) simplifies to (9)

Pwssus(τ , s) = PLSSUS(τ , s)
∣∣
�t,�τ ,�s→0

=
〈
Ry,X

(τ ,s)
�τ ,�s

〉
�t

(15)

Therefore, the measure of the channel stationarity or
nonstationarity is with regard to the extent to which
PLSSUS(τ, s) deviates from Pwssus(τ, s).

6. Estimation of stationarity degree
6.1. Stationarity test
The LSSUS scattering function(s) completely charac-
terizes the wireless wideband channel. Let
� =

{
PLSSUS(τ , s)θ : θ ∈ 
 ⊂ 
}

denote the set of all
LSSUS scattering functions for a particular case where
Pwssus(τ, s) is a subset. The main issue is how to estimate
the deviation of the set Ψ from its subset Pwssus(τ, s).
Though there are several proposed methods in the lit-
erature for modeling locally stationary processes, the
problem of testing the stationarity of such processes has
attracted less attention in the literature. Some existing
work in stationarity test can be found in [28,29]. The
weaknesses of some of the test module proposed in lit-
erature include the dependency of the test on the choice
of the regularization parameter [28], and the complexity
of the solutions [29]. In [14], a simplified alternative
method for measuring deviation from stationarity in
locally stationary processes was presented. This method
measures stationarity degree by the best L2 approxima-
tion of the spectral density of the underlying process by
the spectral density of a stationary process. Hence, using
the minimal distance deviation measure proposed in

[14] we define the stationarity measure �2
τ ,s as the mea-

sure of the deviation of PLSSUS(τ, s) from Pwssus(τ, s):

�2
τ ,s = min

Pwssus

∫∫ (
PLSSUS(τ , s) − Pwssus(τ , s)

)2 dτds
s2

(16)

with the limit of integration practically taken over

[smin smax] and [τmin τmax]. The term �2
τ ,s is a measure

of the deviation of PLSSUS(τ, s) from Pwssus(τ, s).

6.2. Non-WSSUS condensed channel parameters
As stated earlier, wireless channels are often characterized
using the condensed parameters, Bc and Tc. However,
these parameters do not completely characterize all classes
of time-varying processes. It should be noted that coher-
ency is a concept developed for WSSUS channels to
describe their nonselectivity [12]. In this sense, the statio-
narity attribute of the WSSUS channel is infinite. Thus,
the channel is nonselective (coherence) in time and fre-
quency over certain bounded values, and is assumed to
remain statistically invariant (stationary) in time and fre-
quency for infinite extent determined by the choice of the
interval of observation. Therefore, apart from the coher-
ence parameters, the stationarity parameters [2] are also
required in order to fully characterize the LSSUS channel.

Figure 2 Relation among the various subsets of the stationary
processes.
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In [2], the stationarity parameters were introduced and
obtained as the inverse of some normalized weighted
integrals which defines the spread of the CCF. The
weight function is a function of the spread in time, fre-
quency, Doppler, and delay. In this study, we opt for a
different approach to obtain the stationarity parameters.
To do so, we consider the stationarity parameters as
quantifying the deviation of the LSSUS from WSSUS. In
consonance with (13), we can define the minimal delay
profile deviation (MDPD) �2

τ
and the minimal scale

profile deviation �2
s by

�2
τ = min

Pwssus

∫∫ (
PLSSUS(τ , s) − Pwssus(τ , s)

)2 ds
s2

(17)

�2
s = min

Pwssus

∫∫ (
PLSSUS(τ , s) − Pwssus(τ , s)

)2
dτ (18)

The minimal r.m.s delay spread deviation Δτrms and
minimal scale spread deviation Δsrms are given by

�τrms =

⎛
⎝∫

(�2
τ ,LSSUS τ 2 − �2

τ τ 2) dτ∫
�2

τ ,LSSUSdτ
−

(∫
(�τ ,LSSUS τ − �τ τ ) dτ∫

�2
τ ,LSSUSdτ

)2
⎞
⎠

1/2

−

.

