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multiple-access fading channels in wireless sensor
networks–optimal and suboptimal estimators
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Abstract

We study optimal and suboptimal decentralized estimators in wireless sensor networks over orthogonal multiple-
access fading channels in this paper. Considering multiple-bit quantization for digital transmission, we develop
maximum likelihood estimators (MLEs) with both known and unknown channel state information (CSI). When
training symbols are available, we derive a MLE that is a special case of the MLE with unknown CSI. It implicitly
uses the training symbols to estimate CSI and exploits channel estimation in an optimal way and performs the
best in realistic scenarios where CSI needs to be estimated and transmission energy is constrained. To reduce the
computational complexity of the MLE with unknown CSI, we propose a suboptimal estimator. These optimal and
suboptimal estimators exploit both signal- and data-level redundant information to combat the observation noise
and the communication errors. Simulation results show that the proposed estimators are superior to the existing
approaches, and the suboptimal estimator performs closely to the optimal MLE.

Keywords: Decentralized estimation, maximum likelihood estimation, fading channels, wireless sensor network

1 Introduction
Wireless sensor networks (WSNs) consist of a number
of sensors deployed in a field to collect information, for
example, measuring physical parameters such as tem-
perature and humidity. Since the sensors are usually
powered by batteries and have very limited processing
and communication abilities [1], the parameters are
often estimated in a decentralized way. In typical WSNs
for decentralized estimation, there exists a fusion center
(FC). The sensors transmit their locally processed obser-
vations to the FC, and the FC generates the final estima-
tion based on the received signals [2].
Both observation noise and communication errors

deteriorate the performance of decentralized estimation.
Traditional fusion-based estimators are able to minimize
the mean square error (MSE) of the parameter estima-
tion by assuming perfect communication links (see [3]
and references therein). They reduce the observation
noise by exploiting the redundant observations provided
by multiple sensors. However, their performance

degrades dramatically when communication errors can-
not be ignored or corrected. On the other hand, various
wireless communication technologies aiming at achiev-
ing transmission capacity or improving reliability do not
minimize the MSE of the parameter estimation. For
example, although diversity combining reduces the bit
error rate (BER), it requires that the signals transmitted
from multiple sensors are identical, which is not true in
the context of WSNs due to the observation noise at
sensors. This motivates to optimize estimator at the FC
under realistic observation and channel models, which
minimizes the MSE of parameter estimation.
The bandwidth and energy constraints are two critical

issues for the design of WSNs. When the strict band-
width constraint is taken into account, the decentralized
estimation when the sensors only transmit one bit for
each observation, that is, using binary quantization, is
studied in [4-9]. When communication channels are
noiseless, a maximum likelihood estimator (MLE) is
introduced and optimal quantization is discussed in [4].
A universal and isotropic quantization rule is proposed
in [6], and adaptive binary quantization methods are
studied in [7,8]. When channels are noisy, the MLE in
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additive white Gaussian noise (AWGN) channels is stu-
died and several low complexity suboptimal estimators
are derived in [9]. It has been found that the binary
quantization is sufficient for decentralized estimation at
low observation signal-to-noise ratio (SNR), but more
bits are required for each observation at high observa-
tion SNR [4].
When the energy constraint and general multi-level

quantizers are considered, various issues of the decen-
tralized estimation are studied under different channels.
When communications are error free, the quantization
at the sensors is designed in [10-12]. The optimal trade-
off between the number of active sensors and the quan-
tization bit rate of each sensor is investigated under
total energy constraint in [13]. In binary symmetrical
channels (BSCs), the power scheduling is proposed to
reduce the estimation MSE when the best linear
unbiased estimator (BLUE) and a quasi-BLUE, where
quantization noise is taken into account, are used at the
FC [14]. Nonetheless, to the best of the authors’ knowl-
edge, the optimal decentralized estimator using multi-
ple-bit quantization in fading channels is still
unavailable. Although the MLE proposed in AWGN
channels [9] can be applied for fading channels if the
channel state information (CSI) is known at the FC, it
only considers binary quantization.
Besides the decentralized estimation based on digital

