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Denoising algorithm for the 3D depth map
sequences based on multihypothesis motion
estimation
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Abstract

This article proposes an efficient wavelet-based depth video denoising approach based on a multihypothesis
motion estimation aimed specifically at time-of-flight depth cameras. We first propose a novel bidirectional block
matching search strategy, which uses information from the luminance as well as from the depth video sequence.
Next, we present a new denoising technique based on weighted averaging and wavelet thresholding. Here we
take into account the reliability of the estimated motion and the spatial variability of the noise standard deviation
in both imaging modalities. The results demonstrate significantly improved performance over recently proposed
depth sequence denoising methods and over state-of-the-art general video denoising methods applied to depth
video sequences.
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1 Introduction
The impressive quality of user perception of multimedia
content has become an important factor in the electro-
nic entertainment industry. One of the hot topics in this
area is 3D film and television. The future success of 3D
TV crucially depends on practical techniques for the
high-quality capturing of 3D content. Time-of-flight
sensors [1-3] are a promising technology for this
purpose.
Depth images also have other important applications

in the assembly and inspection of industrial products,
autonomous robots interacting with humans and real
objects, intelligent transportation systems, biometric
authentication and in biomedical imaging, where they
have an important role in compensating for unwanted
motion of patients during imaging. These applications
require even better accuracy of depth imaging than in
the case of 3D TV, since the successful operation of var-
ious classification or motion analysis algorithms depends
on the quality of input depth features.
One advantage of TOF depth sensors is that their suc-

cessful operation is less dependent on a scene content

than for other depth acquisition methods, such as dis-
parity estimation and structure from motion. Another
advantage is that TOF sensors directly output depth
measurements, whereas other techniques may estimate
depth indirectly, using intensive and error-prone com-
putations. TOF depth sensors can achieve real-time
operation at quite high frame rates, e.g. 60 fps.
The main problems with the current TOF cameras are

low resolution and rather high noise levels. These issues
are related to the way the TOF sensors work. Most
TOF sensors acquire depth information by emitting
continuous-wave (CW) modulated infra-red light and
measuring the phase difference between the sent (refer-
ence) and received light signals. Since the modulation
frequency of the emitted light is known, the measured
phase directly corresponds to the time of flight, i.e., the
distance to the camera.
However, TOF sensors suffer from some drawbacks

that are inherent to phase measurement techniques. The
first group of depth image quality enhancement meth-
ods aims at correction of systematic errors of TOF sen-
sors and correcting distortions due to non-ideal optical
system, as in [4-7]. In this article, we address the most
important problem related to TOF sensors, which limits
the precision of depth measurements: signal dependent
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noise. As shown in [1,8], noise variance in TOF depth
sensors, among other factors, depends on the intensity
of the emitted light, the reflectivity of the scene and the
distance of the object in the scene.
A large number of methods have been proposed for

spatio-temporal noise reduction in TOF images and
similar imaging modalities, based on other 3D scanning
techniques. Techniques based on non-local denoising
[9,10] were applied to sequences acquired using the
structured light methods. For a given spatial neighbour-
hood, they find the most similar spatio-temporal neigh-
bourhoods in other parts of the sequence (e.g., earlier
frames) and then compute a weighted average of these
neighbourhoods, thus achieving noise reduction. Other
non-local techniques, specifically aimed at TOF cameras
have been proposed in [8,11,12]. These techniques use
luminance images as a guidance for non-local and
cross-bilateral filtering. The authors of [12-14] present a
non-local technique for simultaneous denoising and up-
sampling of depth images.
In this article, we propose a new method for denoising

depth image sequences, taking into account information
from the associated luminance sequences. The first
novelty is in our motion estimation, which takes into
account information from both imaging modalities and
accounts for spatially varying noise standard deviation.
Moreover, we define reliability to this estimated motion
and we adapt the strength of temporal denoising
according to the motion estimation reliability. In parti-
cular, we use motion reliabilities derived from both
depth and luminance as weighting factors for motion
compensated temporal filtering.
The use of luminance images brings us multiple bene-

fits. First, the goal of existing non-local techniques is to
find other similar observations in other parts of the
depth sequence. However, in this article, we look for
observations both similar in depth and luminance. The
underlying idea here is to average multiple observations
of the same object segments. As luminance images have
many more textural features than depth images, the
located matches can be better in quality, which
improves the denoising. Moreover, the luminance image
is less noisy, which facilitates the search for similar
blocks. We have confirmed this experimentally by calcu-
lating peak signal-to-noise ratio (PSNR) of depth and
luminance measurements, using ground truth images
obtained by temporal averaging of the 200 static frames.
Typically, depth images acquired by SwissRanger camera
have PSNR values of about 34-37 dB, while PSNR values
of luminance are about 54-56 dB. Theoretical models
from [15] also confirm that noise variance in depth is
larger than noise variance in luminance images.
The article is organized as follows: In Section 2, we

describe the noise properties of TOF sensors and a

method for generating the ground truth sequences, used
in our experiments. In Section 3, we describe the pro-
posed method. In Section 4, we compare the proposed
method experimentally to various reference methods in
terms of visual and numerical quality. Finally, Section 5
concludes the article.