(∫
(�2

τ ,wssus τ 2 − �2
τ τ 2) dτ∫

�2
τ ,wssusdτ

−
(∫

(�τ ,wssus τ − �τ τ ) dτ∫
�2

τ ,wssusdτ

)2
)1/2

(19)

and

�smax = smax,LSSUS − smax .wssus (20)

where

�2
τ ,wssus = min

Pwssus

∫∫ (
PLSSUS(τ , s) − Pwssus(τ , s)

)2 ds
s2

∣∣∣∣
PLSSUS(τ ,s)=0

and

�2
τ ,LSSUS =

∫∫ (
PLSSUS(τ , s) − Pwssus(τ , s)

)2 ds
s2

∣∣∣∣
WSSUS(τ ,s)=0

Hence, the stationarity bandwidth Bs ≈ 1/Δτrms, statio-
narity time Ts ≈ 1/Δsrms {fp}, coherence bandwidth Bc

and coherence time Tc provide complete parameteriza-
tion of the LSSUS channel. The stationarity parameters
tend to infinity in the case of WSSUS for which {Δτrms,

Δsrms }® 0. It can also be seen that using this approach,
different values of Ts can be obtained from a single
wideband channel realization for different values of
frequencies.
It is important to note the use of Δτmax in [2] in defin-

ing the stationarity bandwidth. The parameter τmax is a
singular value whose statistics across different channel
realizations are independent of other delay values in a
particular channel response. On the other hand, the
parameter τrms is obtained taking into consideration the
statistics of all the delay values associated with a parti-
cular channel response. Hence, while Δτmax may be
appropriate value for determining the channel coherence
parameters, it is not quite suitable for the statistical
measure of stationarity. For instance, let us consider two
channel responses h1(τ, t) and h2(τ, t) at two different
time instants as shown in Figure 3.
From Figure 3, it can be seen that τmax is the same for

both h1(τ, t) and h2(τ, t), hence Δτmax is zeros. But it is
obvious that both responses are not equivalent, in this
case we do not know for how much they deviate from
each other using the information provided by Δτmax = 0.
On the other hand Δτrms ≠ 0 hence, some value of the
statistical deviation of h1(τ, t) from h2(τ, t) is readily
available as it is truly the case in this example. For
instance, the employment of multipath diversity means
that h1(τ, t) provides better channel diversity than h2(τ,
t) since it offers more fingers.

6.3. Stationarity distance
An important issue in the characterization of the LSSUS
is how to determine the interval T(v) over which WSSUS
is defined. This interval depends basically on the spatial
displacement �

−→r and terminal velocity v. Let the dis-
placement at a time instant t be given by
−→r (t′) − −→r (t) = �

−→r , where t’ is some instantaneous

time. For a terminal velocity v, �
−→r = J.v . The WSSUS

assumption requires that �
−→r must be small enough to

ensure statistical stationarity. Succinctly, J = |t’-t| should
not exceed some time interval J(v) = |t’-t|, where tv’ is a

Figure 3 Channel responses h1(τ, t) and h2(τ, t) at two different time instants.

Chude-Okonkwo et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:123
http://asp.eurasipjournals.com/content/2011/1/123

Page 7 of 20



time instant within which statistical stationarity is guar-
anteed. In order to determine J(v), consider the fact that
the channel response to any excitation can be seen as a
‘snapshot’ of the channel. To adequately account for
changes in the channel, these snapshots need to be
taken sufficiently often at some intervals called the repe-
tition duration Trep. The repetition duration encom-
passes the interval J, and some time tps for data
processing and storage. Intuitively, J(v) should be smaller
than the time duration TΔ over which the channel
changes, J(v) <TΔ. There exists a minimum sampling rate
required to be able to identify a time-variant process
with a band-limited spectrum. The temporal sampling
frequency must be twice the maximum frequency shift
υmax [12]. Thus, we can express the interval J(v) as

J(v) ≤ χ c
2fupv

(21)

where vmax is the maximum constant velocity of the
mobile unit, fup is the upper band frequency, and c is
arbitrarily chosen to ensure that a reasonable measure-
ment/sampling distance is obtained. The value of c
must be carefully chosen to ensure that the J(v) is not
too small (to ensure reasonable acquisition time) nor
too big (as to violate stationarity condition). The corre-

sponding stationarity distance �
−→r = Xs is given by

Xs ≤ J(v)v (22)

7. Application relevance of LSSUS assumption
The practical illustrations of the LSSUS concept that
stem directly from physical considerations in typical
communication scenarios are presented in this section.
In essence, the LSSUS scattering functions can be
viewed as a set of evolutionary functions that are more
or less the instantaneous responses of the channel to an

input. Although the coherence parameters of these
instantaneous channel realizations vary from one to
another, for practical rationality we consider channel
coherency only with respect to the reference channels
response taken to be WSSSU. Hence, all other sets of
� =