communications, the estimation based on analog com-
munications receives considerable attentions due to the
important conclusions drawn from the studies for the
multi-terminal coding problem [15,16]. The most popu-
lar scheme is amplify-and-forward (AF) transmission,
which is proved to be optimal in quadratic Gaussian
sensor networks under multiple-access channels (MACs)
with AWGN [17]. The power scheduling and energy
efficiency of AF transmission are studied under AWGN
channels in [18], where AF transmission is shown to be
more energy efficient than digital communications.
However, in fading channels, AF transmission is no
longer optimal in orthogonal MACs [19-21]. The outage
laws of the estimation diversity with AF transmission in
fading channels are studied in [20] and [21] in different
asymptotic regimes. These studies, especially the results
in [19], indicate that the separate source-channel coding
scheme is optimal in fading channels with orthogonal
multiple-access protocols, which outperforms AF trans-
mission, a simple joint source-channel coding scheme.
In this paper, we develop optimal and suboptimal

decentralized estimators for a deterministic parameter
considering digital communication. The observations of
the sensors are quantized, coded and modulated, and
then transmitted to the FC over Rayleigh fading ortho-
gonal MACs. Because the binary quantization is only

applicable at low observation SNR levels [4,13], a gen-
eral multi-bit quantizer is considered.
We strive for deriving MLEs and feasible suboptimal

estimator when different local processing and communi-
cation strategies are used. To this end, we first present a
general message function to represent various quantiza-
tion and transmission schemes. We then derive the
MLE for an unknown parameter with known CSI at the
FC.
In typical WSNs, the sensors usually cannot transmit

too many training symbols for the receiver to estimate
channel coefficients because of both energy and band-
width constraints. Therefore, we will consider realistic
scenarios that the CSI is unknown at the FC when no
or only a few training symbols are available. It is known
that channel information has a large impact on the
structure and the performance of decentralized estima-
tion. In orthogonal MACs, most of the existing works
assume that perfect CSI is available at the FC. Recently,
the impact of channel estimation errors on the decen-
tralized detection in WSNs is studied in [22], and its
impact on the decentralized estimation when using AF
transmission is investigated in [23]. However, the decen-
tralized estimation with unknown CSI for digital com-
munications has still not been well understood.
Our contributions are summarized as follows. We

develop the decentralized MLEs with known and
unknown CSI at the FC over orthogonal MACs with
Rayleigh fading. The performance of the MLE with
known CSI can serve as a practical performance lower
bound of the decentralized estimation, whereas the
MLE with unknown CSI is more realistic. For the spe-
cial cases of error-free communications or noiseless
observations, we show that the MLEs degenerate into
the well-known centralized fusion estimator–BLUE–or
a maximal ratio combiner (MRC)-based estimator
when CSI is known and a subspace-based estimator
when CSI is unknown. This indicates that our estima-
tors exploit both data-level redundancy and signal-level
redundancy provided by multiple sensors. To provide
feasible estimator with affordable complexity, we pro-
pose a suboptimal algorithm, which can be viewed as a
modified expectation-maximization (EM) algorithm
[24].
The rest of the paper is organized as follows. Section 2

describes the system models. Section 3 presents the
MLEs with known and unknown CSI and their special
cases, and Section 4 introduces the suboptimal estima-
tor. In Section 5, we analyze the asymptotic perfor-
mance and complexity of the presented MLEs and
discuss the codebook issue. Simulation results are pro-
vided in Section 6, and the conclusions are given in Sec-
tion 7.
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2 System model
We consider a typical kind of WSNs that consists of N
sensors and a FC to measure an unknown deterministic
parameter θ, where there are no inter-sensor communi-
cations among the sensors. The sensors process their
observations for the parameter θ before transmission. For
digital communications, the processing includes quanti-
zation, channel coding and modulation. For analog com-
munications, the processing may simply be amplifying
the observations before transmission. A messaging func-
tion c(x) is used to describe the local processing. Though
we can use c(x) for both digital and analog communica-
tion systems, we focus on digital transmission since the
popular analog transmission scheme, AF, has been
shown to be not optimal in fading channels [19-21].

2.1 Observation model
The observation for the unknown parameter provided
by the ith sensor is

xi = θ + ns,i, i = 1, . . . ,N, (1)

where ns, i is the independent and identically distribu-
ted (i.i.d.) Gaussian observation noise with zero mean
and variance σ 2

s , and θ is bounded within a dynamic
range [-V, +V].

