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Abstract

In this article, we consider the uniform circular arrays (UCAs) with the number of antenna elements insufficient to
apply the traditional beamspace-based algorithms, which are labeled as sparse UCAs. For such UCAs, we propose a
new hybrid approach for 2D direction-of-arrival (DOA) estimation in the presence of mutual coupling. Using the
manifold decomposition technique, we present two new formulations of the steering vector in the presence of
mutual coupling for sparse UCAs. Then, we introduce the adaptations to a modified uniform circular array rank
reduction algorithm. This leads to an algorithm that is able to estimate the azimuth angle without the exact
knowledge of mutual coupling. Next, we use a search-free rooting algorithm which expands the steering into a
double Fourier series for each estimated azimuth to obtain the elevation angle estimates. The manifold
decomposition technique introduces truncation errors. However, the accuracy of the DOA estimates is strongly
affected by these errors when the array has a small number of elements. Therefore, expressions describing the
truncation errors in the DOA estimates are derived. This allows us to choose an appropriate truncated degree in
the manifold separation transformation to enhance the DOA estimate accuracy. Numerical examples are presented
to demonstrate the effectiveness of the proposed method.

Keywords: direction-of-arrival estimation, error analysis, manifold separation, rank reduction theory (RARE), sparse
uniform circular array, wavefield modeling

1. Introduction
The problem of two-dimensional (2D) directions-of-arrival
(DOAs) [1-7] estimation (i.e., azimuth and elevation angles)
has received increasing attention in a variety of applica-
tions, such as radar, mobile communications, sonar, and
seismology. In general, a planar array is needed when esti-
mates of source azimuth and elevation are required. Such
well-known planar arrays include the two-orthogonal uni-
form linear array (the L-shaped array) [1], the rectangular
array [2], and the uniform circular array (UCA) [3-7]. The
UCA is able to provide 360° of coverage in the azimuth
plane. Moreover, the UCA has uniform performance
regardless of angle of arrival. Thus, UCA attracts more
attention than other planar arrays recently. Due to the cir-
cular symmetry, the beamspace transformation, based on
the phase-mode excitation principle, is usually applied to
obtain the desired Vandermode structure for the steering
vector in the mode space. This transformation results in

the development of several DOA estimation algorithms
with low computational cost, such as UCA-RB-MUSIC [3],
UCA-ESPRIT [3], and uniform circular array rank reduc-
tion (UCA-RARE) [4]. However, all these algorithms for
UCAs ignore the mutual coupling effect, which ultimately
destroys the underlying model assumptions needed for
their efficient implementations. Moreover, all these algo-
rithms, based on the traditional beamspace transformation,
require a sufficiently large number of elements to avoid
aliasing in the steering vector of the mode space.
In this article, we focus on UCAs with the number of

antenna elements insufficient to apply the traditional
beamspace-based algorithms. In [8], such UCAs are
labeled as sparse UCAs and are allowed to adopt an effi-
cient search-free and robust 1D DOA estimation algo-
rithm. This algorithm is based on a modified beamspace
transformation and is called as sparse UCA Root-
MUSIC. In this algorithm, all relevant phased modes are
able to be incorporated in a polynomial rooting proce-
dure leading to biased free estimates when the number of
elements of UCA is small. However, the algorithm in [8]
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only estimates the azimuth angle without considering the
mutual coupling, given a fixed elevation angle. In this
article, we estimate the 2D DOAs with such sparse UCAs
in the presence of mutual coupling, acquiring both the
azimuth and elevation angles estimates via a manifold
decomposition technique. The straightforward extension
of MUSIC to 2D DOA estimations brings on a 2D search
over the MUSIC spectrum and has a high computational
cost. In [5,7], both the proposed algorithms take the
mutual coupling into account and employ the UCA-
RARE algorithm to estimate the azimuth angle first.
With the open-circuit voltages of the antenna elements
expanded in spherical mode, a Root-MUSIC algorithm is
able to be performed in the elevation space to obtain the
elevation estimates in [5]. In [7], a 1D parameter search
replaces the implementation of Root-MUSIC algorithm
in the elevation space. In the 1D parameter search for
elevation estimates, the elevation-dependent mutual cou-
pling effect can efficiently be compensated by the eleva-
tion-dependent receiving mutual impedances. However,
this step results in higher computational load. Although
these two algorithms are applied for the compact UCAs,
they could inspire us for sparse UCAs.
In this article, we use the method proposed in [9] to

calculate the mutual coupling. In [6,7,9], computer simu-
lations have shown that this method can produce more
accurate DOA estimation results than the open-circuit
voltage method. The experiments in [6,7] show that the
mutual coupling matrix (MCM) depends on the elevation
angle for UCAs. Moreover, the simulation results in [6,7]
have shown that the way compensating the mutual cou-
pling with single-elevation-angle receiving-mutual-impe-
dance, computed according to the method in [9], still
produces better DOA estimation results than the open-
circuit voltage method. In [7], it shows that the variation
of the receiving mutual impedances with elevation angle
is a process of gradual change. Hence, it is feasible to
estimate the elevation angle using mutual coupling com-
pensated with single-elevation-angle receiving-mutual-
impedance. In [10], it is shown that any array steering
vector can be expanded on a spherical surface to generate
an expression containing spherical harmonics, which can
be mapped to 2D Fourier basis [11]. In this article, we
will extend this expansion to the steering vector in the
presence of mutual coupling.
In this article, we propose a new hybrid algorithm for

2D DOA estimation in the presence of mutual coupling
for sparse UCAs. Based on the manifold decomposition
technique, we will present two new formulations of the
steering vector in the presence of mutual coupling for
sparse UCAs. One formulation, corresponding to Jacobi-
Anger expansion [12], allows applying a modified UCA-
RARE algorithm to estimate the azimuth angle without
the exact knowledge of mutual coupling and elevation

angle. The other formulation, corresponding to Bauer’s
formula [13], allows executing a Root-MUSIC algorithm
in the elevation direction to estimate the elevation angle
for each estimated azimuth angle. For sparse UCAs, com-
pared with the original UCA-RARE, the modified UCA-
RARE is able to avoid obtaining spurious estimates which
only arise from the sparseness of the array elements.
Note that the steering vector expansion for estimating
the elevation angle in this article differs from that in [5]
and has a more universal application [10,14,15]. In fact,
these two kinds of decomposition techniques applied in
this article can be considered as manifold decomposition
transformations [11,16-18]. It is shown that the DOA
estimate accuracy usually depends on the truncation
error introduced by the transformation [16-19]. Hence,
we analyze the truncation errors for sparse UCAs and
derive expressions describing the truncation errors in the
DOA estimates. We find that the impact of the trunca-
tion error on the estimate accuracy of azimuth angle is
weaker than it for the elevation angle estimate. Therefore,
a method to choose an appropriate truncated degree for
the elevation estimates is presented to enhance the esti-
mate accuracy.
The rest of the article is organized as follows. First,

the array signal model is presented in Section 2, fol-
lowed by the description of the manifold decomposition
technique in Section 3. Then, the proposed algorithm
for sparse UCA is presented in Section 4. The impact of
the truncation errors are analyzed in Section 5. Section
6 shows the simulation results. Finally, Section 7 con-
cludes the article.

