Sucic et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:125
http://asp.eurasipjournals.com/content/2011/1/125

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

RESEARCH Open Access

Estimating the number of components of a
multicomponent nonstationary signal using the
short-term time-frequency Rényi entropy

Victor Sucic', Nicoletta Saulig' and Boualem Boashash?

Abstract

The time-frequency Rényi entropy provides a measure of complexity of a nonstationary multicomponent signal in
the time-frequency plane. When the complexity of a signal corresponds to the number of its components, then
this information is measured as the Rényi entropy of the time-frequency distribution (TFD) of the signal. This article
presents a solution to the problem of detecting the number of components that are present in short-time interval
of the signal TFD, using the short-term Rényi entropy. The method is automatic and it does not require a prior
information about the signal. The algorithm is applied on both synthetic and real data, using a quadratic separable
kernel TFD. The results confirm that the short-term Rényi entropy can be an effective tool for estimating the local
number of components present in the signal. The key aspect of selecting a suitable TFD is also discussed.

1 Time-frequency distributions and instantaneous
frequency estimation

1.1 Nonstationary signals analysis and quadratic class of
time-frequency distributions

Practical signals in the various fields of engineering (tel-
ecommunications, acoustics, biomedical engineering) are
nonstationary, with the instantaneous frequency (IF)
being their key parameter [1]. One of the fundamental
information when analyzing such signals is the number
of components present in the signal. When applied to a
time-frequency distribution (TFD), the Rényi entropy
measures the signal complexity [2,3]. Signals of high
complexity are composed of a large number of elemen-
tary components [2].

When dealing with highly complex signals, such as
multicomponent nonstationary signals, several pieces of
information are required for their characterization. Clas-
sical approaches of the time signal representation, x(),
and the frequency representation, X(f), are not best tools
for obtaining those information when dealing with mul-
ticomponent signals. These representations define the
signal duration, the changes of amplitude in time, as
well as the entire signal frequency content. Time-
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frequency representations (TFRs), or TFDs, are two vari-
able functions, C(t, f), defined over the two-dimensional
(t, /) space [4]. Such a joint TFR shows how the fre-
quency content of a signal changes in time.

One of the most popular TFDs, introduced by Wigner
and extended by Ville to analytic signals [4], has been
treated as a pseudo probability density function in
[2,3,5] to which the Rényi entropy has been applied as a
measure of signal complexity. The intuitive idea of the
Wigner-Ville distribution (WVD) was to obtain a kind
of instantaneous signal spectrum by performing the
Fourier transform of a function related to the signal,
called the kernel function K(z, 7). The WVD of a signal
s(t), denoted as W(t, f), represents a monocomponent
frequency modulated (FM) signal as a knife-edge ridge
in the (¢, f) plane, whose crest is the IF of the signal [4].

Let s(¢) be an analytic FM signal of the form [4]

s(t) = a(1)e?®, (1)

where a(f) is the instantaneous signal amplitude
(assumed to be equal to one in the rest of the article),
and the signal IF is defined as the time derivative of its
instantaneous phase ¢(¢) [4]

¢'(1)
o )

fi(t) =
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The requirement for the WVD to be a knife-edge
ridge can mathematically be interpreted as a series of
delta functions tracking the signal IF [4]:

Wi(t, ) =8(f = fi(1)) (3)

which leads to the signal kernel definition:

Ki(t, ©) = FL8(F = filF)) = 2707 = 207 (g
Since ¢'(¢) is not directly available, it can be replaced
by the central finite-difference approximation [4]

A 1 T\ T
Mt)wr[d’(”z) ¢(t 2)] ®)
By substituting (5) into (4), the kernel function and
the WVD are defined as [4]

T

K(t, 1) = JO3)gTI80=3) _ <t+ ;)5* (t— 5

). ®©

Wi(t, f) = Fey [s(t+ ;)s* (t— ;)} = [:s<t+ ;>s* (t— ;)e”z“ﬂdt (7)

Hence, the WVD can be understood as the Fourier
transform of the signal kernel K(t, f), also known as the
instantaneous autocorrelation function (IAF) of s(¢).

From (7), we can notice that using the IAF as the ker-
nel function brings nonlinearity in the WVD. The
effects of this nonlinearity will be most evident in the
case of multicomponent signals, as explained below.
Note that, in general, a component in the (£, f) domain
is a ridge of energy concentration whose peaks follow
the component IF law [4].