2.2 Quantization, coding, and modulation
We use the messaging function c(x)|ℝ ® ℂL to repre-
sent all the processing at the sensors including quantiza-
tion, coding and modulation, which maps the
observations to the transmit symbols. To facilitate analy-
sis, the energy of the transmit symbols is normalized to
1, that is,

c(x)Hc(x) = 1, ∀x ∈ R. (2)

We consider uniform quantization by regarding θ as a
uniformly distributed parameter. Uniform quantization
is the Lloyd-Max quantizer that minimizes the quantiza-
tion distortion of uniformly distributed sources [25,26].
For an M-level uniform quantizer, define the dynamic
range of the quantizer as [-W, +W], and then all the
possible quantized values of the observations can be
written as

Sm = m� − W, m = 0, . . . ,M − 1, (3)

where Δ = 2W/(M - 1) is the quantization interval.
The observations are rounded to the nearest Sm, so

that c(x) is a piecewise constant function described as

c(x) =

⎧⎨
⎩
c0,
cm,
cM−1,

−∞ < x ≤ S0 + �
2

Sm − �
2 < x ≤ Sm + �

2
SM−1 − �

2 < x < +∞
, (4)

where cm = [cm,1, ..., cm, L]
T is the L symbols corre-

sponding to the quantized observation Sm, m = 0, ..., M
- 1.
Under the assumption that W is much larger than the

dynamic range of θ, the probability that |xi|>W can be
ignored. Then, c(x) is simplified as

c(x) = cm, Sm − �

2
< x ≤ Sm +

�

2
. (5)

Define the transmission codebook as

Ct = [c0, . . . , cM−1] ∈ CL×M, (6)

which can be used to describe any coding and modu-
lation scheme following the M-level quantization.
The sensors can use various codes such as natural

binary codes to represent the quantized observations. In
this paper, our focus is to design decentralized estima-
tors; therefore, we will not address the transmission
codebook optimization for parameter estimation.

2.3 Received signals
Since we consider orthogonal MACs, the FC can per-
fectly separate and synchronize to the received signals
from different sensors. Assume that the channels are
block fading, that is, the channel coefficients are invar-
iant during the period that the sensors transmit L sym-
bols representing one observation. After matched
filtering and symbol-rate sampling, the L received sam-
ples corresponding to the L transmitted symbols from
the ith sensor can be expressed as

yi =
√
Edhic(xi) + nc,i, i = 1, . . . ,N, (7)

where yi = [yi,1, ..., yi, L]
T, hi is the channel coefficient,

which is i.i.d. and subjected to complex Gaussian distri-
bution with zero mean and unit variance, nc, i is a vec-
tor of thermal noise at the receiver subjecting to
complex Gaussian distribution with zero mean and cov-
ariance matrix σ 2

c I, and Ed is the transmission energy for
each observation.

3 Optimal estimators with or without CSI
In this section, we derive MLEs when CSI is known or
unknown at the receiver of the FC, respectively. To
understand how they deal with both the communication
errors and the observation noises, we study two special
cases. The MLE using training symbols in the transmis-
sion codebook is also studied as a special form of the
MLE with unknown CSI.

3.1 MLE with known CSI
Given θ, the received signals from different sensors are
statistically independent. If the CSI is known at the
receiver of the FC, the log-likelihood function is
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log p(Y|h, θ) =
N∑
i=1

log p(yi|hi, θ)

=
N∑
i=1

log

⎛
⎝ +∞∫

−∞
p(yi|hi, x)p(x|θ)dx

⎞
⎠ ,

(8)

where Y = [y1, ..., yN], h = [h1, ..., hN]
T is the channel

coefficients vector, and p(x|θ) is the conditional prob-
ability density function (PDF) of the observation given θ.
Following the observation model shown in (1), we have

p(x|θ) = 1√
2πσs

exp

(
−(x − θ)2

2σ 2
s

)
. (9)

According to the received signal model shown in (7),
the PDF of the received signals given CSI and the obser-
vation of the sensors is

p(yi|hi, x) =
1

(πσ 2
c )

L exp
(

−‖ yi −
√Edhic(x) ‖22

σ 2
c

)
,(10)

where ||z||2 = (zHz)1/2 is l2 norm of vector z.
Substituting (9) and (10) into (8), we obtain the log-

likelihood function for estimating θ, which can be used
for any messaging function c(x), no matter when it
describes analog or digital communications.
For digital communications, c(x) is a piecewise con-

stant function as shown in (4). To simplify the analysis,
we use its approximate form shown in (5) in the rest of
this paper. After substituting (5) into (10) and then to
(8), we have

log p(Y|h, θ) =
N∑
i=1

log

(
M−1∑
m=0

p(yi|hi, cm)p(Sm|θ)
)
, (11)

where p(yi|hi, cm) is the PDF of the received signals
given the CSI and the transmitted symbols of the sen-
sors, which is

p(yi|hi, cm) =
1

(πσ 2
c )