2. Array signal model
Consider a sparse UCA consisting of N identical ele-
ments uniformly distributed over the circumference of a
circle of radius r. Assume that D narrowband sources,
centered on wavelength l, impinge on the array from
directions θi (i = 1,..., D) and ji (i = 1,..., D), respectively,
where θi Î [0, π/2] is the elevation angle measured from
the Z-axis and ji Î [0, 2π) is the azimuth angle mea-
sured from the X-axis counter-clockwise (see Figure 1).
The N× 1 vector received by the array is expressed as

x(t) = Ã(θ ,φ)s(t) + n(t) (1)

where Ã(θ ,φ) =
[̃
a (θ1,φ1) . . . ã(θD,φD)

]
is the N ×

D matrix of the steering vectors, s(t) = [s1(t)... sD(t)]
T is

the D× 1 signal vector, n(t) = [n1(t)... nN(t)]
T is the N× 1

noise vector. The signal vector s(t) and the vector n(t)
of the additive and spatially white noise are assumed to
be statistically independent and zero-mean.
If the sparse UCAs are composed of omni-directional

antenna elements, its steering vector in the presence of
mutual coupling [20] is given by
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ã(θ ,φ) = Cma(θ ,φ) (2)

where the N × N matrix cm is the elevation-dependent
MCM. Due to the circular symmetry, a model for the
MCM of UCAs [5,7,20] can be a complex symmetric
circulant matrix. In this article, we only consider N =
2K+1. Therefore, Cm can be expressed as

Cm =

⎡⎢⎢⎢⎣
c1 c2 · · · c(N+1)/2 c(N+1)/2 · · · c2
c2 c1 · · · c(N+1)/2−1 c(N+1)/2 · · · c3
...

...
. . .

...
...

. . .
...

c2 c3 · · · c(N+1)/2 c(N+1)/2−1 · · · c1

⎤⎥⎥⎥⎦ (3)

The N × 1 vector a(θ, j) is the ideal steering vector
and the expression of its nth (n = 1,..., N) component is

[a(θ ,φ)]n = ejkr sin θ cos(φ−γn) (4)

where gn = 2π(n-1)/N is the angular position of the
nth element.
If the sparse UCAs are composed of directional

antenna elements, its steering vector in the presence of
mutual coupling [21] can be described as

ã(θ ,φ) = Cmad(θ ,φ) (5)

where ad(θ, j) is the steering vector having the direc-
tional pattern of the form gd(θ, j) and the expression of
its nth (n = 1,... N) component is

[ad(θ ,φ)]n = gd (θ ,φ − γn) ejkr sin θ cos(φ−γn) (6)

3. The manifold decomposition technique
Here, the concepts of the Wavefield modeling for scalar-
fields are given. Two expressions for decomposing the
steering vector (manifold) of array elements with sparse
UCAs are presented. These form the theoretical basis of
our algorithm.

In [10], it is shown that the array steering vector is
able to be decomposed as

a (θ ,φ) = �sb (θ ,φ) (7)

where Γs represents the so-called sampling matrix and
b(θ, j) is the basis functions of the decomposition. In
general, the dimension, i.e., the number of basis func-
tions is infinite in order to hold the equality exactly.
Therefore, the sampling matrix can be considered as an
operator defined as �s : H → CN×1. The coefficients of
the expansion (sampling matrix) map functions defined

on H into the Nth-dimensional complex space
(
�N×1

)
.

Hence, the sampling matrix is a characteristic of the
array only.
Usually there are two kinds of choices for the basis

functions b(θ, j). For sparse UCA, one is given by[
b (θ ,φ)

]
m = jmJm (kr sin θ) ejmφ (8)

where m =..., -1, 0, 1,... and Jm(•) is the Bessel function
of the first kind with order m. Its corresponding sam-
pling matrix is[

�s]
n,m = e−jmγm (9)

where n = 1, 2,..., N. This kind of decomposition can
also be considered as the Jacobi-Anger expansion [12],
and Equation 4 can be expressed as

ejkr sin θ cos(φ−γn) =
∞∑

m=−∞
jmJm (kr sin θ) ejm(φ−γn) (10)

The other choice is the spherical harmonics and the
tth component of b(θ, j) is

[
b (θ ,φ)

]
t = Ym

l (θ ,φ) =

√
(2l + 1) (l − m)!

4π (l +m)!
Pm
l (cos θ) ejmφ

l ∈ [0, +∞] ,m ∈ [−l, l
] (11)

where t = l2+l+m+1 and Pm
l (cos θ) represents the

associated Legendre functions of the lth degree (or
level) and mth order (or mode). Its corresponding sam-
pling matrix is[

�s]
n,t = 4π jljl (kr)Y

m∗
l

(π

2
, γn

)
(12)

where jl(•) denotes the spherical Bessel function of the
first kind. The Bauer’s formula [13] corresponds to this
kind of decomposition and is given by

ejkr sin θn cos(φ−γn) = 4π
∞∑
l=0

l∑
m=−l

jljl (kr)Ym∗
l

(π

2
, γn

)
Ym
l (θ ,φ) (13)

Since both Jm(kr) and jl(kr) decay exponentially, we
can assume that, for m ≫ kr and l ≫ kr, the higher-

Figure 1 UCA deployed for direction finding.
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order Bessel functions and spherical Bessel functions are
negligible. Therefore, the sampling matrix can be trun-
cated by considering a finite number of modes or
degrees. Ideally, the resulting truncation error can be
made arbitrarily small just by increasing the number of
modes or degrees. We assume that the truncated order
is M and truncated degree is L for the first and second
kinds of decomposition, respectively. The rule to select
the truncated order or degree will be discussed in Sec-
tion 5. In order to distinguish the sampling matrices
and basis functions for two kinds of decomposition, let
�s
1 and b1(θ, j) denote the sampling matrix and basis

functions for the first kind of decomposition and �s
2

and b2(θ, j) be the sampling matrix and basis functions
for the second kind of decomposition, respectively.
In fact, an alternative expression [10] of b2(θ, j) with

limited degree L is given by

b2 (θ ,φ) = CyDy (φ)Zed (θ) (14)

where the (L+1)2 × (L+1)2 diagonal matrix Cy contains

the diagonal elements
[
Cy
]
t,t =

√
(2l + 1) (l − m)!

/
(4π (l +m)!) ,

t = l2+l+m+1. Dy (φ) ∈ �(L+1)2×(L+1)2 is expressed as

Ze ∈ �(L+1)2×(2L+1) . Ze ∈ �(L+1)2×(2L+1) is the combination
of the selection matrix and the coefficients vectors and is

given by Ze =
[
Z0 T
e Z1 T

e Z2 T
e . . . ZL T

e

]T , where

Zl
e =

[
c−l T
l · · · c0 T

l · · · cl Tl
]T ∈ �(2l+1)×(2L+1) and

c̃ml ∈ �(2l+1)×1 . c̃ml ∈ �(2l+1)×1 can be obtained for an

arbitrarily l and m using two recurrence expressions. The
(2L+1) × 1 vector is described as d(θ) = [e-jLθ ··· 1 ··· ejLθ]T.
More details about Equation 14 can be found in [11].
Apparently, Equation 14 is an expansion of 2D Fourier
series.