2 Noise characteristics of TOF sensors
TOF cameras illuminate the scene by infra red light
emitting diodes. The optical power of this modulated
light source has to be chosen based on a compromise
between image quality and eye safety; the larger the
optical power, the more photoelectrons per pixel will be
generated, and hence the higher the signal-to-noise ratio
and therefore the accuracy of the range measurements.
On the other hand, the power has to be limited to meet
safety requirements. Due to the limited optical power,
TOF depth images are rather noisy and therefore rela-
tively inaccurate. Equally important is the influence of
the different reflectivity of objects in the scene, which
reduce the reflected optical power and increase the level
of noise in the depth image. Interferences can also be
caused by external sources of light and multiple reflec-
tions from different surfaces.
As shown in [16,17], the noise variance and therefore

the accuracy of the depth measurements depends on the
amplitude of the received infra red signal as

�L =
L√
8

·
√
B

2 · A , (1)

where A and B are the amplitude of the reflected sig-
nal and its offset, L the measured distance and ΔL the
uncertainty on the depth measurement due to noise. As
the equation shows, the noise variance, and therefore
the depth accuracy ΔL is inversely proportional to the
demodulation amplitude A.
In terms of image processing, ΔL is proportional to

the standard deviation of the noise in the depth images.
Due to the inverse dependence of ΔA on the detected
signal amplitude A and the fact that A is highly depen-
dent on the reflectance and distance of objects, the
noise variance in the depth scene is highly spatially vari-
able. Another effect contributing to this variability is
that the intensity of the infra-red source decreases with
the distance from the optical axis of the source. Conse-
quently, the depth noise variance is higher at the bor-
ders of the image, as shown in Figure 1.

2.1 Generation a “noise-free” reference depth image
The signal-to-noise ratio of static parts of the scene (w.r.
t. the camera) can be significantly improved through
temporal filtering. If n successive frames are averaged,
the noise variance will be reduced by a factor n. While
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this is of limited use in dynamic scenes, we exploit this
principle to generate an approximately noise free refer-
ence depth sequence of a static scene captured by a
moving camera.
Each frame in the noise-free sequence is created as

follows: the camera is kept static and 200 frames of the
static scene are captured and temporally averaged.
Then, the camera is moved slightly and the procedure is
repeated, resulting in the second frame of the reference
depth sequence. The result is an almost noise free
sequence, simulating a static scene captured by a mov-
ing camera. This way we simulate translational motion
of the camera. If the reference “noise-free” depth
sequence contains k frames, k × 200 frames should be
recorded.

3 The proposed method
The proposed method is depicted schematically in Fig-
ure 2. The proposed algorithm operates on a buffer
which contains a given fixed number of depth and lumi-
nance frames.
The main principle of the proposed multihypothesis

motion estimation algorithm is shown in Figure 3.
The motion estimation algorithm estimates the
motion of blocks in the middle frame, F(t). The
motion is determined relative to the frames F(t - k),...,

F(t - 1), F(t + 1),..., F(t + k), where 2k + 1 is the size
of the frame buffer. To achieve this, reference frame F
(t) is divided into rectangle 8 × 8 pixels blocks. For
each block in the frame F(t), a motion estimation
algorithm searches neighbouring frames for a certain
number of candidate blocks most resembling the cur-
rent block from F(t). For each of the candidate blocks,
the motion estimation algorithm computes a reliability
measure for the estimated motion. The idea of the uti-
lization of motion estimation algorithms for collecting
highly correlated 2D patches in a 3D volume and
denoising in 3D transform domain was first intro-
duced in [18]. A similar idea of multiframe motion
compensated filtering, entirely in the pixel domain
was first presented in [19].
The motion estimation step is followed by the wavelet

decomposition step and by motion compensated filter-
ing, which is performed in the wavelet domain, using a
variable number of motion hypotheses (depending on
their reliability) and data dependent weighted averaging.
The weights used for temporal filtering are derived from
the motion estimation reliabilities and from the noise
standard deviation estimate. The remaining noise is
removed using the spatial filter from [20], which oper-
ates in wavelet domain and uses luminance to restore
lost details in the corresponding depth image.