L exp
(

−‖ yi −
√Edhicm ‖22
σ 2
c

)
,(12)

and p(Sm|θ) is the probability mass function (PMF) of
the quantized observation given θ, which is

p(Sm|θ) = Q

(
Sm − �

2 − θ

σs

)
− Q

(
Sm + �

2 − θ

σs

)
, (13)

where Q(x) = 1√
2π

∫∞
x exp

(
− t2

2

)
dt.

The MLE is obtained by maximizing the log-likelihood
function shown in (11).

3.1.1 Special case when σ 2
s → 0

When the observation SNR tends to infinity, the obser-
vations of the sensors are perfect, that is, xi = θ, ∀i = 1,
..., N. The PDF of the observation xi given θ degrades to

p(x|θ) = δ(x − θ), (14)

where δ(x) is the Dirac-delta function.
In this case, the log-likelihood function for both ana-

log and digital communications has the same form,
which can be obtained by substituting (14) into (8).
After ignoring all terms that do not affect the estima-
tion, the log-likelihood function is simplified as

log p(Y|h, θ) = −
N∑
i=1

‖ yi −
√Edhic(θ) ‖22

σ 2
c

, (15)

where c(θ) is the transmitted symbols when the obser-
vations of the sensors are θ.
For digital communications, c(θ) is a code word of Ct

and is a piecewise constant function. Therefore, we can-
not get θ by taking partial derivative of (15). Instead, we
first regard c(θ) as the parameter to be estimated and
obtain the MLE for estimating c(θ). Then, we use it as a
decision variable to detect the transmitted symbols and
reconstruct θ according to the quantization rule with
the decision results.
The log-likelihood function in (15) is concave with

respect to (w.r.t.) c(θ), and its only maximum is
obtained by solving the equation ∂ log p(Y|h, θ)/∂c(θ) =
0, which is

ĉ(θ) =
1√Ed
∑N

j=1 |hi|2
N∑
i=1

h∗
i yi. (16)

It follows that when the observations are perfect, the
structure of the MLE is the MRC concatenated with
data demodulation and parameter reconstruction. This
is no surprise since in this case, all the signals trans-
mitted by different sensors are identical; thus, the recei-
ver at the FC is able to apply the conventional diversity
technology to reduce the communication errors.
3.1.2 Special case when σ 2

c → 0
When the communications are perfect, yi =

√Edhicmi. It
means that yi merely depends on cmi or equivalently
depends on Smi. Then, the log-likelihood function
becomes a function of the quantized observation Smi.
The log-likelihood function with perfect communica-

tions becomes

log p(Y|h, θ) → log p(S|h, θ) =
N∑
i=1

log

(
Q

(
Smi − �

2 − θ

σs

)
− Q

(
Smi +

�
2 − θ

σs

))
, (17)
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where S = [Sm1 , . . . , SmN ]
T.

By taking the derivative of (17) to be 0, we obtain the
likelihood equation

N∑
i=1

exp

(
− (Smi−

�
2 −θ)

2

2σ 2
s

)
− exp

(
− (Smi−

�
2 −θ)

2

2σ 2
s

)

Q
(

(Smi−
�
2 −θ)

σs

)
− Q

(
(Smi−

�
2 −θ)

σs

) = 0.(18)

Generally, this likelihood equation has no closed-form
solution. Nonetheless, the closed-form solution can be
obtained when the quantization noise is very small, that
is, Δ ® 0. Under this condition, Smi → xi and (18)
becomes

lim
�→0

∂ log p(S|h, θ)
∂θ

=
N∑
i=1

xi − θ

σ 2
s

= 0. (19)

The MLE obtained from (19) is

θ̂ =
1
N

N∑
i=1

xi. (20)

It is also no surprise to see that the MLE reduces to
BLUE, which is often applied in centralized estimation
[14], where the FC can obtain all raw observations of
the sensors.