4. The hybrid algorithm to DOA estimation
For the ideal UCAs composed of omni-directional
antenna elements, exciting the array with the weight

vector wk = 1
/
N
[
e−jkγ1 · · · e−jkγN

]H results in

wH
k a(θ ,φ) = jkJk (kr sin θ) ejkφ+

∞∑
q=1

[jk+qNJk+qN (kr sin θ) ej(k+qN)φ+

jk−qNJk−qN (kr sin θ) ej(k−qN)φ]

(15)

For the traditional beamspace transform, there is
N > 2 �kr� and the first term in (15) becomes domi-
nant. However, for the beamspace transform applied to
the UCA with N = 2K+1, where K < �kr� and

N ≤ 2 �kr� , the value of the second term may be

significant and cannot be neglected because of the con-
tribution of Jk±qN(kr sin θ) with orders K < |k| ≤ �kr� .
We also label such UCAs as sparse UCAs [8].
Obviously, the algorithms proposed in [3-5,7], which are
based on the traditional beamspace transform, cannot
be employed directly for such UCAs. In this section, we
will present a new hybrid algorithm applied to such
UCAs. In order to avoid 2D search in MUSIC spectrum,
we estimate the DOAs in two steps. Based on the beam-
space transformation corresponding to the Jacobi-Anger
expansion, first we estimate the azimuth angle using the
modified UCA-RARE algorithm, which stems from the
original UCA-RARE applied for compact UCA. This
algorithm is attractive since it decouples azimuth esti-
mation from elevation estimation and relaxes the
assumption of omni-directional element patterns. Then,
we perform a Root-MUSIC algorithm to estimate the
elevation angle for every estimate azimuth angle using
the expansion based on the Bauer’s formula.
We start from the signal model of Section 2. Recalling

Equation 1, the beamspace array signal model is

x̃b (t) = WH
K x (t) (16)

where the (2K+1) × M weight matrix Wk is defined as

WK =
√
N
[
w−K . . . w0 . . . wK

]
(17)

The corresponding beamspace steering vector is

ãb (θ ,φ) = WH
K ã (θ ,φ) (18)

The covariance matrix R of the beamspace data is
constructed and an eigendecomposition of R results in a
signal and noise subspace

R = E
{̃
xb (t) x̃Hb (t)

}
= Ẽs�̃sẼ

H
s + Ẽn�̃nẼ

H
n

(19)

where Ẽs and Ẽn denote the signal and noise sub-

space eigenvectors and the diagonal matrices �̃s and

�̃n contain the signal subspace and noise subspace
eigenvalues, respectively. The beamspace MUSIC algo-
rithm estimates the DOAs from the D deepest nulls of
the MUSIC function

fMUSIC (θ ,φ) = ãHb (θ ,φ) ẼnẼ
H
n ãb (θ ,φ) (20)

4.1. The azimuth angle estimation
When a(θ, j) is expanded as the first kind of decompo-
sition, the beamspace steering vector ab(θ, j) can be
expressed as

ab (θ ,φ) = WH
K�s

1b1 (θ ,φ)

= HT (φ) g (θ) + �a1b (θ ,φ)
(21)
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where

H = WH
K�s

1 =
√
N
[
Jl I(2K+1)×(2K+1) Jr

] ∈ �(2K+1)×(2M+1)

T (φ) =

⎡⎣ Q (z) 0M×1

01×M 1
�Q

(
1
/
z
)
0M×1

⎤⎦ ∈ �(2M+1)×(M+1)

Q (z) = diag
(
z−M z - M + 1 · · · z−2 z−1

)
z = ejφ[

g (θ)
]
m = jM+1−mJM+1−m (kr sin θ) , m = 1, 2, · · ·M + 1

(22)

The vector �a1b (θ ,φ) represents the truncation errors

term and its element is the summation of jmJm(kr sin θ)
ejmj with M < |m| ≤ ∞. This term can be arbitrarily small
just by increasing M. The matrix Jl is a (2K+1) × (M-K)
matrix consisting of the M-K last columns of the unity
matrix I(2K+1) × (2K+1), whereas Jr is a (2K+1) × (M-K)
matrix consisting of the M-K first columns of the unity
matrix I(2K+1) × (2K+1). Π is the M × M anti-diagonal
matrix. Note that the expression of H in Equation 22 is
restricted to M < 3K+1 [8]. The expression of Equation 21
is equivalent to the one for beamspace manifold in [8].
Now we will extend this transformation to the case con-
sidering the mutual coupling.
We should note that [22]

Cm =
(N+1)/2∑
n=1

cnVn +
N∑

n=(N+1)/2+1
cN+2−nVn (23)

where V1 = I and Vn (n > 1) is the (n-1)th power of
the cyclic permutation operator given by

V =
[
0(N−1)×1 I(N−1)×(N−1)

1 01×(N−1)

]
(24)

Rewrite Equation 2 as

ã(θ ,φ) =
(N+1)/2∑
n=1

cnVna(θ ,φ) +
N∑

n=(N+1)/2+1
cN+2−nVna(θ ,φ) (25)

Using Vna(θ, j) = a(θ, j-2π(n-1)/N) and Equation 21
yields

WH
KV

na(θ ,φ) = HMnT (φ) g (θ) + �a1b

(
θ ,φ − 2π (n − 1)

N

)
(26)

where

Mn = diag
{
ej2πK(n−1)/N · · · 1 · · · e−j2πK(n−1)/N

}
. Hence,

Equation 18 can be re-expressed as

ãb (θ ,φ) = HMsT (φ) g (θ) + �̃a1b (θ ,φ) (27)

where Ms =
∑(N+1)/2

n=1 cnMn +
∑N

n=(N+1)/2+1 cN+2−nMn .

The corresponding truncation errors term �̃a1b (θ ,φ) is

expressed as

�̃a1b (θ ,φ) =
(N+1)/2∑
n=1

cn�a1b

(
θ ,φ − 2π (n − 1)

N

)

+
N∑

n=(N+1)/2+1
cN+2−n�a1b

(
θ ,φ − 2π (n − 1)

N

) (28)

Because of the symmetry of the mutual coupling coef-
ficients and the periodicity of ej2πK(n−1)/N , it is easy to
find that the diagonal elements of Ms is centro-symme-
try. If we neglect the truncation errors term, Equation
27 can be modeled as

ãb (θ ,φ) = HT (φ)
(
m 
 g (θ)

)
= HT (φ) g̃ (θ)

(29)

where g̃ (θ) = m 
 g (θ) and m is the first M+1 ele-
ments of the diagonal elements of Ms. “⊙” denotes the
Hadamard product of vectors. The beamspace steering
vector in the presence of mutual coupling for compact
UCAs [5,7] is a special case of the one for sparse UCAs
with H = I. Note that the components of g̃ (θ) in
Equation 29 have the same expression form with the
ones in [7] and different expression form from the ones
in [5].
Please also note that this transformation is able to be

extended to the case that the sparse UCAs are com-
posed of directional antenna elements. Recalling Equa-
tion 6, there is

wH
k ad(θ ,φ) =

1
N

+∞∑
m=−∞

jmJm (kr sin θ) ejmφ

N∑
n=1

gd (θ ,φ − γn) ej(k−m)γn (30)