Figure 1 Noise in depth images is highly spatially variable.
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3.1 The multihypothesis motion estimation method
The most successful video denoising methods use both
temporal and spatial correlation of pixel intensities to sup-
press noise. Some of these methods are based on finding a
number of good predictions for the currently denoised
pixel in previous frames. Once found, these temporal pre-
dictions, termed motion-compensated hypotheses are aver-
aged with the current, noisy pixel itself to suppress noise.
Our proposed method exploits the temporal redun-

dancy in depth video sequences. It also takes into
account that a similar context is more easily located in
the luminance than in the depth image.
Each frame F(t) in both the depth and the luminance

is divided into 8 × 8 non-overlapping blocks. For each

block in the frame F(t), we perform a three-step search
algorithm from [21] within some support region Vt-1.
The proposed motion estimation algorithm operates

on a buffer containing multiple frames (typically 7).
Instead of finding one best candidate that minimizes the
given cost function, here we determine N candidates in
the frame F(t - 1) which yield the N lowest values of the
cost function. Then, we continue with the motion esti-
mation for each of the N best candidates found in the
frame F(t - 1) by finding their N best matches in the
frame F(t - 2). We continue the motion estimation this
way until the end of the buffer is reached. This way, by
only taking into account the areas that contain the
blocks most similar to the current reference block, the

depth buffer

luminance buffer

joint multihypothesis
   motion estimation

wavelet transform

temporal
 filtering

 spatial
filtering

Figure 2 General description of the proposed denoising approach.

Figure 3 Multiframe motion estimation.
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search space is significantly reduced, compared to a full
search in every frame: instead of searching the area of
24 × 24 pixels in the frames F(t - 1) and F(t + 1) and
area of 40 × 40 pixels in the frames F(t - 2) and F(t + 2)
and ((24 + 2 × 8 × k) × (24 + 2 × 8 × k) pixels in the
frames F(t - k) and F(t + k), the search algorithm we use
[21] is limited to the areas of 242Nc pixels, which brings
significant speed-ups. Formally, the set of N-best motion
vectors V̂i is defined for each block Bi in the frame F (t)
as:

V̂i = {v̂n}n=1..N , (2)

where each motion vector candidate v̂n from the
frame F (t - dt) is obtained by minimizing:

ri(vn) =
∑
j∈Bi

|F(j, t) − F(j − vn, t − dt)|, (3)

where dt ≤ Nf. In other words, for each block Bi in the
frame F(t) we search for the blocks in the frames F(t -
Nf),..., F(t - 1), F(t + 1),..., F(t + Nf) which maximize the
similarity measure between blocks.
Since the noise in depth images has a non-constant

standard deviation, and some depth details are some-
times masked by noise, estimating the motion based on
depth only is not very reliable. However, the luminance
image typically has a good PSNR and has a stationary
noise characteristics. Therefore, in most cases we rely
more on the luminance image, especially in areas where
the depth image has poor PSNR. In the case of noisy
depth video frames, we can write

f(l) = g(l) + n(l), (4)

where f(l), g(l) and n(l) are the vectors containing
noisy, noise-free pixels and noise realizations at the
location l, respectively. Each of these vectors contains
pixels of both the depth and the luminance frame at
spatial position l. We define the displaced frame differ-
ence for each pixel inside blocks Bi in the frames F(t), F
(t - 1) as

r(l, v(l), t) = [g(l − v(l), t − 1) − g(l, t)]

+[n(l − v(l), t − 1) − n(l, t)],
(5)

where r(l, v(l), t) is the vector that contains the dis-
placed frame differences for the depth and luminance
pixels, in the frame t, at the spatial location l. Now we
consider a block of P pixels. We group all the displaced
pixel differences for the luminance and the depth block
B in a 1 × 2P vector rB(l, v) defined as

rB(l, v) = [rD(k1, v) · · · rD(kP, v)) rL(k1, v) · · · rL(kP , v))]T , (6)

where rD(ki, v) and rL(ki, v) are the values of displaced
pixel differences in depth and luminance at locations ki
inside block B. Then, we estimate the set of N best
motion vectors v by maximizing the posterior probabil-
ity p(rB(l, v)) of the candidate motion vector as

v̂ = argmax
v∈V

p(rB(l, v)), (7)

where V is the set of all possible motion vectors,
excluding vectors that are previously found as best
candidates.
The authors of [22] propose the use of a Laplacian

probability density function to model the displaced
frame differences. In the case of noise-free video
frames, the displaced frame difference image typically
contains a small number of pixels with large values
and a large number of pixels whose values are close to
zero. However, in the presence of noise in the depth
and luminance frames, displaced frame differences for
both luminance and depth are dominated by noise.
Large areas in the displaced frame difference image
with values close to zero now contain noisy pixels as
shown in Figure 4. Since the noise in the depth sensor
is highly spatially variable, it is important to allow a
non-constant noise standard deviation. We start from
the model for displaced pixel differences in the pre-
sence of noise from [23] and extend it to a multivari-
ate case (i.e. the motion is estimated using both
luminance and depth).
If we denote the a posteriori probability given multiva-

lued images F(t) and F(t - dt) as P(v(t)|F(t), F(t - dt)),
from Bayes’s theorem we have