3.2 MLE with unknown CSI
In practical WSNs, the FC usually has no CSI, and the
sensors can transmit training symbols to facilitate chan-
nel estimation. The training symbols can be incorpo-
rated into the message function c(x). Then, the MLE
with training symbols available is a special form of the
MLE with unknown CSI. We will derive the MLE with
unknown CSI with general c(x) in the following and
derive that with training symbols in c(x) in next
subsection.
When CSI is unknown at the FC, the log-likelihood

function is

log p(Y|θ) =
N∑
i=1

⎛
⎝log

⎛
⎝ +∞∫

−∞
p(yi|x)p(x|θ)dx

⎞
⎠
⎞
⎠, (21)

which has a similar form to the likelihood function
with known CSI shown in (8).
According to the received signal model, given x, yi

subjects to zero mean complex Gaussian distribution,
that is,

p(yi|x) =
1

πL detRy
exp(−yHi R

−1
y yi), (22)

where Ry is the covariance matrix of yi, which is

Ry = σ 2
c I + Edc(x)c(x)H. (23)

Since the energy of the transmit symbols is normal-
ized as shown in (2), we have

Ryc(x) = (σ 2
c I + Edc(x)c(x)H)c(x)

= (σ 2
c + Ed)c(x).

(24)

Therefore, c(x) is an eigenvector of Ry, and the corre-
sponding eigenvalue is (σ 2

c + Ed).
For any vector orthogonal to c(x), denoted as c⊥(x), we

have

Ryc⊥(x) =
(
σ 2
c I + Edc(x)c(x)H

)
c⊥(x)

= σ 2
c c

⊥(x).
(25)

Therefore, the eigenvalues corresponding to the
remaining L - 1 eigenvectors are all σ 2

c . The determinant
of Ry is

detRy = (Ed + σ 2
c )σ

2(L−1)
c . (26)

Following the Matrix Inversion Lemma [27], we have

R−1
y =

1
σ 2
c
I − Ed

σ 2
c (Ed + σ 2

c )
c(x)c(x)H. (27)

Substituting (26) and (27) into (22), we have

p(yi|x) = α exp

(
−‖ yi ‖22

σ 2
c

+
EdyHi c(x)c(x)Hyi

σ 2
c (Ed + σ 2

c )

)

= α exp
(

−‖ yi ‖22
σ 2
c

+
Ed|yHi c(x)|2
σ 2
c (Ed + σ 2

c )

)
,

(28)

where a is a constant.
Upon substituting (28) and (9) into (21), the log-likeli-

hood function becomes

log p(Y|θ) =
N∑
i=1

log

⎛
⎝ +∞∫

−∞
exp

(
−(x − θ)2

2σ 2
s

− ‖ yi ‖22
σ 2
c

+
Ed|yHi c(x)|2
σ 2
c (Ed + σ 2

c )

)
dx

⎞
⎠ . (29)

Then the MLE is obtained as

θ̂ = argmax
θ

log p(Y|θ). (30)

When considering digital communications, by substi-
tuting (5) into (29), the log-likelihood function is
obtained as

log p(Y|θ) =
N∑
i=1

log

(
M∑
m=1

p(yi|cm)p(Sm|θ)
)
, (31)
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where p(Sm|θ) is shown in (13), and

p(yi|cm) = α exp
(

−‖ yi ‖22
σ 2
c

+
Ed|yHi cm|2

σ 2
c (Ed + σ 2

c )

)
. (32)

3.2.1 Special case when σ 2
s → 0

Similarly to the log-likelihood function with known CSI,
the log-likelihood function with unknown CSI for per-
fect observations has the same form for both analog and
digital communications.
Upon substituting (14) into (21) and ignoring all terms

that do not affect the estimation, the log-likelihood
function becomes

log p(Y|θ) =
N∑
i=1

|yHi c(θ)|2

= c(θ)H
(

N∑
i=1

yiy
H
i

)
c(θ).

(33)

Again, since c(θ) is underivable for digital communica-
tions, we regard c(θ) as the parameter to be estimated.
Recall that the energy of c(θ) is normalized. Then, the
problem that finds c(θ) to maximize (33) is a solvable
quadratically constrained quadratic program (QCQP)
[28]:

max
c(θ)

c(θ)H
(

N∑
i=1

yiy
H
i

)
c(θ)

s.t. ‖ c(θ) ‖22 = 1.
(34)

The solution of (34) can be obtained as

ĉ(θ) = vmax

(
N∑
i=1

yiy
H
i

)
, (35)

where vmax(M) is the eigenvector corresponding to the
maximal eigenvalue of the matrix M.
This shows that when CSI is unknown at the FC in

the case of noise-free observations, the MLE becomes a
subspace-based estimator.
3.2.2 Special case when σ 2

c → 0
When the communication SNR tends to infinity, the
receiver of the FC can recover the quantized observa-
tions of the sensors with error free if a proper codebook,
which will be discussed in Section 5.3, is applied. Then,
the MLE with unknown CSI also degenerates into the
BLUE shown in (20).