In general, the element directional pattern gd(θ, j)
[21] can be expressed as

gd (θ ,φ) =
P∑

p=−P

ep (θ) ejpφ (31)

Then, Equation 30 can be expressed as

wH
k ad(θ ,φ) =

1
N

P∑
p=−P

+∞∑
m=−∞

jmJm (kr sin θ) ep (θ) ej(m+p)φ
N∑
n=1

ej(k−m−p)γn (32)

It is easy to find that

N∑
n=1

ej(k−m−p)γn =
{
N, if m + p = k + qN, q integer
0, otherwise

(33)

So that we finally get

wH
k ad(θ ,φ) = vk (θ) ejkφ+

∞∑
q=1

[vk+qN (θ) ej(k+qN)φ+vk−qN (θ) ej(k−qN)φ]
(34)
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where

vk (θ) =
P∑

p=−P

jk−pJk−p (kr sin θ) ep (θ) (35)

Similarly, we can get the beamspace manifold in the
presence of mutual coupling for arrays composed of
directional elements

ãb (θ ,φ) = HT (φ)
(
m 
 g (θ)

)
= HT (φ) g̃ (θ)

(36)

where g̃ (θ) = m 
 g (θ) and[
g (θ)

]
m = vM+1−m (θ)

=
P∑

p=−P

jM+1−m−pJM+1−m−p (kr sin θ) ep (θ)
(37)

Observing Equations 29 and 36, the beamspace mani-
folds for omni-directional elements and directional ele-
ments have the same expansion form with different
components of g(θ).
Replacing the beamspace steering vector by its factori-

zation (29) or (36), the MUSIC function becomes

fMUSIC (θ ,φ) = g̃H (θ)TH (φ)HHẼnẼ
H
nHT (φ) g̃ (θ) (38)

When N-D ≥ M+1 [4], this structure allows using a
rank reduction algorithm, named UCA-RARE. There-
fore, we can root the sample polynomial

P1 (z)
∣∣|z|=1 = det

{
TT
(
1
/
z
)
HHẼnẼ

H
nHT (z)

}
(39)

and then find the signal azimuth angle from roots of
(39), which are located closest to the unit circle. Note
that det{•} is the determinant of a matrix. Making use of
a well-known identity for block matrices

det
{[

A B
C D

]}
= det {A} det {D − CA−1B

}
= det {D}det {A − BD−1C

} (40)

which holds true for arbitrary matrices B, C, and non-

singular matrices A, D. Using ẼnẼ
H
n = I − ẼsẼ

H
s
, Equa-

tion 39 becomes

P1 (z)
∣∣|z|=1 = det

{
� − TT

(
1
/
z
)
HHẼsẼ

H
s HT (z)

}
= det

{[
I Ẽ

H
s HT (z)

TT
(
1
/
z
)
HHẼs �

]}
= det {�} det

{
I − Ẽ

H
s HT (z) �−1TT

(
1
/
z
)
HHẼs

} (41)

where Ψ = TT(1/z)HHHT(z). It is obvious that the
roots of det{Ψ}, which are also the roots of (39), are

only the spurious roots arising from the sparseness of
the array elements and independent of the received
data. Hence, a spatial spectrum function for the azimuth
estimation with sparse UCAs can be constructed as

P2 (z)
∣∣|z|=1 =

det
{
TT
(
1
/
z
)
HHẼnẼ

H
nHT (z)

}
det {�}

(42)

or

P2(z)||z|=1 = det{I − Ẽ
H
s HT(z)�−1TT(1/z)HHẼs} (43)

However, there may be common roots for det{Ψ} and

det
{
I − Ẽ

H
s HT (z) �−1TT

(
1
/
z
)
HHẼs

}
, which may be

the true roots. In order to avoid eliminating such roots,
it is better to use Equation 43 to acquire the azimuth
estimate. Notice that the original UCA-RARE algorithm,
based on the traditional beamspace transform, is a spe-
cial case of the modified UCA-RARE algorithm in this
study. For traditional beamspace transform, there is H =
I and det{Ψ} = 2M. Hence, the roots of Equation 43 are
equivalent to these of Equation 39 for original UCA-
RARE algorithm.
Similar to the Root-MUSIC roots, RARE roots enjoy

the so-called conjugate reciprocity property, i.e., if z0 is
a root of P2(z), then z̃0 = 1

/
z∗0 is also a root of P2(z).

Therefore, there are spurious estimates ji+π for ji <π
and ji-π for ji >π. Although there are still spurious esti-
mates (ji+ jj)/2 for the case of impinging sources with
the same elevation angle (θi = θj), we do not plan to
eliminate them in order to avoid cancelling the real root
at (ji+ jj)/2 when there is a source exactly at (ji+ jj)/2.
Besides all these spurious estimates, there may be other
spurious estimates introduced by the sparseness of the
array elements. However, all spurious estimates can be
eliminated in the final paired 2D DOA estimation by
the elevation estimate in the next step.

4.2. The elevation angle estimation
A specifically designed closed-form algorithm similar to
UCA-ESPRIT is proposed in the original UCA-RARE
algorithm [4] to obtain the elevation estimates. Although
it is a search-free implementation, there are some short-
comings that make it somewhat unsuitable for practical
application, which are presented in detail in [7]. Hence, we
apply for the Root-MUSIC algorithm via decomposing the
steering vector into the double Fourier series to estimate
the elevation angle. Note that the steering vector expan-
sion in the presence of mutual coupling for estimating the
elevation angle in this article differs from that in [5]. The
method in [5], which estimates the DOAs for compact
UCAs, is based on the open-circuit voltages of the antenna
elements expanded in spherical mode, whereas our
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method, in which the mutual coupling is calculated by the
proposed approach in [9], grounds on the manifold
decomposition. In [5], the steering vector is expanded into
a limited Fourier series of phase modes by considering a
general multiport antenna, carrying a current distribution
C(r, �, z) on the surface S of a cylinder with radius r and
height zmax. In our proposed method, the steering vector
is expanded into a limited Fourier series of phase modes
by considering an element on the surface of a unit sphere.
Moreover, the truncation degree in [5] is determined by
the radius r and height zmax together, while the one in our
proposed algorithm is only relative to r.
In [7], it shows that the variation of the receiving mutual

impedances with elevation angle is a process of gradual
change. It means that the receiving mutual impedances do
not vary with elevation angle significantly. The simulation
results in [6,7] have shown that estimating the elevation
angle with single-elevation-angle receiving-mutual-impe-
dance could achieve error accuracy around 1°. Therefore,
it is feasible to estimate the elevation angle using mutual
coupling compensated with single-elevation-angle receiv-
ing-mutual-impedance. We will estimate an initial eleva-
tion angle using the MCM obtained at θ = 45° first. Then
we can get a more accurate result with the MCM obtained
at the initial estimate.
When a(θ, j) is expanded as the second kind of

decomposition and b2(θ, j) is decomposed as Equation
14, the beamspace steering vector ab(θ, j) can be
expressed as

ab (θ ,φ) = WH
K�s

2b2 (θ ,φ)

= BCyDy (φ)Zed (θ) + �a2b (θ ,φ)
(44)

where B = WH
K �s

2 and �a2b (θ ,φ) represent the trun-

cation errors term of the second kind of decomposition.