P(v(t)|F(t), F(t − dt)) =
P(F(t)|v(t), F(t − dt))P(v(t)|F(t − dt))

P(F(t)|F(t − dt))
, (8)

where F(t) and F(t - dt) are the frames containing
depth and luminance values for each pixel and v(t) is
the motion vector between the frames F(t) and F(t - dt).
The conditional probability that models how well the
image F(t) can be described by the motion vector v(t)
and the image F(t - dt) is denoted by P(F(t)|v(t), F(t -
dt)). The prior probability of the motion vector v(t) is
denoted by P(v(t)|F(t - dt)). We replace the probability
P(F(t)|F(t - dt)) by a constant since it is not a function
of the motion vector v(t) and therefore does not affect
the maximization process over v.
From Equations 4 and 8, and simplifying assumptions

that the noise is additive Gaussian with variable stan-
dard deviation, and that the pixels inside the block are
independent, the conditional probability P(F(t)|v(t), F(t -
dt)) can be approximated as
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P(F(t)|v(t), F(t − dt)) = exp(
2∑
c=1

1
2(ν2c + σ 2

c )

P∑
p=1

[F(l, t) − F(l − v, t − dt)]2)

= exp(
1

2(ν2L + σ 2
L )

P∑
p=1

[FL(l, t) − FL(l − v, t − dt)]2

+
1

2(ν2D + σ 2
D)

P∑
p=1

[FD(l, t) − FD(l − v, t − dt)]2),

(9)

where ν2D and ν2L are the variances of depth and lumi-

nance blocks and σ 2
L and σ 2

D are noise variances in the

depth and the luminance images, respectively, l is the
vector containing spatial coordinates of the current
block, v is the motion vector of the current block, and
FL and FD denote the luminance and the depth compo-
nents of F. Variances of the displaced pixel differences
contain two components: one due to the random noise
and the other due to the motion compensation error.
The variance due to the additive noise is derived from
the locally estimated noise standard deviation in the
depth image and from the global estimate of the noise
standard deviation in the luminance image. The use of
the variance as a reliability measures for motion estima-
tion in noise-free sequences was studied in [22,24].
A motion vector field can be modelled as a Gibbs ran-

dom field, similar to [25]. We adopt the following model
here for the prior probability of motion vector v:

P(v(t)|F(t − dt)) ≈ exp(−U(v(t)|F(t − dt))), (10)

where U is an energy function. We impose a local
smoothness constraint on the variation of motion vec-
tors by using the energy function, which assigns a smal-
ler probability to the motion vectors that differ
significantly from vectors in their spatio-temporal neigh-
bourhood. We assume that a true motion vector may be
very different from some of its neighbouring motion
vectors, but it must be similar to at least one of its
neighbouring motion vectors. For each of the candidate
motion vectors, we define the energy function as the
minimal difference of the current motion vector and its
neighbouring best motion vectors:

U(v|F(t − dt)) =
1

2σ 2
v

||v − vi||2, i ∈ Nv, (11)

where σ 2
v is the variance of the difference inside

neighbourhood Nv . The spatial neighbourhood Nv of
the motion vector contains four motion vectors denoted
as {n1, n2, n3, n4} in the neighbourhood of the current
block as shown in Figure 3. Note that we choose multi-
ple best motion vectors for each block. For the energy
function calculation, we take four best motion vectors
and not all the candidates. By substituting the

Figure 4 Joint histogram of displaced frame differences.
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expression for the energy function in Equation 8, we
obtain the expression for our reliability to motion esti-
mation as

P(v|F(t), F(t − dt)) =
1
K
exp(−U(v(t)|F(t − dt))

− 1

2(ν2L + σ 2
L )

P∑
p=1

[FL(l, t) − FL(l − v, t − dt)]2

− 1

2(ν2D + σ 2
D)

P∑
p=1

[FD(l, t) − FD(l − v, t − dt)]2).