{
PLSSUS(τ , s)θ : θ ∈ 
 ⊂ 
}

are defined only by the
stationarity parameters.
While statistical stationarity are desired in order to

achieve simple transceiver designs, the knowledge of sta-
tistical nonstationarity can also be employed to improve
the performance of the transceiver. For instance, nonsta-
tionarity information can give insight into the long-term
behavior of the system in terms of channel estimation/
prediction, ergodic capacity, and diversity. Hence, the
joint knowledge of stationarity and coherence para-
meters can be used to access the long-term behavior of
the channel and adjust the transceiver parameters. In
[2], brief discussion on the relevance of non-WSSUS
characterization on ergodic capacity assumption was
presented, and further application potential to delay-
Doppler diversity was mentioned. In this study, we pro-
vide broad-based formulation of the application rele-
vance of LSSUS to ergodic channel capacity assumption,
time diversity, frequency diversity, joint time-frequency
diversity, and delay-Doppler/delay-scale diversity.
Let us consider the case of the doubly spread flat-fad-

ing channel with time-frequency coherence/stationarity
subspace as shown in Figure 4. If we assumed that inde-
pendent and identically distributed (i.i.d) channel reali-
zations occur every Tc second for the corresponding Bc,
then averaging over Ts = NTc, Bs = KBc, {n, k} = 1, 2, 3..,
{N, K}, {N, K} ® ∞ gives a convergent value. The num-
ber of i.i.d channel realizations ℵ can be given by [2]

ℵ =

∣∣∣∣TsBs

TcBc

∣∣∣∣ (23)

 

Figure 4 Time-frequency coherence and stationarity subspaces over doubly spread channel.
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Thus, the stationarity dimension Ts × Bs determines
the number of effective i.i.ds available for a given chan-
nel with respect to the coherence dimension Tc × Bc.
We will show that the value of ℵ determines the validity
of ergodic assumptions. And it also affects the effective
time-frequency diversity order of a given time-varying
channel.

7.1. Ergodic capacity
The ergodic capacity Cerg of the channel is often desired
in order to reveal the ‘long-term’ properties of an arbi-
trary fading process say c(t, τ) which is assumed to be
an ergodic process in t. It is well known that in order to
achieve ergodic capacity, averaging by coding over
numerous i.i.d. fades is required [30]. Thus, whether suf-
ficient averaging can be achieved to guarantee ergodic
capacity depends on the number of i.i.d fading coeffi-
cients offered by the channel. The channel capacity C in
the case where the channel state information is available
to the receiver can be expressed as [30]

C = E

[∫
log2

(
1 +

Pav
∣∣χ(t, f )∣∣2
N0

)
df

]
(24)

where Pav is the average power, N0 is the noise var-
iance, and c(t, f) is the response of the channel, and by
analogy c(t, f) ≡ W(τ, s) in the time-scale domain.
Under the ergodic assumption, the statistics of c are

independent of either t or f in c(t, f) and subsequently τ
or s in W(τ, s). If Pav is nonnegative, then the relation

C =
∫

E

[
log2

(
1 +

Pav
∣∣χ(t, f )∣∣2
N0

)]
df (25)

holds.
As defined by the LSSUS statistics, the time and scale

independency of the statistics of W(τ, s) are accessed
over the stationarity dimension. Therefore, for flat-fad-
ing, the ℵ -dependent ergodic capacity can then be
given by

Cerg = ℵ → ∞ 1
ℵ
∑

ℵ

(
log2

(
1 + qℵ

)
pℵ(q)

)
(26)

where qℵ =
Pav.

[∣∣χℵ(t, f )
∣∣2]

N0

, with probability distri-

bution p℘(q) .
The expression (26) implies that when BsTs ® ∞

(WSSUS case), the number of independent realizations
is large enough and ergodic capacity is achieved. How-
ever, as Ts decreases the number of i.i.ds reduces and
the ergodic capacity can only be defined for sufficiently
large realizations. In the case where there is insufficient

number of i.i.ds, the use of Cerg as a measure of channel
capacity becomes unreliable.