Let us consider an analytic signal of the form

s(t) =s1(t) +s2(1). (8)
Its IAF is [4]

KS(I, ‘C) =K51 (t, ‘E) +Ksz(t/ 7-') +K5152(tl T) +Kszsl ([/ t)' (9)

where
K5, (t, T) =51 <t+ ;)f; (t— ;) (10)
K5 (t, 7) =52 <t+ ;)54{ (t - ;) (11)

are the instantaneous cross-correlation functions that

will add the third term to the WVD of the two-compo-
nent signal [4]:

Ws(t' f) = W51(t' f) + WSz (t' f) + 2Re{w5152 (t' f)} (12)

This third term in the summation in (12) is called the
cross-term defined as
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Was (4, ) = Foss {51 (z+ ;)53 (t - ;)} (13)

It appears in the (¢, f) plane in between the signal
components, often degrading the quality of signal repre-
sentation in the (t, f) plane.

The rule of interference construction in the WVD can
be summarized as follows. Two points belonging to the
signal will interfere to create a third point which will be
located on their geometrical midpoint. The amplitude of
the interference will be proportional to the double pro-
duct of the amplitudes of the interfering points. In addi-
tion, the interferences oscillate perpendicularly to the
line joining the two signal points, assuming both posi-
tive and negative values, with the frequency of oscilla-
tion being proportional to the distance between these
two points [4,6].

It can be deduced from the general interference rule
that interferences will be also present in the case of
monocomponent signals with nonlinear FMs, called
inner cross-terms in [4].

1.2 Separable kernel time-frequency distributions

A generalization of the WVD is given by a class of TFDs
known as the quadratic class [4]. Distributions from this
class are defined as

Gt f) = v (& fxesgWs(t, f),

where Y(¢, f) is the time-frequency kernel filter, and
the double asterisk denotes a double convolution in ¢
and f. Each TFD belonging to the quadratic class can
thus be defined by the double convolution of the WVD
and the time-frequency kernel [4]. Equation 14 can be
rewritten in terms of the IAF function and the Doppler-
lag kernel g(v, 7) [4]:

C(t, f) = /;: /:; /::g(v,r)s (u+ ;)f (u - ;)efZ”("""l"f')dudu dr. (]_5)

Equations 14 and 15 lead to the definition of the
quadratic TFDs with a separable kernel, i.e. a function
with, respectively, independent Doppler and lag kernel
filters:

v (& f) = 8(OH(f),

(14)

(16)

8(v, 7) = G(v)h(z).

Such a kernel function allows a precise and indepen-
dent control of the smoothing of the WVD in both time
and frequency sense. It has been shown that TFDs with
separable kernel filters are easy to design, and they
achieve a good compromise in components energy con-
centration and interfering terms suppression [4,7]. If
(7) and g(t) are some typical windows (e.g. Hamming

(17)
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windows), the obtained separable kernel quadratic distri-
bution is known as the Smoothed Pseudo-WVD
(SPWVD), which is mathematically defined as [4]

SPW(t, f) = /_oo /_oo g(t—u)H(f — v) Wi(u, v)dudv.(18)

In order to improve the representation quality of the
quadratic separable kernel distribution, the distribution
known as the modified B distribution (MBD) [4,8,9] has
been proposed. Its kernel definition, which is lag inde-
pendent, is [7]

k

G(t, 7) = G(t) = cosh? (1)

(19)

where k = T(2B)/(2%#'T%(B)) is the normalizing factor,
I'(-) is the gamma function, and f is a real, positive
number. It has been shown in [7] that the MBD outper-
forms other TFDs in terms of time-frequency resolution
and interference suppression for a large class of non-sta-
tionary signals, such as newborn and adult EEG signals
as well as heart rate variability signals.

The advantages of time-frequency signal representa-
tions over the classical analysis approaches will be illu-
strated on an example of a two-component signal whose
components are linearly and sinusoidally frequency
modulated. Figure 1 shows that the time representation
and frequency representation used separately are not
adequate for this multicomponent nonstationary signal
analysis; from the time representation (Figure 1a) no
information about the signal IF can be obtained, while
the frequency representation (Figure 1b) does not pro-
vide any information about the arrival times of indivi-
dual frequencies. Neither of these representations
indicates the presence of multiple components. Figure
1c shows the spectrogram of the signal with the Ham-
ming window of duration 65 s. The WVD of the same
two-component signal is shown in Figure 1d, which is a
representation highly corrupted by interference terms.
The interference gets successfully reduced by the time-
frequency smoothing performed by the SPWVD (Figure
le) with the time and lag Hamming windows of dura-
tions 25 and 65 s, respectively. The SPWVD also
achieves high energy concentration around the signal
components I[Fs, when compared to the spectrogram.
The SPWVD can be considered as a special case of
separable kernel TFD.