The mth elements of �a2b (θ ,φ) is

[
�a2b (θ ,φ)

]
n =

4π

N

∞∑
l=L+1

l∑
m=−l

jljl (kr)Y
m
l (θ ,φ)

N∑
n=1

ejtγnYm∗
l

(π

2
, γn

)
(45)

where t = K+1-n. In the presence of mutual coupling,
the corresponding beamspace steering vector ãb (θ ,φ) ,
defined in Equation 18, is

ãb (θ ,φ) = WH
KCm�s

2b2 (θ ,φ)

= B̃CyDy (φ)Zed (θ) + �̃a2b (θ ,φ)
(46)

where B̃ = WH
KCm�s

2 and �̃a2b (θ ,φ) represent the

corresponding truncation errors term. The nth elements

of �̃a2b (θ ,φ) is

[
�̃a2b (θ ,φ)

]
n =

4π

N

∞∑
l=L+1

l∑
m=−l

jljl (kr)Y
m
l (θ ,φ)

·
⎛⎝(N+1)/2∑

q=1

cqejtγnYm∗
l

(π

2
, γn

)
+

N∑
q=(N+1)/2+1

cN+2−qejtγnYm∗
l

(π

2
, γn

)⎞⎠ (47)

If neglect the truncation errors term �̃a2b (θ ,φ) , the

beamspace MUSIC function becomes

fMUSIC (θ ,φ) = dH
(θ)ZH

e D
H
y (φ)CH

y B̃
H
ẼnẼ

H
n B̃CyDy (φ)Zed (θ) (48)

Apparently, this equation is a polynomial in w = ejθ for
each estimate azimuth angle ji. The Root-MUSIC algo-
rithm can be performed to obtain the elevation angle esti-
mates. A method, which extends the steering vector in the
elevation field from [0, π] to [0, 2π], is presented in [5] to
decrease the implementation times of the Root-MUSIC
algorithm. In fact, this method only considers the case
that there are only spurious estimate ji + π. This will
result in errors for ji >π whose spurious estimate is ji - π.
Hence, we prefer to perform Root-MUSIC algorithm for
each azimuth estimates separately rather than perform
Root-MUSIC algorithm with combining ji and ji + π.
Note that there are usually two optimal solutions θi and π
- θi for one azimuth angle ji due to sin θi = sin (π-θi).
This characteristic is determined by the symmetry of the
circular array’s manifold in the elevation range. The real
root should be located at (0, π/2] for a circular array. It is
clear that the following equation holds true for (θ, j):

b2 (θ ,φ) = CyDy (φ)Zed (θ)

= CyDy (φ + π)Zed (2π − θ)

= CyDy (φ − π)Zed (2π − θ)

(49)

That shows that the solutions to ji + π or ji - π are
2π-θ Î [3π/2, 2π] and 2π-(π-θ) = π+θ Î [π, 3π/2]. So,
this algorithm allows eliminating the spurious estimate
ji+π or ji-π automatically. Again the spurious estimates
(ji+jj)/2 and (ji+jj)/2+π can only keep one result if
there are sources with the same elevation angle (θi = θj).
Although all spurious azimuth estimates are considered,
we only reserve the paired DOAs (θi, ji) whose eleva-
tion estimates locate at [0, π/2]. The number of such
paired estimate (θi, ji) may be more than D. Hereby, it
is necessary to calculate the MUSIC function for every
paired estimate (θi, ji). Only the D smallest values of
the MUSIC function are considered as the final esti-
mates for the DOAs (θ, j).
For the sparse UCAs composed of directional antenna

elements, we could still execute the Root-MUSIC algo-
rithm. Recalling Equations 6 and 13, there is

[ad(θ ,φ)]n = gd (θ ,φ − γn) ejkr sin θ cos(φ−γn)

= 4πgd (θ ,φ − γn)

·
∞∑
l=0

l∑
m=−l

jljl (kr)Ym∗
l

(π

2
, γn

)
Ym
l (θ ,φ)

(50)

Then, the components of the sampling matrix
becomes[

�s]
n,t = 4π jljl (kr) gd (θ ,φ − γn)Y

m∗
l

(π

2
, γn

)
(51)
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Since the value of the azimuth angle has been esti-
mated, gd(θ, j-gn) is only a function of elevation angle θ

and can be labeled as gnd (θ) . Usually the direction pat-

tern gd(θ) is able to be expressed as a function of cos θ
and sin θ. We define w = ejθ. It is easy to get cos θ = (w
+w-1)/2 and sin θ = -j(w-w-1)/2. In such case, the beam-
space steering vector ãb (θ ,φ) has the same expansion
form as it is in Equation 46 but with different compo-
nents of the sampling matrix. It could sill be written as
a polynomial in w. Hence, the Root-MUSIC algorithm is
still able to be performed to estimate the elevation
angle.
The steps involved in the proposed hybrid algorithm

can be summarized below:

(1) Compute the sample covariance matrix

R̂ =
(
1
/
P
)∑P

p=1 x
(
p
)
xH

(
p
)
by averaging over P data

snapshots. Compute the beamspace covariance
matrix R̂b = WH

K R̂WK .

(2) Perform the eigenvalue decomposition of R̂b .

Form the matrix Ês and Ên , which spans the esti-
mated signal subspace and the noise subspace,
respectively.
(3) Obtain the azimuth angle estimates with Equa-
tion 43. All spurious azimuth estimates are reserved.
(4) For every reserved azimuth estimate, perform the
Root-MUSIC with the MCM obtained at θ = 45° to
find an initial elevation estimates. Since the location
of the real elevation angle is θ Î (0, π/2], except for
the case that there is a source exactly at ji + π or
ji-π, all spurious estimates ji+π or ji-π can be
eliminated automatically (see Equation 49). Then, we
perform the Root-MUSIC with the MCM obtained
at initial estimate to get a more accurate estimate.
(5) Calculate the MUSIC function for every paired
estimate (θi, ji). Take the paired estimates (θ, j)
corresponding to the D smallest values of the
MUSIC function as the final estimate.

5. The impact of the truncation errors on the
estimation accuracy
As discussed in Sections 3 and 4, the manifold decom-
position will introduce truncation errors. Here, a first-
order approximation of the bias based on manifold
decomposition is derived for sparse UCAs, and a thumb
rule to choose the truncate degree is presented.

The truncation errors terms �̃aib (θ ,φ) (i = 1, 2) in

Equations 28 and 47 are dependent on the DOAs (θ, j)
and truncation degree L or order M. Let’s consider a
sparse UCA with N = 11 monopoles tuned to f0 = 2.4
GHz. The radius is r = l. The monopole elements are

of equal length 3.13 cm and radius is 0.3 mm. All
monopole elements are loaded with a terminal load Z0

= 50Ω. The receiving mutual impedances shown in
Table 1 are calculated with receiving-mutual-impedance
method [9] for different elevation angles of an impinging

source. Figure 2 shows the value of
∥∥�̃aib (θ ,φ)

∥∥ (i = 1,

2) as a function of both azimuth angle j and elevation
angle θ for this UCA with L = M = �kr� = 7 . Notice that
it needs more than 15 elements for the traditional

beamspace transform. It is easy to see that
∥∥�̃a1b (θ ,φ)

∥∥
is always smaller than

∥∥�̃a2b (θ ,φ)
∥∥ when these two

kinds of decomposition are performed with the same
DOAs (θ, j) and truncation degree L or order M.∥∥�̃a1b (θ ,φ)

∥∥ decreases as the elevation angle changes

from 90°, while
∥∥�̃a2b (θ ,φ)

∥∥ varies over the elevation

angle and hold bigger for the angle near 0° and 90°.