7.2. Effective diversity
Diversity techniques are often employed to combat the
fading effect of the channel. The basic idea is to trans-
mit the signal over multiple i.i.d channels, while keeping
the total power constant by transmitting at a lower
power in each channel [31]. It is evident that diversity
performance improves monotonically with increasing
number of i.i.d [32]. In fact as the number of i.i.d ℵ
approaches infinity, the performance of coherent diver-
sity reception converges to the performance over a non-
fading AWGN channel [33-37]. In practice, diversity is
physically implemented in a variety of ways such as time
diversity, frequency diversity, joint time-frequency diver-
sity, delay diversity, Doppler diversity, scale diversity,
joint delay-Doppler diversity, and joint delay-scale diver-
sity. In the case of time, frequency, and joint time-fre-
quency diversities, decoupling the stationarity dimension
and (23) gives the number of effective diversity order d.
as

dTD = ℵT =
Ts
Tc

→ Time diversity (27)

dFD = ℵF =
Bs

Bc
→ Frequency diversity (28)

dTFD = ℵ =
TsBs

TcBc
→ Time − frequency diversity (29)

Thus, as the stationarity dimension changes (by virtue
of the variation in the degree of the correlation among
channel realizations at different time instants), the diver-
sity order varies too. Hence, the stationarity dimension
sets an upper limit for the above diversity schemes.
The above relationships can be extended to the case of

delay-Doppler diversity [32] and that of the delay-scale
diversity [8,9]. In order to do this, it should be noted that
time-frequency/scale coherence dimension is inversely
related to the delay-Doppler/scale diversity in the doubly
spread channel. Let us consider the case of delay-Doppler
diversity [32]. The number of delay diversity and Doppler
diversity branches depends on the maximum delay
spread and maximum Doppler spread, respectively. Since
these parameters vary by virtue of LSSUS assumption, it
means that the achievable effective delay/Doppler diver-
sity should also vary with time. We restrict our analysis
in this article to delay-Doppler diversity.

8. Illustrative measurements and simulation
In this section, illustrative measurement and simulation
examples for the time-varying UWB channel typical of
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the infostation [15] environments are provided. This
environment depicts a typical scenario where the time-
scale domain LSSUS channel suffices. The concept of
infostation [15-17] illustrated in Figure 5 presents a new
way to look at the problem of providing high data rate
wireless access. It is an isolated pocket area with small
coverage (about 100 m) of high bandwidth connectivity
that collects information requests from mobile users
and delivers data while users are going through the cov-
erage area. One of the technologies that have the poten-
tial to deliver the envisaged high-data rate infostation
services is the UWB signalling [17].
Most existing UWB channel characterization and

measurement have been limited to the case where the
channel is assumed to be fixed over the transmission
duration [38-41]. However, for many infostation chan-
nels, time variation is expected due to the mobility of
one of the communication terminals. In this case, the
WSSUS assumption and the assumption of uniform
Doppler shift across the operating bandwidth all compo-
site frequencies are no more valid. In the illustrative
measurement and simulation below, we consider the
LSSUS analysis with respect to both time and frequency
dispersive effects.

8.1. Illustrative measurement
The complex channel response is measured with a vector
analyzer (VNA) R&S® ZVL13. Measurements were carried
out at various locations along a road within the vicinity of
Wireless Communication Centre (WCC) complex, Uni-
versiti Teknologi Malaysia, as shown in Figure 6 for the
frequency range 3.1-3.6 GHz. The speed of the mobile is
about 2 m/s, and measurements were taken at each loca-
tion marked A1-A6. At each location, the measurement is
repeated 50 times. The VNA records the variation of 601
complex tones within the band. This recording is done by
sweeping the spectrum in about Jv time interval. The time
Jv is obtained from (21) where c is taken to be 20. Apart
from the mobile antenna, all the objects (potential scat-
terers) are kept stationary throughout the duration of the
measurement. The antennas (monopoles) are of the same
height, 1.5 m and the transmit power is -10 dB for all mea-
surements. The signal from the receiving antenna is
passed through a low noise amplifier with a gain of 20 dB.
The distances between the locations are A1-A2 = 1 m, A2-
A3 = 1 m, A3-A4 = 4 m, A4-A5 = 3 m, and A5-A6 = 3 m.
The distances between the infostation antenna and the
mobile antenna at locations A1, A2, A3, A4, A5, and A6 are
6, 5.7, 5.4, 5, 5.5, and 6 m, respectively.