2 Time-frequency Rényi entropy and TFDs

2.1 The definition and limitations of the global Rényi
entropy

Some useful properties of the TFDs belonging to the
quadratic class refer to the preservation of signal energy
in the (¢, f) plane and the marginal conditions. The
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Figure 1 (a) Time representation, (b) magnitude spectrum, (c)
spectrogram, (d) WVD, and (e) SPWVD of a two-component
nonstationary signal.

integration of the TFD over the entire (¢, f) plane results
into signal energy [4]:

[ Z [ : Cs(t, f)ddf = E,

while the integration over frequency and time respec-
tively leads to the instantaneous power and the energy
spectrum:

(20)
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The information content and complexity of a prob-
ability density function can be measured by the entropy
function. The TFDs from the quadratic class satisfy the
marginal conditions given by Equations 21 and 22, and
after the normalization of Cy(¢, f) with respect to the sig-
nal energy Eg:

Gt f)

G, (tf) = I %2 Co(u, v)dudy

(23)

Therefore, the instantaneous power and energy spec-
trum can be understood as one-dimensional densities of
signal energy in time and frequency, while TFDs may be
interpreted as 2-D probability density functions [5].
Hence, we would expect the classical Shannon entropy [2]

Hc) = [ N [ " Gy (f) log, Co(t, fdeds (24)

to be an acceptable tool for measuring the complexity
and information content of a nonstationary signal in the
(¢, f) domain. Since Cs, (¢, f) in (24) represents a prob-
ability density function, it is natural to expect that a
multicomponent signal will have larger entropy when
compared to a single pulse in the (¢, f) plane. As
explained in the first section, nonpositivity (due to the
presence of interfering terms) is one of the characteris-
tics of the quadratic class of TFDs. As a TFD can be
negative in some regions of the (¢, f) plane, the Shannon
entropy cannot be used in practice as a signal complex-
ity measure, due to the logarithm in (24).

A solution to this limitation was proposed in [2],
introducing the generalized entropies of Rényi:

HAC) = L toe [ [ cienaa. e

As shown in [2], when the parameter o (for the Shannon
entropy o — 1) is an odd integer value, the oscillatory
structure of interferences are annulled under integration.
Let us next consider several examples illustrating the use of
the Rényi entropy in the (¢, f) domain. Note that all TFDs
that are used in this article are normalized as per (23).

2.2 Example I: Case of two Gabor logons with same time
duration and FM

When treating a TFD as a probability density function,
multicomponent signals will yield a larger entropy value
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Figure 2 A Gabor logon in time (top), frequency (left), and joint
time-frequency domain using the SPWVD (center).

when compared to the entropy of a single component of
the same signal. Let us consider the Rényi entropy of an
ideal TFD, denoted as L(t, f), of a compactly supported
signal s(¢) (in Figure 2 represented by a Gabor logon [3]
in the (¢, f) plane, being an elementary time-frequency
building block). For the two-component signal s(£) + s(t
- At), the ideal TFD (Figure 3) will take the form

Iiyss—any (6 f) = L(t, f) + L(t — At f).

The Rényi entropy of the two-component signal TFD,
Hy (I +s-a0(% ), carries exactly one more bit of infor-
mation when compared to the Rényi entropy of the one
component signal TFD, H,(Iy(t, f) (as long as the time
shift At is larger than the time support of the Gabor
logon) [2], i.e.

He (Isqtysse-an (6 f)) = Ha (Isry (£, f)) + 1.

Thus, the number of components can be determined
as

(26)

(27)

Signal in time
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Figure 3 Two Gabor logons in time, frequency, and time-

frequency (SPWVD).
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n = 2Ha(Iwsse-a0 (66))=Ha (s (6)) (28)

When the third-order Rényi entropy (o = 3) is com-
puted for the signals in Figures 2 and 3, the following
results are obtained:

H3(IS(L)+S(L7A1)(tIf)) = 1.3913,
Hs (I (t, f)) = 0.3913.