(12)

This means that the motion vectors should produce
small compensation errors in both depth and luminance
(data term) and they should not differ much from the
neighbouring motion vectors (regularization term). If we
denote the set of all possible motion vector candidates
as V and assume that

∑
v∈V P(v|F(t), F(t − dt)) = 1 , we

obtain

K =
∑
v∈V

exp
(−U(v(t)|F(t − dt))

− 1

2(ν2L + σ 2
L )

P∑
p=1

[FL(l, t) − FL(l − v, t − dt)]2

− 1

2(ν2D + σ 2
D)

P∑
p=1

[FD(l, t) − FD(l − v, t − dt)]2

⎞
⎠ .

(13)

Therefore, each of the motion hypotheses for the
block in the central frame is assigned a reliability mea-
sure, which depends on the compensation error and the
similarity of the current motion hypothesis to the best
motion vectors from its spatial neighbourhood. The rea-
son we introduce these penalties is that the motion
compensation error grows with the temporal distance
and the amount of texture in the sequence. From the
previous equations, it can be concluded that the current
motion vector candidate v is not reliable if it is signifi-
cantly different from all motion vectors in its neighbour-
hood. Motion compensation errors of motion vectors in
uniform areas are usually close to the motion compen-
sation error of the best motion vector in the neighbour-
hood. However, in the occluded areas, estimated motion
vectors have values which are inconsistent with the best
motion vectors in their neighbourhood. Therefore, the
motion vectors in the occluded areas usually have low a
posteriori probabilities and thus low reliabilities.

3.2 The proposed temporal filter
In this section, we describe a new approach for temporal
filtering along the estimated motion trajectories. The
strength of the temporal filtering depends on the relia-
bility of estimated motion.
The proposed temporal filtering is performed on all

noisy wavelet bands of depth ŝD(k, t) as follows:

ŝD(k,T) =

T+w2∑

t=T−w
2

∑
h∈H

α(h, t)sD(h, t), (14)

where ŝD(k,T) is the temporally filtered version of the
depth wavelet band at the location k of the frame that is
in the middle of the temporal buffer. Furthermore, sD(h,
t) is the depth wavelet coefficient from the frame F(t) at
the location h.
The amount of filtering is controlled through the

weighting factors a(t, h), which depend on reliability of
the motion estimation defined in Equation 12. Weight-
ing factors derived from conditional probabilities are
also used in [23] for motion-compensated de-interlacing
and in [26] for distributed video coding purposes. In the
ideal case, motion estimation would be performed per
wavelet band and reliabilities derived accordingly. Here
we use same motion vectors for all wavelet bands, and
calculate the reliability for each wavelet band separately,
which can be justified by the fact that motion is unique.
The weights in their final form are derived from Equa-

tion 12 by substituting the pixel values with the values
of the wavelet coefficients at the same location:

α(t, h) = P(v|s(t), s(h, t − dt)), (15)

where s(t) denotes the block of wavelet coefficients in
the frame t, s(h, t - dt) denotes the motion hypothesis h
in the frame t - dt and H denotes the set of the motion
hypothesis for the current block. P(v|s(t), s(h, t - dt))
has the form given in Equation 12.
We estimate the noise level by assuming that the

noise variance at the location k is related to the inverse
of the signal amplitude as sk = cn/A.
An important novelty is that we introduce a variable

number of temporal candidate blocks used for denoising
the block in the frame Ft variable. Using all the blocks
within the support region of the size ws, Vt, t = T -ws/
2,..., T + ws/2 for weighted averaging may cause some
disturbing artefacts, especially in the case of occlusions
and scene changes. In these cases, it is not possible to
find blocks similar enough to the currently denoised
block, which may cause over-smoothing or motion blur
of details in the image. To prevent this, we only take
into account the blocks whose average differences with
the currently denoised block are smaller than some pre-
determined threshold Dmax.
We relate this maximum distance to the local estimate

of the noise at the current location in the depth
sequence and the motion reliability. The noise standard
deviation in the luminance image is constant for the
whole image. Moreover, it is much smaller than the
noise standard deviation in the depth image. We found
experimentally that a good choice for the maximum
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difference is Dmax
l = 3.5σl + 0.7νl . By introducing the

local noise standard deviation into threshold Dmax, we
are taking into account the fact that even if we find a
perfect match of the current block within the previous
frame F(t - 1), it will differ from the current block in
the frame F(t), due to the noise.
The proposed temporal filtering is also applied on the

low pass band of the wavelet decomposition of both
sequences, but in a slightly different manner. In the case
of the low pass wavelet band, we set the smoothing
parameter to the local variance of noise at location l.
The value of the smoothing parameter for the low pass
wavelet band is less than for high pass wavelet bands,
since the low pass band already contains much less
noise due to the spatial low pass filtering. In this way,
we address the appearance of low-frequency artefacts
present in the regions of the sequence that contain less
texture.
The amount of noise is significantly reduced after the