Figure 5 Illustration of the UWB highway infostation propagation channel.
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In order to obtain the statistical model of the time-
variant response from the measured complex channel
responses, we apply the autoregressive (AR) model pro-
posed in [42]. Let H(fp, t; A) be the time-varying com-
plex transfer function measured at a location A and
time t. Then the first- and second-order statistics of the
measured channel are captured by the model

H(fp, t;A) =
N∑
n=1

an H(fp−n, t;A) + V(fp) (30)

where V(fp) is a complex white noise process and an is
the function representing the nth time-varying AR coef-
ficient. The MDPD for the positions A2, A3, A4, A5, and
A6 (with reference to A1) are shown in Figure 7.
The computed Bs for the positions A2, A3, A4, A5, and

A6 are approximately 12, 3.32, 0.56, 0.77, and 0.29 GHz,
respectively. These Bs values are computed at -30 dB
threshold. For this same threshold Bc value of 23.2 MHz
is obtained using the WSSUS scattering function (9) at
reference position A1. The implication of the ratio Bs/Bc

can be observed in the case of multiband orthogonal
frequency division multiplex (MB-OFDM) UWB in this
channel. If we consider the MB-OFDM system designed
with Ns number of subcarriers and subcarrier spacing of
Fs MHz. In order to combat fading in MB-OFDM, the
bandwidths of the subcarriers should be equal or less
than the Bc to ensure flat-fading. However, the choice of
small value for Fs implies that the system will be more

susceptible to inter-carrier interference (ICI) [43].
Hence, the choice of the value of Fs should be optimal
between combating frequency selective fading and ICI.
If we consider a total bandwidth of 528 MHz, the value
of Fs for 128, 64, 32, and 16 subcarriers are 4.125, 8.25,
16.5, and 33 MHz, respectively. Hence, the choice of
128 subcarrier ensures good ISI performance but with
increased error due to ICI, and the choice of 16 subcar-
riers ensures good ICI performance but with increased
susceptibility to ICI. The optimal choice will be to
choose the number of subcarriers such that kFs = Bc,
where the value of k should be chosen to take care of
the time-varying nature of Bc. Conventionally, k is cho-
sen to be fixed and of low value, hence a fixed number
of subcarriers. The signal-to-noise ratio (SNR) degrada-
tion caused by ICI is given by [44]

D ∼= 10
ln 10

1
3

(
π fe
Fs

)2 (
1 +

Es
N0

)
(31)

where fe is the frequency offset. If we consider the above
channel measurement, then the SNR degradations for 128,
64, 32, and 22 subcarriers are shown in Figure 8.
Figure 8 shows that the SNR degradation for 22 sub-

carriers (k = 1) is better than the performance at k < 1
(128, 64, and 32 subcarriers). However, when k is
greater than unity, ISI degradation sets in. This implies
that instead of a fixed value for k, some form of adaptive
subcarrier bandwidth can be employed. The value of

Figure 6 Illustration of the measured propagation environment.
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stationarity bandwidth can provide information that can
be used to adjust k for optimal performance. The values
of Bs/Bc at A1, A2, A3, A4, A5, and A6 are approximately,
∞, -538, -143, 23, -33, and 12, respectively. We can

define the time/bandwidth utilization parameter U(�) by

U(�) ∼= −Bco
−1

( �Bco

� − 1
− Bco

)
,� ∈ {�TF,�F ,�T} (32)
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Figure 7 MDPD at position: (a) A2, (b) A3, (c) A4, (d) A5, and (e) A6.
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where �TF = (BsTs)/(BcTc) , �F = Bs/Bc , �T = Ts/Tc and
Bco is the reference coherence bandwidth. Hence, the
values of U(�F) at A1, A2, A3, A4, A5, and A6 are
approximately, 0, 0.19, 0.7, -4.6, 3.13, and -9.1%, respec-
tively. The negative sign in U(�F) indicates that k is
greater than 1 by the given percentage and the positive
sign in U(�F) indicates that k is less than 1 by the given
percentage. Therefore, this nonstationarity information
can be employed to adjust the values of k in order to
optimize the system performance at any time instant.

Since the velocity of the mobile is constant through-
out the measurement run, and LOS propagation exists
for all measurements, the coherence time at all mea-
surement with reference to smax is approximately con-
stant. Hence, the values of Ts/Tc at A2, A3, A4, A5, and
A6 are infinity as long as constant velocity is maintained
and LOS propagation exists. In this particular case, the
achievable i.i.d given by ℵ is large enough to validate
the assumption of ergodic capacity. Also, large time
diversity and joint time-frequency diversity gains are
obtainable.