Both
∥∥�̃a1b (θ ,φ)

∥∥ and
∥∥�̃a2b (θ ,φ)

∥∥ nearly have the

same value over the azimuth angle for a fixed elevation
angle.

5.1. Analysis of the bias in the azimuth angle estimation
As we know, we estimate the azimuth angle based on
the rank reduction theory. For the true ji, there is

0 = P2 (φi) = P1 (φi)

= det
{
I − Ẽ

H
s HT (φi)�−1TH (φi)HHẼs

}
= det

{
TH (φi)HHẼnẼ

H
nHT (φi)

} (52)

Let F (φi) = TH (φi)HHẼnẼ
H
nHT (φi) and the eigende-

composition of F(ji) is given by

F (φi) = Us�sUH
s +Un�nUH

n (53)

If there are mi sources with the same azimuth angle ji

and ni sources with the azimuth angle ji+π or ji-π,
then Σs denotes the diagonal matrix containing the D-
(mi+ni) non-zero eigenvalues and Σn contains the
remaining mi+ni zero eigenvalues [4,7]. The matrices Us

and Un in turn contain the corresponding eigenvectors,
respectively. Define a function

y (φi) =
mi+ni∑
q=1

uH
q F (φi)uq

=
mi+ni∑
q=1

uH
q T

H (φi)HHẼnẼ
H
nHT (φi)uq

(54)

where uq represents the qth columns of Un. Due to
the truncation errors, y(ji) ≠ 0 but y(ji) ≈ 0. An expres-
sion for the basis can be found by expanding the first
derivative of Equation 54 with respect to ji and

Xie et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:127
http://asp.eurasipjournals.com/content/2011/1/127

Page 8 of 18



evaluating at φ̂i . For small enough errors, we have
[16,17,23]:

0 = y′
(
φ̂i

)
≈ y′ (φi) + y′′ (φi)

(
φ̂i − φi

)
(55)

where φ̂i and ji are the estimated and true azimuth

angle and y′
(
φ̂i

)
�
(
∂y (φ)

/
∂φ
) ∣∣∣φ=φ̂i

. Let T’(j) ≜ ∂T

(j)/∂j and, similarly, T“(j) ≜ ∂T’(j)/∂j. The first deri-
vative of y(j) is

y′ (φ) =
mi+ni∑
q=1

2Re
{
uH
q T

H (φ)HHẼnẼ
H
nHT’ (φ)uq

}
(56)

where Re{•} stands for the real part of the argument
within the brackets. Similarly, the second derivative of y
(j) is yielded as

y′′ (φ) =
∂y′ (φ)

∂φ

=
mi+ni∑
q=1

2uH
q T’

H
(φ)HHẼnẼ

H
nHT’ (φ)uq

+
mi+ni∑
q=1

2Re
{
uH
q T

H (φ)HHẼnẼ
H
nHT” (φ)uq

}
(57)

By combining (55)-(57), the bias for the azimuth angle
estimates at angle ji can finally be computed from

φ̂i − φi ≈ − y′ (φi)

y′′ (φi)
(58)

5.2. Analysis of the bias in the elevation angle estimation
Similarly, an expression for the elevation estimation
basis can be found by expanding the first derivative of
Equation 48 with respect to θi and evaluating at θ̂i . For
small enough errors, there is [16,17,23]:

0 = f ′
(
θ̂i

)
≈ f ′ (θi) + f ′′ (θi)

(
θ̂i − θi

)
(59)

where θ̂i and θi are the estimated and true elevation

angle and f ′
(
θ̂i

)
�
(
∂f (θ)

/
∂θ
) ∣∣∣θ=θ̂i

. We define the vec-

tors d’(θ) = ∂d(θ)/∂θ and d“(θ) = ∂d’(θ)/∂θ. The first
derivative of f(θ) in Equation 48 with respect to θ is

f ′ (θ) = 2Re
{
d’H (θ)ZH

e D
H
y (φ)CH

y B̃
H
ẼnẼ

H
n B̃CyDy (φ)Zed (θ)

}
(60)

And the second derivative of f(θ) is given by

f ′′ (θ)

= 2d’H (θ)ZH
e D

H
y (φ)CH

y B
HẼnẼ

H
n BCyDy (φ)Zed’ (θ)

+2Re
{
dH

(θ)ZH
e D

H
y (φ)CH

y B
HẼnẼ

H
n BCyDy (φ)Zed” (θ)

} (61)

Combining (59)-(61), an expression of the bias for the
elevation angle estimates at angle θi can be finally writ-
ten as

θ̂i − θi ≈ − f ′ (θi)
f ′′ (θi)

(62)

In order to verify the approximation (58) and (62), we
perform Ne = 500 independent experiments using a
sparse UCA in Figure 2. In the simulation we used one
source with SNR = 25 dB and j = 200° moving in the

elevation range θ Î (0, π/2) since both
∥∥�a1b (θ ,φ)

∥∥
and

∥∥�a2b (θ ,φ)
∥∥ are highly dependent on the elevation

angle. Figure 3a shows the estimated MSE and the
approximated MSE computed from Equation 58 with
different M for the azimuth estimation. The approxi-

mated bias follows the trend of
∥∥�a1b (θ ,φ)

∥∥ . However,

for the estimation, it works badly when the elevation
angle is near 0° and 90°. That is, because the estimate
azimuth angles can be any value when the elevation

angle is 0° and
∥∥�̃a1b (θ ,φ)

∥∥ is large when the elevation

angle is near 90°. In fact, the bias computed from Equa-
tion 58 can be approximately expressed as a function of
the truncation errors when there is only one source (see
Appendix). Because the truncation errors are very small
when the elevation angle is near 0° (see Figure 2), the

Table 1 The receiving mutual impendence at different elevation angles of impinging sources

Elevation Z12 Z13 Z14 Z15 Z16

10° i*11.7873+4.5314 -2.4943-i*8.9404 i*6.3951+1.4430 -i*4.3664-1.1790 i*3.3245+0.7546

20° i*11.8023+4.4814 -2.5015-i*8.9513 i*6.3998+1.4395 -i*4.3638-1.1815 i*3.2703+0.7552

30° i*11.8237+4.4157 -2.5233-i*8.9649 i*6.4139+1.4288 -i*4.3570-1.1989 i*3.2342+0.7563

40° i*11.8401+4.3538 -2.5602-i*8.9711 i*6.4369+1.4101 -i*4.3487-1.2203 i*3.2053+0.7578

50° i*11.8519+4.3054 -2.6118-i*8.9714 i*6.4659+1.3819 -i*4.3375-1.2510 i*3.1950+0.7586

60° i*11.8583+4.2649 -2.6728-i*8.9617 i*6.4929+1.3353 -i*4.3190-1.3035 i*3.1834+0.7595