proposed temporal filter. To suppress the remaining
noise, we use our earlier method for the denoising of
static depth images [20].
This method first performs wavelet transform on both

depth and amplitude images. Then, we perform the cal-
culation of anisotropic spatial indicators using sums of
absolute values of wavelet coefficients from both ima-
ging modalities (i.e. the depth and the luminance). For
each location, we choose the orientation which yields
the biggest value of the sum. Based on values of spatial
indicators, wavelet coefficients and locally estimated
noise variance, we perform wavelet shrinkage of depth
wavelet coefficients. The shape of input-output charac-
teristics of the estimator is shown in Figure 5. It can be
seen that the shape of the input-output characteristics
of the estimator adapts to current values of the wavelet
coefficients of both imaging modalities and correspond-
ing spatial indicators, by shrinking depth wavelet coeffi-
cients less in the case of large values of the current
luminance wavelet coefficient and its corresponding
spatial indicator. In the opposite case of small values
of luminance wavelet coefficients and corresponding
spatial indicators, depth wavelet coefficients are shrunk
more, since there is no evidence in either modality that
there is an edge at the current location. Adaptation to
the local noise variance is achieved by simultaneously
changing thresholds for the depth and the luminance.
Since the initial value of the noise variance in depth is
significantly reduced after temporal filtering, we propose
to use a modified initial estimate of the noise variance.
The variance of the residual noise in the temporally
filtered frame is calculated using the initial estimates
of noise standard deviation prior to temporal denois-
ing and weights used for temporal filtering as:

σ 2
r =

∑
t=1..T

∑
h=1..H α(t, h)2σ (t, h)2. The spatial method

adapts to the locally estimated noise variance. Using this
spatial filtering, the PSNR of the method is improved by
0.4-0.5 dB.

3.3 Basic complexity estimates
In this subsection, we analyse the computational com-
plexity of the proposed algorithm. Motion estimation
algorithm is performed over 7 depth and luminance
frames, in a 24 × 24 pixels search window, on 8 × 8
pixel blocks. The main difference compared to classical
gray-scale motion estimation algorithms is that the pro-
posed algorithm calculates similarity metrics in both
depth and luminance images, which doubles the number
of arithmetical operations. In total,

12Nblocks
∑Nf /2

t=1 Nt
cN

2
s N

2
b

arithmetical operations are

needed during the motion estimation step, where Nc = 2
is the number of the best motion candidates Nf = 7 is
the number of frames, t is a time instant, Ns = 24 size
of the search window, Nb is the size of the motion esti-
mation block and Nblocks is the number of blocks in the
frame. Then, we perform the wavelet transform and
motion compensated temporal filtering in the wavelet
domain. This step requires NblocksN2

bNt arithmetical
operations in total to calculate filtering weights and
NblocksN2

bNt additions to perform filtering, where Nt is

a total number of candidates which participate in
filtering.
Finally, spatial filtering step requires (4 + (2K + 1)2)L

additions, 6L subtractions, 3L divisions and 4L multipli-
cations per image, locations, where K is the window size
and L is the number of image pixels.
Compared to the method of [27], the number of

operations performed in a search step is approximately
the same, since we calculate similarity measures using
two imaging modalities and choose a set of best candi-
date blocks, while in [27] search is performed twice,
using only depth information, first time on noisy depth
pixels and second time on hard-thresholded depth esti-
mates. Similarly, the proposed motion compensated fil-
tering does not add much overhead, since filtering
weights are calculated during the motion estimation
step. In total, number of the operations performed by
the proposed algorithm and the method from [27] is
comparable.
The processing time for the proposed technique was

approximately 0.23 s per frame and 0.2 s per frame for
[27] on a system based on Intel Core i3, 2.14 GHz pro-
cessor with 4 GB RAM. We have implemented the
search operation as a Matlab mex-file, while filtering
was implemented as a Matlab script. The method of
[27] was implemented as a Matlab mex file.
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4 Experimental results
For the evaluation of the proposed method, we use both
real sequences acquired using the Swiss Ranger SR3100
camera [28] and “noise-free” depth sequences acquired
using ZCam 3D camera [29] with artificially added noise
that approximates the characteristics of the TOF sensor
noise.
To simulate the noise in the Swiss Ranger sensor, we

add noise proportional to the inverse value of the ampli-
tude. Since the luminance image of the Swiss Ranger
camera is different from the amplitude image, we obtain
the amplitude image from the luminance image by
dividing it by the square of the distance from the scene
and multiplying it by a constant [20]. Once the ampli-
tude image is obtained, we add noise to the depth image
whose standard deviation for pixel l is proportional to
the inverse of the received amplitude for that location.
The example of the frames with simulated noise from
the TOF sensor is shown in Figures 6 and 7.
We evaluate the proposed algorithm on two sequences