8.2. Illustrative UWB channel simulation
Let us consider a typical UWB highway infostation pro-
pagation channel as shown in Figure 9. The UWB oper-
ating frequency band is 3.1-3.6 GHz and the signaling
waveform is the Mexican hat wavelet mathematically

expressed by eI(t) = (1 − t2)e−t2 . We assume that the

power PT and duration Tpluse of this function is about
100 mW and 10 ns, respectively.
The geometrical-based single bounce elliptical model

[45] is employed in the simulation of this channel. The
values of the major axis half-length amax and minor axis
half-length bmax are 33 and 12 m, respectively. The
number of potential scatterers is about 5000 and their
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Figure 8 SNR degradation as a function of subcarrier spacing.

Figure 9 Simulated LSSUS propagation channel.
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positions are assumed fixed over the duration of the
simulations. The initial distance D0 between the infosta-
tion I0 and the car C0 is 25 m, and the initial speed of
the car is 10 m/s. The gains of the infostation and car
antennas are taken to be unity. Let us assume that the
car is moving from R1 through points R2, R3, R4, and R5

(scenario A) and from R1 through points R2, R3, U4, and
U5 (scenario B) as shown in Figure 9.
Scenarios A and B are typical cases that involve LOS

and non-LOS propagation. The LSSUS concept can
directly be related to the physical propagation scenario
in Figure 6 and to the various phases of the mobile’s
movement.
Scenario A: The distances of I0 from R1, R2, R3, R4,

and R5 are approximately 25, 23, 20, 16, and 12 m,
respectively. And the instantaneous velocities at R1, R2,
R3, R4, and R5 are 10, 10, 5, 3, and 5 m/s, respectively.
The LSSUS scattering functions at points R1 to R1 are
shown in Figure 10. The values of Bc and Tc at the
reference point R1 (WSSUS) are 11 MHz and 1.67 ms,
respectively. The stationarity parameters for points are
shown in Table 1. In Figure 10, the change in the scat-
tering function as the mobile move through the points
can be clearly observed, and the LOS propagation path
is obvious at all points.
Table 1 shows the computed stationarity parameters

and effective diversity order for the positions R1, R2, R3,
R4, and R5. In this particular case, the validity of the
assumption of ergodic capacity is appropriate mostly at
R1, R2, and R4. The effective time, frequency, and joint
time-frequency diversities obtainable at R1, R2, R3, R4,
and R5 are shown in Figure 11.
The diversity gains are obtained for the case of quad-

rature phase-shift keying (QPSK). The variation of
diversity order with respect to the points R1, R2, R3,
R4, and R5 suggests that the use of some adaptive
method can improve the performance of the wideband
system. The values of U(�F) at R1, R2, R3, R4, and A5

are approximately, 0, 1.25, -2, 0.55, and -1.21%, respec-
tively. And using the same argument discussed in Sec-
tion 8.1, this nonstationarity information can be
employed to adjust the values of k in order to optimize
the system performance at any time instant. The values
of U(�T) with respect to time can also be computed
using (26).
Scenario B: The distances of I0 from R1, R2, R3, R4,

and R5 are approximately 25, 23, 20, 18, and 19 m,
respectively. And the instantaneous velocities at R1, R2,
R3, R4, and R5 are 10, 10, 5, 3, and 5 m/s. The LSSUS
scattering functions at points R1 to R1 are shown in Fig-
ure 12. The values of Bc and Tc at the reference point
R1 (WSSUS) are 11 MHz and 1.96 ms, respectively. The
computed stationarity parameters and effective diversity

order for the positions R1, R2, R3, U4, and U5 are shown
in Table 2.
As can be inferred from Table 2, the validity of the

assumption of ergodic capacity may not be appropriate
since the values of ℵ at the different points may not be
enough to ensure long-term averaging. The diversity
gains obtained for the case of QPSK at the points R1,
R2, R3, R4, and R5 are shown in Figure 13. These figures
also provide information about the nonstationarity of
the channel and can be employed in providing some
form of adaptation to diversity processes in order to
improve the performance of the system. The values of

U(�F) at R1, R2, R3, U4, and U5 are approximately, 0,
1.25, 2, -9.1, and -5.9%, respectively. Hence, bandwidth
utilization can be very low in the non-LOS scenario
compared to the LOS case.