70° i*11.8629+4.2227 -2.7281-i*8.9483 i*6.5087+1.3001 -i*4.3032-1.3261 i*3.1755+0.7609

80° i*11.8663+4.1837 -2.7606-i*8.9472 i*6.5152+1.2800 -i*4.2933-1.3392 i*3.1676+0.7618

90° i*11.8654+4.1721 -2.7682-i*8.9458 i*6.5202+1.2780 -i*4.2900-1.3435 i*3.1557+0.7621

Xie et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:127
http://asp.eurasipjournals.com/content/2011/1/127

Page 9 of 18



(a)

(b)
Figure 2

∥∥�̃aib (θ ,φ)
∥∥ (i = 1, 2) over azimuth angle j and elevation angle θ for a sparse UCA : (a)

∥∥�̃a1b (θ ,φ)
∥∥ and (b)∥∥�̃a2b (θ ,φ)

∥∥ .
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approximated MSEs are small too. It seems like that the
azimuth estimate accuracy does not increase when the
truncated order M increase in the whole elevation angle
range. Hence, the truncated order M can be M = �kr� .
Figure 3b presents the estimated MSE and the approxi-
mated MSE computed from Equation (62) with different

L for the elevation estimation. In this example, we only

consider the influence of
∥∥�a2b (θ ,φ)

∥∥ on the estimate

accuracy. Therefore, we use the real azimuth angle j =
200° to estimate the elevation angle. It shows that the
approximation calculated from Equation 62 describes
the bias with high fidelity. And the elevation angle

(a)

(b)
Figure 3 The estimated MSE and the approximated MSE for different truncated order and degree versus different elevation angle: (a)
MSE and CRB for azimuth angle and (b) MSE and CRB for elevation angle.
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estimate accuracy is enhanced when L increases. Hence,
in order to obtain good estimate accuracy, a reasonable
criterion to determine the truncated degree L could be

L = min

{
l

∥∥∥∥∥l < 2 �kr� ,
∣∣jl (kr)∣∣
j max

< ε

}
(63)

where j max = max
{∣∣jl (kr)∣∣ , l ≤ 2 �kr�} and the pre-

determined ε is related to the truncated accuracy.

6. Simulations
A sparse UCA of radius r = l with N = 11 is employed
in all experiments. The distance between each elements
is 0.5635l. The signals and noise in our simulations are
assumed to be stationary, zero mean, and uncorrelated
Gaussian random processes. Noise is both spatially and
temporally white. The truncation order M is 7. In order
to reduce the impact of the truncation errors on the
estimate accuracy, the truncation degree here is L = 13
for ε = 0.001. The first example shows the spurious azi-
muth estimates of the original UCA-RARE. We consider
the case of two impinging uncorrelated sources at (θ1,
j1) = (10°, 40°) and (θ2, j2) = (30°, 150°). The SNR = 20
dB is quoted per source per array element. Figure 4
depicts the root distributions nearby the unit circle for
Equations 39 and 43. As shown in Figure 4a, except for
the true azimuth roots 40° and 150° and their corre-
sponding spurious roots 220° and 330°, many other
spurious roots introduced by the sparseness of the array
element will appear if we employ the original UCA-
RARE algorithm. Although the final estimates (θ, j)
may be obtained by calculating the MUSIC function, the
computational cost due to solving the Root-MUSIC for
every azimuth estimate will increase. Therefore, it is bet-
ter to use the modified UCA-RARE (see Equation 43).
In the second example, one source with SNR = 25 dB

and j = 140° is used to move in the elevation range θ Î
(0, π/2). Two kinds of MCM, one obtained at θ = 45°
and the other obtained at the accurate elevation angle,
are employed to estimate the elevation angle. Sample
statistics are computed from 500 independent trials. The
root-mean-square-errors (RMSEs) and Cramer Rao
Bounds (CRB) of the elevation estimate are shown in
Figure 5. Although the result for the method with the
MCM obtained at θ = 45° is a little inferior to the one
with elevation-dependent MCM, the estimate difference
for them is below 1°. It shows that it is feasible to get
the elevation-dependent MCM by using the MCM
obtained at θ = 45° first to obtain an initial estimate.
In the third example, the case of three impinging

uncorrelated sources at (θ1, j1) = (25°, 60°), (θ2, j2) =
(25°, 120°), and (θ3, j3) = (50°, 330°) are considered. The
SNR = 20 dB is quoted per source per array element.

Figure 6a shows all azimuth roots distributions nearby
the unit circle computed via Equation 43. Except the
spurious azimuth estimates 60°+180° = 240°, 120°+180°
= 300°, 330°-180° = 150°, (60°+120°)/2 = 90°, and 90°
+180° = 270°, we can find other spurious azimuth esti-
mates caused by the sparseness of the array element in
Figure 6a. Figure 6b depicts the corresponding elevation
estimates distributions nearby the unit circle. It is easy
to find that only the roots for the true azimuth esti-
mates ji are nearest by the circle and locate at [0, π/2].
The elevation estimates roots for the spurious azimuth
estimates 240°, 300°, and 150° are also very close to the
circle, but locate at [π, 2π]. The elevation estimates
roots corresponding to the spurious azimuth estimates
90° and 270° are quite close to the unit circle and other
spurious elevation estimates are all outside the unit cir-
cle. Hence, the spurious azimuth estimates 240°, 300°,
and 150° can be eliminated automatically in the imple-
mentation of Root-MUSIC via judging their correspond-
ing elevation estimates roots location. For the reserved
paired DOAs (θi, ji) whose elevation roots locate at [0,
2π], besides to determine the final DOAs via computing
the MUSIC function, here another approach is provided
via judging the distance of elevation roots from the unit
circle. We can consider the estimates corresponding to
D roots located closest to the unit circle as the final
estimates.
The fourth example shows the performance of the

proposed algorithm and MUSIC algorithm for different
SNR levels. Sample statistics are computed from 500
independent trials. Two signals arrive at the array from
two equal power sources from directions (θ1, j1) = (10°,
20°) and (θ2, j2) = (30°, 60°), respectively. The SNR level
is varied from 0 to 35 dB and is quoted per source per
array element. For MUSIC algorithm, the DOA esti-
mates are obtained by searching the highest local peaks
over the 2D MUSIC spectrum. While for the proposed
algorithm, the DOA estimates are found by implement-
ing two computationally efficient rooting algorithms
(the modified UCA-RARE and the Root-MUSIC algo-
rithm). Here, the search step for MUSIC algorithm in
both elevation and azimuth direction is 0.01°. The
RMSEs plots of estimated DOAs and CRBs are shown
in Figure 7. It is observed that the RMSEs of the esti-
mates for the proposed algorithm and MUSIC algorithm
follow the trend of the corresponding CRBs. The aver-
age Matlab-runtime to estimate the DOAs by the pro-
posed algorithm is 0.78 s (simulated on a 2.8-GHz Intel
Core i5 CPU and 2.99 G Ram), whereas the average
Matlab-runtime to estimate the DOAs by the traditional
search of the 2D MUSIC spectrum is 7.43 s. However,
the estimated results for the proposed algorithm are
comparable to the ones for MUSIC algorithm.
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The last example is used to examine the capability of
the proposed algorithm to estimate the DOAs of the
closely spaced signals. Two uncorrelated sources with
DOAs (θ1, j1) = (20°, 100°) and (θ2, j2) = (20°+δ, 100°