with artificially added noise, namely “Interview” and
“Orbit”, and three sequences acquired using a Swiss
Ranger SR3100 TOF camera. In the proposed approach,
we use two levels of the non-decimated wavelet decom-
position and Daubechies db4 wavelet.
We compare our approach with the block-wise non-

local temporal denoising approach for TOF images of
[10] and one of the best performing video denoising
methods today VBM3D [27] using objective video qual-
ity measures (PSNR and MSE) and visual quality com-
parison. Quantitative comparisons of the reference
methods are shown in Figures 8 and 9. Average PSNR
for tested schemes are given in Table 1. The results in
Figures 6 and 7 demonstrate that the proposed approach
outperforms the other methods in terms of visual qual-
ity. The main reason for this is that the proposed
method adapts the strength of spatio-temporal filtering

to the local noise standard deviation, while the other
methods assume a constant noise standard deviation in
the whole image. The noise standard deviation, required
as an input parameter for the method of [27], is esti-
mated using the median of residuals noise estimator
from [30], denoted as “Case1” in Figures 10 and 11. In
this case, the estimated standard deviations of noise for
“Orbit” and “Interview” sequences are 10.01 and 10.47,
respectively. We also investigate the case when the noise
standard deviation input parameter is equal to the maxi-
mum value of the noise variance in the depth frame, i.e.
20, denoted as “Case2” in Figures 10 and 11. In this
case, noise is completely removed from frames, at the
expense of preserved details. The visual evaluation of
the proposed and reference methods is shown in Figures
6b. and 7b. We can observe that the method from [10]
removes noise uniformly in all regions. However, it
tends to leave block artefacts in the image, due to its
block-wise operation in the pixel domain. Some other
fine details, like the nose, the lips, the eyes and the
hands of the policeman in Figure 7 are also lost after
denoising. If we observe Figures 6c and 7c, which show
the results of [27], one can see that the details in the
image are well preserved. However, one notices that the
noise there is not uniformly removed, because the
method of [27] assumes video sequences with stationary
noise. Another drawback is that a certain amount of
block artefacts is present around the silhouettes of the
policemen.
On the other hand, the proposed method preserves

details more effectively (see the details of the face in
“Interview” sequence). Furthermore, the surface of the
table is much better denoised and closer to the noise
free frame than in the case of the reference methods.
Similarly, the mask and the objects behind in “Orbit”
are much better preserved, while the noise is uni-
formly removed. The boundaries of the object are
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Figure 5 An illustration of the proposed estimator functional dependence on luminance indicator and noisy coefficient value for two
different viewing angles.
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also preserved rather well, and do not contain the
blocking artefacts as in the case of block-wise non-
local temporal denoising. In the other scenario, we
set the value of the input noise variance for [10,27] to
the maximum local value of the estimated noise var-
iance. Noise is now thoroughly removed. However,
the sharp transitions in the depth image are severely
degraded.

Finally, we evaluate the proposed algorithm on
sequences obtained using the Swiss Ranger TOF sen-
sor. All sequences used for the evaluation of the
denoising algorithm were acquired using the following
settings: the integration time was set to 25 ms, and the
modulation frequency to 30 MHz. The depth
sequences were recorded in controlled indoor condi-
tions in order to prevent any outliers in depth images

(a) (b)

(c) (d)

(e) (f)

Figure 6 (a) 10th frame of the noisy “Orbit” sequence, (b) frame denoised using method from [10], (c) the result of [27]with noise level
estimated using [30], (d) the result of [27]with noise standard deviation set to the maximal standard deviation of noise (equal to 20),
(e) the result of the proposed method, (f) the reference noise free frame.
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and the offset in the intensity image due to sunlight.
All post processing algorithms of the camera were
turned off. Noisy depth sequences which we use in the
experiments are generated by choosing depth frames
whose PSNR is median value of the PSNR values of
each of the 200 frame sets. Values of PSNR for
denoised sequences created using the Swiss Ranger
TOF sensor are shown in Figures 10, 11 and 12, while

visual comparisons of results are shown in Figures 13
and 14.
We also compare 3D visualizations of the results pro-

duced by different methods. Figure 15 shows the visuali-
zations of the noisy point cloud, reference noise-free
point cloud, point cloud denoised using the method of
[27], and the point cloud denoised using the proposed
spatially adaptive algorithm. The point cloud is

(a) (b)

(c) (d)

(e) (f)