8.3. Illustrative underwater channel simulation
Let us consider the following example for a single car-
rier underwater communication between a transmitter
Tx submerged at a fixed depth of h = 40 m, and a
mobile receiver Rx at the same depth as shown in Figure
14. We consider signaling using the Mexican wavelet.
The operational bandwidth B is 10 kHz (100 Hz-10.1
kHz). Let us assume that Rx is moving at a constant
speed of 5 m/s from a point A through B, C, D, to E,
where all points are at the same depth h. The tempera-
ture of the volume is taken to be constant over the
simulation period. For a negligible wind speed, we also
assume that the water volume is isotropic, and the floor
is smooth and nonabsorptive. Hence, the angle of inci-
dence can be assumed to be equal to the angle of
reflection.
Let the time of travel from A to E be sampled at the

rate of the valid stationary interval J(v) ≈ c/2fref, where
the distance vector X is [XA XB XC XD XE] = [1 5 10 15
25] × J(v). To be on a safe side, we assume fref = 11.1
kHz. For the water depth of H = 100 m and the initial
Tx-Rx distance of 50 m, the time correlation r = J0
(2πυmax, X Δtsym) at the different points A to E with
respect to the Tc obtained at J(v) is shown in Figure 15.
The term J0(·)is the zero-order Bessel function of the
first kind.
The term Δtsym is a vector of length Tc,J(v) /Tsym with a

step size of Tsym (symbol duration). The symbols υmax,

Xand Tc,J(v) represent the maximum frequency spread at
a particular point A to E and the coherence time at the
interval J(v), respectively.
In Figure 15, we can see that the effect of channel var-

iation within the transmission duration denoted by Tc,Jv
can be assumed to be negligible up to the point marked
‘Ω’. This implies that the transmission performance of
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this system using fixed frame size or assuming channel
invariance may degrade with time.
To access the available number of effective diversity

branches and the validity of assuming an ergodic capa-
city for this channel, we consider Table 3.

In Table 3, we can see the trend of the variation in
the stationarity parameter as Tx moves. The number of
available independent fade channels is given by ℵ. Thus
ergodic capacity can be assumed up to the point for
which ℵ is large enough to average out both the

  

  

 

(a) (b) 

(c) (d) 

(e) 
Figure 10 LSSF: (a) R1, (b) R2, (c) R3, (d) R4, and (e) R5.
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AWGN and the channel fluctuations. When ℵ is not
large enough, the outage capacity will be a preferred
measure of capacity.

The parameter ℵ also provides the number of diver-
sity branches for time-frequency diversity (different
from delay-Doppler diversity) technique. The values ℵT

and ℵF provide the available number of time and fre-
quency diversity branches, respectively. Let us consider
the influence of the assumption of non-WSSUS on time,
frequency, Doppler, and delay diversities.
In order to achieve time diversity, a codeword is ide-

ally separated by Tc,J(v). For a frame length

L = Tc,J(v) × ℵT , it is required that Tc,J(v) should be

approximately constant over the segments of L. This
supposition stems from the WSSUS assumption. In this

case we can say that with respect to the Tc,J(v) (without
update), the number of diversity branches is fixed. On
the other hand, if Tc,J(v) varies across L, then correlation

among the initially independent fade segments sets in,
thus affecting diversity gain. For low SNR which is typi-
cal of the covert UWA communications, small variation
in diversity order can be meaningful. Hence, when the
variation in Tc,J(v) becomes quite significant, update on

the Tc,J(v) is required at the transmitter.
We can consider an effective stationarity time Ts, eff ≤

Ts within which Tc,Jv is constant as being one in which
the ratio ℵT at A to ℵT at A-E is for instance, 10 : ℘
where ℘ ∈ 
+ is chosen nontrivially. Hence, when the
variation in Tc,Jv becomes quite significant, an update on

the Tc,J(v) is required at the transmitter. This may of

course increase or decrease the number of the available
diversity branches depending on whether the difference

between the initial Tc,J(v) and the updated one has a
positive or negative value. Of course, when ℵT = 0, the
application of time diversity is of no obvious advantage.
This situation occurs when Tc,J(v) = ∞(υmax = 0, s = 1)

or when the channel variation is so rapid that gross
nonstationarity of the process has to be considered. In
such situation a different diversity technique may be
applied. Hence, the LSSUS parameters can be used to
track channel variation and ensure that the benefit of
time diversity is optimally obtained as shown in Figure
16.
In the case of frequency diversity, a codeword is sent

over different frequencies separated by Bc,J(v) . The same
argument made for the time diversity can also be
applied to frequency diversity in which case the effective
stationarity bandwidth Bs, eff ≤ Bs defines the frequency
segment over which Bc,Jv is constant. Of course the
value of ℘ in time diversity may not necessarily be the
same in the case of frequency diversity.
The LSSUS argument can be extended to the delay