+δ) are considered. The SNR = 25 dB is quoted per
source per array element. Again the results are based on
500 independent trials. The DOA of the second source
is varied as δ increases from 2° to 30°. For each angle

(a)

(b)
Figure 4 The azimuth estimated roots distribution nearby the unit circle: (a) roots for the original UCA-RARE and (b) roots for the modified
UCA-RARE.
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separation the proposed and the MUSIC algorithms are
applied to obtain the DOA estimates of the two imping-
ing signals. The CRBs and RMSEs of the estimate values
are shown in Figure 8. For smaller separation angles the
accuracy decreases dramatically. The mean bias is smal-
ler than 1° for both two sources when separation angle
is larger than 2°. Here, L = 13 for ε = 0.001 and the
truncation error of the second kind of manifold decom-
position can be nearly neglected for the proposed algo-
rithm. The elevation angle estimation results for both
algorithms are comparable. The truncation order is M =
7 for the first kind of manifold decomposition. Its corre-
sponding truncation error for the second source
becomes larger along with the increase of the separation
angle δ (see Section 5). Such truncation error could
impact the DOA estimation accuracy for the proposed
algorithm. Moreover, the azimuth estimates for the pro-
posed algorithm are obtained without the exact knowl-
edge of the mutual coupling. For MUSIC algorithm,
there is no truncation error and the mutual coupling is
compensated accurately. Hence, the azimuth angle esti-
mation results for the proposed algorithm is a little
inferior to the ones for MUSIC here.

7. Conclusions
Several algorithms for DOA estimation with UCAs are
based on the traditional beamspace transform, which
requires a sufficiently large number of elements to
avoid aliasing in the steering vector of the mode space.
Sometimes there may be a smaller number of antenna
elements for application. We propose a new approach

to estimate 2D DOAs for such UCAs. Two kinds of
manifold decompositions are applied as the foundation
of the proposed algorithm. In the first step, a modified
sparse UCA-RARE is performed for the azimuth esti-
mates. This step can be realized without the exact
knowledge of elevation angle. It is proved by means of
the Jacobi-Anger expansion (a decomposition of the
element manifold into phase modes) that the sparse
UCA-RARE is still applicable with a limited number of
array elements. In the second step, the Root-MUSIC
algorithm is used to obtain the elevation estimates via
decomposing the manifold with Bauer’s formula (an
expansion of the array manifold into a double Fourier
series). The influence of the truncation errors on the
DOA estimate accuracy is analyzed and a method to
choose the truncated degree for the elevation estimates
is presented. Simulation results show that the proposed
algorithm for sparse UCA can obtain good azimuth
angle and elevation angle estimate results. The next
challenge is to find a computational efficient method
to handle the sparse UCAs with much wider inter-ele-
ment spacing.

Appendix
Recalling Equation 42, the following equation holds true

UH
n T

H (φi)HHẼnẼ
H
nHT (φi)Un = 0 (64)

Let θ1
k (k = 1,..., mi) is the elevation angle of the mi

sources with the same azimuth angle ji and θ2
p (p = 1,...,

ni) is the elevation angle of the ni sources with the

Figure 5 The RMSEs and CRB of elevation estimate versus different elevation angle.
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(a)

(b)
Figure 6 The estimated roots distribution for the proposed algorithm: (a) roots of azimuth estimates and (b) roots of elevation estimates.
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azimuth angle ji+π or ji-π. There are

g̃H
(
θ1
k

)
TH (φi)HHẼnẼ

H
nHT (φi) g̃

(
θ1
k

)
= 0 (65)

and

g̃H
(
θ2
p

)
TH (φi ± π)HHẼnẼ

H
nHT (φi ± π) g̃

(
θ2
p

)
= g̃H

(
θ2
p

)
DH

π T
H (φi)HHẼnẼ

H
nHT (φi)Dπ g̃

(
θ2
p

)
= 0

(66)

where Dπ = diag
(
ejMπ ej(M−1)π · · · 1 ) . Define

G2 =
[
g̃
(
θ2
p

)
· · · g̃ (θ2

ni

) ]
, G2 =

[
g̃
(
θ2
p

)
· · · g̃ (θ2

ni

) ]
,

and G = [G1 DπG2]. With G and Un spanning the same
subspace, there exists a full rank matrix
L ∈ �(mi+ni)×(mi+ni) allowing Un = GL. Hence, there is

uq = Glq (67)

(b) 

(a) 

Figure 7 The RMSEs and CRBs of 2D DOA estimates versus SNR level: (a) RMSEs and CRB of the elevation estimates and (b) RMSEs and
CRB of the azimuth estimates.
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where Iq represents the qth columns of L. Substituting
Equation 67 in Equations 56 and 57, we get

y′ (φ) =
mi+ni∑
q=1

2Re
{
lHq G

HT’H (φ)HHẼnẼ
H
nHT (φ)Glq

}
(68)

and

y′′ (φ) =
∂y′ (φ)

∂φ

=
mi+ni∑
q=1

2lHq G
HT’H (φ)HHẼnẼ

H
nHT’ (φ)Glq

+
mi+ni∑
q=1

2Re
{
lHq G

HT”H (φ)HHẼnẼ
H
nHT (φ)Glq

}
(69)

When mi+ni = 1, Equations 68 and 69 can be
expressed as

y′ (φ) = 2|li|2Re
{̃
g(θ)HT’H (φ)HHẼnẼ

H
nHT (φ) g̃ (θ)

}
(70)

and

y′′ (φ) =
∂y′ (φ)

∂φ

= 2|li|2g̃(θ)HT’H (φ)HHẼnẼ
H
nHT’ (φ) g̃ (θ)

+2|li|2Re
{̃
g(θ)HT”H (φ)HHẼnẼ

H
nHT (φ) g̃ (θ)

} (71)

Due to the truncation errors, there is

ẼnẼ
H
n ãb (θ ,φ) = ẼnẼ

H
n

(
HT (φ) g̃ (θ) + �̃a1b (θ ,φ)

)
= 0 .

Hence, ẼnẼ
H
nHT (φ) g̃ (θ) = −ẼnẼ

H
n �̃a1b (θ ,φ) and Equa-

tion 70 can be expressed as

y′ (φ) = −2|li|2Re
{̃
g(θ)HT’H (φ)HHẼnẼ

H
n �̃a1b (θ ,φ)

}
(72)

(a)
 

(b)  
Figure 8 The RMSEs and CRBs of 2D DOA estimates versus the separation angle δ: (a) RMSEs and CRB of the elevation estimates and (b)
RMSEs and CRB of the azimuth estimates.
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Because ẼnẼ
H
nHT (φ) g̃ (θ) ≈ 0 , the first term in Equa-

tion 60 is far greater than the second term. Thus, Equa-
tion 58 can be approximately expressed as

φ̂i − φi ≈ −
Re
{̃
g(θ)HT’H (φ)HHẼnẼ

H
n �̃a1b (θ ,φ)

}
g̃(θ)HT’H (φ)HHẼnẼ

H
nHT’ (φ) g̃ (θ)

(73)
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