Figure 7 (a) 10th frame of the noisy “Interview” sequence, (b) frame denoised using method from [10], (c) result of [27]with noise
level estimated using [30], (d) the result of [27]with noise standard deviation set to the maximal standard deviation of noise (equal to
20), (e) frame denoised using the proposed method, (f) noise free frame.
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represented by a regular triangle mesh, with the per face
textures. As can be seen in Figure 15, z-coordinates of
points from noisy point cloud differ significantly from
the mean value represented by noise free image, which
causes visual discomfort when displayed on 3D displays.
The point cloud denoised using [27] contains much less
variance than the noisy point cloud, especially in back-
ground, but in the regions that have higher noise var-
iance, like the hair of the woman, noise is still
significant. It can be easily seen by observing Figure 15
that the point cloud denoised using our method
removes almost all unwanted variations caused by noise
from flat parts, while preserving fine details in range
intact. Similar conclusions can be drawn after observing
anaglyph 3D visualizations shown in Figure 16. Residual
noise creates occlusions in both images and certain geo-
metry distortion in the case where noise is not removed
uniformly. On the other hand, the proposed method

removes noise uniformly without excessive blurring of
edges, which creates visually plausible 3D images.
As in the previous cases, we compare the proposed

method with the method of [27] for video sequences
and with the method of [10] for denoising point clouds
generated using structured light approach. The compari-
son is performed using objective measures and visually.
The PSNR values of the different methods are shown in
Figure 10. A visual comparison of the proposed methods
is shown in Figure 13. The methods used for compari-
son [10,27] take a noise standard deviation as an input
parameter. To provide these algorithms with the noise
variance estimate, we used the median of residuals noise
estimator from [30]. We can see from Figure 10 that the
proposed method performs better than methods of
[10,27] in all frames of the sequence. This is clearly visi-
ble in Figure 13, especially at the borders of the images,
where other methods fail to remove the noise of higher
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Figure 8 PSNR values for the “Orbit” sequence.
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intensity, while the proposed method removes noise in
these regions quite successfully. Moreover, the edges of
the books on the shelf, small surfaces like chairs and cir-
cular object in the shelf are better preserved than when
denoised with the reference methods.

5 Conclusions and future work
In this article, we have presented a method for removing
spatially variable and signal dependent noise in depth
images acquired using a depth camera based on the
time-of-flight principle. The proposed method operates
in the wavelet domain and uses multi hypothesis motion
estimation to perform temporal filtering. One of the
important novelties of the proposed method is that the
motion estimation is performed on both depth and
luminance sequences in order to improve the accuracy
of the estimated motion. Another important novelty is
that we use motion estimation reliabilities derived from
both the depth and the luminance to derive coefficients
for motion compensated filtering in wavelet domain.
Finally, our temporal noise suppression is locally adap-
tive, to account for the non-stationary character of the
noise in depth sensors.
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Figure 9 PSNR values for the “Interview” sequence.

Table 1 Average PSNR values of the proposed and the
reference algorithms in dB

Algorithm/
sequence

“Interview” “Orbit” “Bookshelf” “Room” “Flower”

Proposed 41.31 40.27 41.93 45.06 39.02

VBM3D [27]
case 1

38.08 38.17 38.90 40.12 37.07

VBM3D [27]
case 2

40.30 38.42 39.93 42.88 36.08

NL means
[10]

36.44 36.74 39.35 42.09 37.75
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Figure 12 PSNR values for the “Room” sequence.

(a) (b)

(c) (d)

(e)

Figure 13 8-th frame of the “Bookshelf” sequence: (a) noisy frame, (b) noise-free frame, (c) sequence denoised using method from
[10], (d) sequence denoised using method from [27], (e) sequence denoised using the proposed method.
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We have evaluated the proposed algorithm on several
depth sequences. The results demonstrate improvement
in this application over some of the best available depth
and video sequences denoising algorithms ([10,27])
In future work, we will investigate GPU-based imple-

mentation and motion estimation with a variable block
size.

(a) (b)

(c) (d)

(e)

Figure 14 17-th frame of the “Flower” sequence: (a) noisy
frame, (b) noise-free frame, (c) sequence denoised using
method from [27], (d) sequence denoised using method from
[10], (e) sequence denoised using the proposed method.

(a) (b)

(c) (d)

Figure 15 3D rendering of the 5th frame of the “Interview” sequence: (a) noisy frame, (b) noise-free frame, (c) sequence denoised
using method from [27], (d) sequence denoised using the proposed method.

(a) (b)

(c) (d)

Figure 16 Anaglyph 3D visualization of the 5th frame of the
“Interview” sequence: (a) noisy frame, (b) noise-free frame, (c)
sequence denoised using method from [27], (d) sequence
denoised using the proposed method.
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