(multipath) diversity, Doppler diversity, delay-Doppler

Table 1 Stationarity parameters and effective diversity
order for Scenario A

R1 R2 R3 R4 R5

Bs (GHz) ∞ 0.845 0.544 1.9 0.878

Ts (ms) ∞ ∞ 8.33 5.95 8.33

|dTFD| = ℵ ∞ ∞ 521 1302 842

|dFD| ∞ 81 51 182 84

|dTD| ∞ ∞ 10 7 10

(a) 
 
 

                                                          (b) 

                                                          (c)  
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Figure 11 BER performance for (a) Joint time-frequency
diversity gain, (b) Frequency diversity gain, and (c) time-
diversity gain, for Scenario A.
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diversity, and the delay-scale diversity. To do this, the
duality in terms of time/Doppler spread and frequency/
delay spread has to be taken into account. The number
of delay diversity N and Doppler diversity Q branches
are given by [τmax B] and [2υmax Tsym], respectively [32].
We note that these expressions of the number of diver-
sity branches are made bearing in mind the assumption
of WSSUS. However, it should be noted that both τmax

and υmax varies with time. Hence, the variation can
appropriately be taken into account using the LSSUS
concept where N(t) = [τmax(t)B] and
Q(t) = 2

⌈
υmax(t) Tsym

⌉
. We can also use the same argu-

ment above to determine how long τmax and υmax can be
considered approximately invariant (WSSUS).

9. Conclusion
We presented the time-scale domain characterization of
the time-varying wideband propagation channel using
the concept of LSSUS which emphasized on the nonsta-
tionary properties of the channel. The channel charac-
terization in time-scale domain provides the leverage of
carrier frequency-independent computation of channel
responses. The statistical assumption termed the LSSUS
was also presented and employed in order to evaluate
and quantify the degree of nonstationarity of the wide-
band channel. The LSSUS channel parameters were
obtained. By the way of measurement and simulation,

 
Figure 12 LSSF: (a) U4 and (b) U5.

Table 2 Stationarity Parameters and effective diversity
order for Scenario B

R1 R2 R3 U4 U5

Bs (GHz) ∞ 0.845 0.544 0.124 0.185

Ts (ms) ∞ ∞ 8.33 5.918 8.265

|dTFD| = ℵ ∞ ∞ 521 84 179

|dFD| ∞ 81 51 12 18

|dTD| ∞ ∞ 10 7 9

(a) 

                                                                   (b) 

 
(c)  
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Figure 13 BER performance for (a) Joint time-frequency
diversity gain, (b) Frequency diversity gain, and (c) time-
diversity gain, for Scenario B.
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these channel parameters were employed in order to
analyze the performance of the real and synthesized
wideband channels in terms of diversity and channel
capacity. Results show that as the assumption of
WSSUS becomes violated, the assumption of ergodic
capacity and its application becomes unreliable. More
also, the gain of the effective diversity varies with the
degree of channel stationarity/nonstationarity for differ-
ent techniques like time, frequency, delay, Doppler and
joint delay-Doppler diversities. Hence, it is obvious that

Figure 14 Illustration of the simplified UWA channel.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.5

0

0.5

1

C
or

re
la

tio
n 

 

 
0

  tsym (s)

A
B
C
D
E

Figure 15 Time correlation r at the different points A to E with
respect to the Tc obtained at J(v).

Table 3 Channel stationarity parameters for the UWA
channel

X. Bs (kHz) Ts (ms) |dTF| = ℵ |dF| |dT|

A ∞ ∞ ∞ ∞ ∞

B 5.254 2048 107236 769 139

C 1.791 683 12193 262 46

D 0.926 342 3156 135 23

E 0.535 187 996 78 12
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Figure 16 Performance of time diversity for cases with and
without Tc update.
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the optimal performance of a communication system
can be obtained where the instantaneous channel condi-
tion is considered. Since the effective diversity gain and
channel capacity assumptions depend on the degree of
stationarity/nonstationarity, it is therefore necessary to
consider some form of adaptive methods for choosing a
particular diversity technique or/and channel capacity
type. Hence, wideband communication systems that
incorporate algorithms based on the LSSUS concept will
greatly improve the performance of such systems.
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