From (28), it follows that

ne 213913-03913_ 51 _ 5

This example confirms the accuracy of the Rényi
entropy counting property when the entropy of one of
the components is known in advance.

2.3 Example II: Case of two Gabor logons with same FM
and different time duration

Let us now consider a signal composed of two compo-
nents with different time durations. The signal, consist-
ing of two Gabor logons, s1(¢) and s,(¢), with durations
96 and 32 s, respectively, having same frequency sup-
ports is shown in Figure 4.

The third-order Rényi entropies are

Hs(Is, )+, (0 (t, f)) = 1.4469,
Hs(I5,(5)(t, f)) = 0.8812,
Hs (I, (t, f)) = 0.2169.

Clearly,
21501 s (N =Hs Uy () g 09 ()~ iy 4)
1.4801 # 2.3457 2.

As expected, the signal component s5,(¢) that occupies
a larger region of the (¢, f) plane exhibits a considerably
larger value of the Rényi entropy when compared to the
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Figure 4 Two Gabor logons with different time durations,
shown in time, frequency, and time-frequency (SPWVD).
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entropy of the component with the shorter-time sup-
port, sy(t). Consequently, the estimation of the number
of components based on the difference of the Rényi
entropies of the entire signal and one of its components
fails regardless which of the two components is chosen
as the reference signal. The implication is that the global
Rényi entropy can correctly detect the number of com-
ponents only when all components have same time sup-
ports, with arbitrary time/frequency shifts in the TF
plane.

2.4 Example llI: Case of a signal with different FM
components of same time duration

Next, we considered a multicomponent signal whose
components have different frequency modulations. An
example of such a signal is given in Figure 5; the two-
component signal is composed of a component with
parabolic FM (denoted as s(£)), and a component with a
linearly decreasing FM (denoted as s,(¢)). Both compo-
nents have a time duration of 256 s. Then,

Hs(I5, (0)+5,(0(t, f)) = 3.5819,
Hs(I5, (. f)) = 3.1263,
Hs (I, (t,f)) = 2.2698.

Equation 28 does not have a unique solution, as
2H3 (Isl (l)+s2 (L))7H3 (151 0) (t'f)) 7! 2H3 (Isl (0)+52(0) )_H3 (ISZ 0] (t/f)),
1.3713 #2.483 # 2.

Thus, the presented examples indicate that the count-
ing property of the Rényi entropy is restricted to multi-
component signals composed of components with
similar time and frequency supports only. In addition,
having to know the entropy of one of the components
in advance, makes this approach highly impractical. To

Signal in time

Linear scale SPWVD of a two component signal with different FMs
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Figure 5 A two-component signal composed of a parabolic FM
component and an LFM component, in time, frequency, and

joint time-frequency domain (SPWVD).
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remedy this disadvantage, the next section presents a
novel method for estimating the local number of com-
ponents in a signal that can be applied independently of
the components respective durations in time and fre-
quency. In addition, the proposed automatic procedure
does not require the prior knowledge of the complexity
of one of the signal components.

3 A novel algorithm for estimating the number of
components using the short-term Rényi entropy
3.1 Assumptions and constraints

As previously shown, the Rényi entropy is a good indi-
cator of the signal complexity (the number of compo-
nents present in the signal) only when

1. all components have the similar structure in the
time-frequency plane, and

2. the Rényi entropy of a single component is
available.

However, in most practical applications this will not
be the case: in general, signals encountered in many
engineering and multidisciplinary fields (telecommunica-
tions, acoustics, radar, sonar, etc.) are usually mixtures
of signals with different durations and frequency band-
widths. This makes the number of components estima-
tion based on the global Rényi entropy ineffective for
real-world signals.

What is required is a solution for determining the
number of components present in a signal in a short-
time interval. Such a method is presented here, based
on the estimation of the short-time Rényi entropy. It
exploits the fact that signals with similar time durations
and frequency supports have similar Rényi entropies.
Since the Rényi entropy of a signal is invariant to time
and frequency shifts [2], it is expected that a signal
represented in the time-frequency domain by two short-
energy impulses will have twice the energy in the (¢, f)
plane of a signal represented by a single energy impulse
of the same duration, and its Rényi entropy should be
larger by one bit. This suggests that instead of observing
the entire (¢, f) plane when detecting the number of sig-
nal components, we should focus on a finite time inter-
val of the (¢, f) plane, and compare the Rényi entropy of
this short-time segment with the Rényi entropy of a
reference test signal with the same time support. In this
way, the number of components present in the chosen
time interval will be automatically estimated.

3.2 The proposed algorithm

In essence, the proposed algorithm consists of annulling
the TED, C(¢, f), of the multicomponent signal outside
the time interval At, centered around the time instant p,
to obtain a TFD of the form
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C,(0f) = {Cs(t,f), p—to<t<p+ty, (29)

0 otherwise,

where £, controls the length of the observed time
interval. We next compare the short-term Rényi entropy
of this TFD, denoted as C;,(t f), with the Rényi entropy
of the TFD of the reference cosine signal (an arbitrary
chosen stationary cosine signal), Crefp(t,f), for the same
At. In the proposed algorithm, the reference TFD, C,.r
(t, /), must be a TFD of the same type and with the
same set of parameters as the signal TED, C(, f). Cpr (£,
f) must also have same dimensions as Cy(¢, f). The
selected synthetic reference signal is a cosine signal of
arbitrary amplitude and arbitrary constant frequency.
Since the FM affects the bandwidth of a component in
the TF domain (signals with fast changes in the IF may
present relatively larger bandwidths in the TF domain),
a synthetic signal with constant or linear FM is used as
a reference signal in order to maintain a constant band-
width. The amplitude of the reference signal can also be
arbitrary chosen since the Rényi entropy of a signal is
amplitude invariant.

For each time instant p, a different time portion of the
(¢, f) plane is extracted, and thus a different value of the
Rényi entropy is obtained. After comparing the obtained
values of the Rényi entropy of the observed multicom-
ponent signal and the reference one, a function of the
instantaneous number of components, 7(p), is obtained.

By isolating a short-time interval of the TED of the
observed signal and annulling the TFD outside this
interval, the influences of different time and frequency
supports of various components on the counting prop-
erty of the Rényi entropy are removed. This is a result
of the fact that different components now locally have
same time durations and similar bandwidths (see Figure
6b), as it was the case in Example I. Hence, when only a
short-time interval of the TF plane is observed, the sig-
nal reduces to the special case of Example I, for which
it has been shown in [2] that the counting property of
the Rényi entropy holds. In other words, even if the sig-
nals globally have different time and frequency supports,
their Rényi entropies are locally comparable.

The first step of the algorithm consists in the thresh-
olding of the TED to remove noise and interference low
energy peaks that may locally affect the entropy of the
signal. The same must be done with the TFD of the
reference signal.

The fundamental step in determining the local num-
ber of a signal components using the short-term Time-
Frequency Rényi entropy is the choice of the TFD. As it
has been shown in [2], the Rényi entropy is invariant to
cross-term since they annulate under integration over
the entire (¢, f) plane with odd powers of a (25).
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Figure 6 (a) SPWVD of a two-component signal with linear and
sinusoidal FMs; (b) 7 s time slice of the SPWVD around p = 130 s.
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Naturally, this is not the case in our algorithm, where
only a short-time portion of the (¢, f) plane is observed,
and consequently the eventual presence of cross-terms
would cause inaccurate results. Thus, the key require-
ment we put on the TFD is the minimization of the
interference terms spreading in the sense of both the
time and frequency axis. TFDs with separable kernels
successfully reduce the interferences, by an independent
smoothing of the WVD in time and frequency [4]. They
have also been shown to outperform other popular
TEDs in terms of the time-frequency resolution [7].

As mentioned above, the next step of the proposed
algorithm requires the definition of the time interval Az
In this article, the time interval is chosen as a small odd
value (so that it can be centered exactly around the cen-
tral time instant p), At = 7 s, to insure temporal locali-
zation of events even when dealing with fast changing
nonstationary signals [10]. The sampling period for all
examples presented in this article is T = 1 s. The annu-
lation of the TFD of the observed signal, C(t, f), outside
the time interval At is performed by the scalar product
of Cy(¢, f) and a two-dimensional time-frequency mask-
ing window W,,(¢, f):

Cy(.) = Wyl 1) Gi(t.f), (30)
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where

1, p—3=<t=<p+3Vf,

1
0 otherwise. (31)

Wyt ) - |
For example, for the signal in Figure 6a, Wi30(Z, f) will
isolate a time segment of duration At = 7 s of the signal
TFD around the time instant p = 130 s. The SPWVD,
Ci(t, ), of the analyzed signal is shown in Figure 6a, and
the time slice of the SPWVD around p = 130 s in Figure
6b. The SPWVD of the reference cosine signal, C,.At, f),
and its time slice are given in Figure 7.

The presence of a component is checked by a mini-
mum energy criterion that requires the total energy of
the time slice to be larger than a threshold value (here
chosen as 0.001 * E;/(N/At), where E; is the signal
energy, N is the signal length, and At is the considered
time interval of Cy(t, f)). Once Cs, (& f) and Cuy, (. f)
are obtained, and the presence of the component is
detected, the number of components at the observed
time instant p is calculated as

n(p) = 2Ha(Co (1)) ~HalCrpy (1)) (32)

By varying p from p = 4 to p = max(¢) - 3, and repeat-
ing the previous steps of the algorithm for each p, a
function of the local numbers of components is

0.5
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Figure 7 (a) SPWVD of the reference cosine signal; (b) 7 s time
slice of the SPWVD around p = 130 s.
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obtained. The flowchart in Figure 8 graphically illus-
trates the steps of the algorithm.

4 Results and discussion

4.1 The experiment

The algorithm presented in the previous section exploits
the short-term Rényi entropy to detect the number of
components present in a short-time interval of the ana-
lyzed signal. In this section, we test its performance on
both synthetic and real-life signals examples.

In all reported tests, the two-dimensional time-fre-
quency window, W,(¢, f), has time duration At = 7 s
(the sampling interval is 75 = 1 s). The SPWVD of both
the observed and reference signals (chosen as a cosinu-
soidal signal with the constant frequency of 0.1 Hz) is
calculated with its time and lag smoothing windows [4]
chosen as Hamming windows with durations of 15 s. In

s(t),
Signal TFD

5,gf(t)> (separable kernel)

clt. f) Cy(t.f)
v \ J
Noise thresholding

Clr. f) Coylt, f)
Y \

TFDs annullation around the
time instant p by the 2D mask

> Wt f) -

Csﬂ(t.f)i Coy (1. 1)

Increase p by 1 Increase p by 1

A Minimal energy
criterion satisfied?
Set n(p)=10
\
Calculation of Calculation of
H(C, (1, 1) Ho(Coy (2. 1))
A Y

Estimation of the number of
components at the time instant p

Done for all p?

Y

n(p)
Figure 8 Flowchart of the proposed algorithm.
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general the recommended windows width durations are
between N/10 and N/20, where N is the duration of the
signal. With this length of the time and lag windows,
the interference present in the WVD is significantly
smoothed, not affecting the estimation of the short-term
Rényi entropy of the signal. Also, our extensive simula-
tions have shown that the most accurate results, in
terms of correctly detecting the local number of compo-
nents, are obtained for the choice of the Rényi entropy
parameter o = 7, as illustrated in Figure 9b.

Figure 9a shows a three-compound signal, whose
components have parabolic frequency modulations and
different time durations. As seen from Figure 9b, the
proposed algorithm has correctly detected the number
of components present at each time instant for three
different values of the parameter . Figure 9c shows the
performance of the algorithm for three different values
of At, confirming that At = 7 s gives the most accurate
results.

The results obtained for the signal simulating the sum
of two echoes from a rotating object, are shown in Fig-
ure 10. From Figure 10b we can observe that when the
components overlap in the (¢, f) domain, the number of
components detected by the algorithm is 1. In other
words, the algorithm reports the number of different
regions in the (¢, f) plane that are occupied by the signal
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Figure 9 (a) SPWVD of a three-component signal with
parabolic FMs; (b) number of components in time (o = 3
dashed, oc = 7 solid, o = 11 dotted), At = 7 s; (c) number of
components in time (At = 3 s dotted, At = 7 s solid, At = 23 s
dashed), ot = 7.
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0.5

Frequency (Hz)

Number of components

50 100 150 200 250
Time (s)
(b)
Figure 10 (a) SPWVD of a signal simulating the sum of two
echoes from a rotating object, (b) number of components in
time.

at a given time moment, independently of its amplitude
in the (¢, f) plane. The fact that the Rényi entropy of a
signal is invariant to its amplitude allows the use of a
cosine signal of unit amplitude as a reference.

Figure 11a shows a signal corrupted by additive white
Gaussian noise (SNR = 10 dB). The results in Figure
11b are the number of components for the noise-free
signal (solid line), the noisy signal for SNR = 15 dB
(dashed line), and the noisy signal for SNR = 10 dB
(dotted line). The presence of the noise has not brought
significant deteriorations in the instantaneous number
of components estimation, confirming the algorithm
robustness to additive white noise.

4.2 Performance on real data

Finally, a real test signal (bat sound representing a nat-
ural sonar system [11]) has been analyzed to show the
performance of the short-term Rényi entropy when
applied to different TFDs. In many applications [12-14],
the local number of components is an integer. In this
case, the introduction of a threshold is required. The
thresholding is also useful in the case when different
components overlap for very short periods in time (as it
is the case with some of the components in Figure 12).
Thus, a threshold needs to be introduced in order to
improve the sensibility of the algorithm. Our simula-
tions have shown that the optimal threshold for the
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(b)
Figure 11 (a) SPWVD of a signal composed of an LFM
component and two Gabor logons embedded in additive
white noise with SNR = 10 dB; (b) number of components in
time for the noise-free signal (solid), signal corrupted by
additive white noise (SNR = 15 dB (dashed), and SNR = 10 dB
(dotted)).

detection of the first component is 0.1, and for the ith
component it is (i - 1) + 0.2. Figure 12 presents the
results obtained from the bat signal SPWVD (with the
time and lag windows of duration 33 s), the MBD [4] (8
= 0.1), and the Choi-Williams distribution (CWD) [4] (o
= 2), with the solid line representing the thresholded
results, and the dashed line representing the results
without thresholding. In real-life signals, low energy
components can be expected (as it is, for example, the
minor component that appears in Figure 12a, ¢ and
12e), thus for the information about their presence not
to be neglected, a normalization of the TFD is required.
Figure 12 shows that the MBD (Figure 12c) has most
correctly detected the number of signal components,
followed by the SPWVD (Figure 12a). The MBD shows
major sensitivity to the weak spectral component. The
CWD, due to the presence of pronounced cross-terms,
performs poorly, showing unwanted oscillations in the
local number of components.

4.3 Strengths and limitations of the algorithm

The results in this section illustrate a high accuracy of
the presented algorithm in detecting the local number
of signal components. Even in the case of noisy signals
or low energy components, the algorithm has correctly
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Figure 12 (a) SPWVD of a bat echo location signal; (b) number
of components in time (thresholded results-solid line, results
without thresholding-dashed line); (c) MBD of a bat echo
location signal; (d) number of components in time
(thresholded results-solid line, results without thresholding-
dashed line); (e) CWD of a bat echo location signal; (f) number
of components in time (thresholded results-solid line, results
without thresholding-dashed line).

estimated the components number. The presented
method provides the signal analyst with information
on the minimum number of components present in
the signal. All this can be useful in various applications

Page 10 of 11

that require components separation and extraction
[12-14].

The choice of the TFD is crucial for the successful
performance of the algorithm. TFDs with separable ker-
nels are recommended in order to avoid the undesirable
influence of both inner and outer artifacts of the signal
TED on the results. In this article, the MBD was shown
to be a good choice for the real data local component
number estimation.

5 Conclusion

This article proposes a method for estimating the local
number of signals components. It is based on the short-
term Rényi entropy of signals in the time-frequency
plane. Using the Rényi entropy of a short-term segment
of a TFD of a multicomponent nonstationary signal,
relative to the short-term Rényi entropy of a reference
signal, the number of components present in the signal
can be accurately estimated. The proposed method does
not require any a priori information about the analyzed
signal, nor the knowledge of the Rényi entropy of one of
the signal components. The method was tested on var-
ious synthetic signals, including signals embedded in
additive white Gaussian noise, and its use in practice
was illustrated on a real-life signal. The method is sensi-
tive to the selection of the TFD. The presented results
indicate that the MBD, being an example of Separable
kernel TFDs, is a good choice of a TFD when the pro-
posed method is applied in practical situations [4].
These results show that the proposed algorithm can be
useful in many applications that require component
count and component separation; and, it can be a pre-
ferred alternative to other methods such as the Empiri-
cal Mode Decomposition [15].
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