3.3 MLE with unknown CSI using training symbols
Define cp as a vector of Lp training symbols for the
receiver to estimate the channels, which is predesigned
and is known at both the transmitter and receiver. Each
transmission for an observation will begin with trans-
mitting the training symbols, followed by the data

symbols, which is defined as cd(x). In this case, the mes-
saging function becomes

c(x) =
(

cp
cd(x)

)
. (36)

Substituting (36) into signal model shown in (7), the
received signal yi can be decomposed into two parts that
correspond to cp and cd(x), respectively. The received sig-
nal from the ith sensor corresponding to cp is

yi,p =
√
Edhicp + ncp,i, (37)

and the received signal from the ith sensor corre-
sponding to cd(x) is

yi,d =
√
Edhicd(xi) + ncd,i, (38)

where both ncp, i and ncd, i are vectors of thermal
noise at the receiver. Note that yi, p is independent from
the observation xi.
We let cHp cp = Lp

/
L and cd(x)

Hcd(x) = 1 - Lp/L in
order to satisfy the normalization condition of c(x).
Ignoring all the terms that do not affect the estimation,
we obtain the log-likelihood function as

log p(Y|θ) =
N∑
i=1

log

⎛
⎝ +∞∫

−∞
exp

(
−(x − θ)2

2σ 2
s

+ β|yHi,dcd(x)|2 + 2β�{cHp yi,pyHi,dcd(x)}
)
dx

⎞
⎠ , (39)

where yi, p and yi, d are, respectively, the received sig-
nals corresponding to the training symbols and the data
symbols, and b is a constant.
Now we show that cHp yi,p in (39) can be regarded as

the minimum mean square error (MMSE) estimate for
the channel coefficient hi with a constant factor. Since
both hi and the receiver thermal noise are complex
Gaussian distributed, the MMSE estimate of hi is
equivalent to linear MMSE estimate, that is,

ĥi = (R−1
yp ryh)Hyi,p

=

√EdL
Lσ 2

c + LpEd c
H
p yi,p.

(40)

where ryh = E[yi,ph
∗
i ] =

√Edcp, and Ryp is the covariance
matrix of yi, p, which is

Ryp = EdcpcHp + σ 2
c I. (41)

Let κ =
√EdL

Lσ 2
c +LpEd

, then we have cHp yi,p = ĥi
/

κ. Substitut-

ing it into (39), we obtain

log p(Y|θ) =
N∑
i=1

log

⎛
⎝ +∞∫

−∞
exp

(
−(x − θ)2

2σ 2
s

+ β|yHi,dcd(x)|2 +
2β

κ
�{ĥiyHi,dcd(x)}

)
dx

⎞
⎠ . (42)

In the sequel, we will show that the MLE in this case
is equivalent to a two-stage estimator. During the first
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stage, the FC uses (40) to obtain the MMSE estimate of
hi. During the second stage, the FC conducts the MLE
using ĥi. The channel estimate can be modeled as

ĥi = hi + εhi, where εhi is the estimation error subjecting
to the complex Gaussian distribution with zero mean,
and its variance is equal to the MSE of the linear
MMSE estimator of hi, which is [29]

E[(hi − ĥi)2] = E[hih∗
i ] − rHyhR

−1
yp ryh =

Lσ 2
c

Lσ 2
c + LpEd , (43)

where R−1
yp can be obtained following Matrix Inversion

Lemma [27].
Substituting ĥi into (7), the received signal of the data

symbols becomes

yi,d =
√
Edĥicd(x) −

√
Edεhicd(x) + nci,d, (44)

where nci, d is the receiver thermal noise.

By deriving the conditional PDF p(yi,d|ĥi, x) from (44),

we can obtain a log-likelihood function that is exactly
the same as that shown in (42). This implies that the
MLE with unknown CSI exploits the available training
symbols implicitly to provide an optimal channel esti-
mate and then uses it to provide the optimal estimation
of θ.
Note that the log-likelihood function in (42) is differ-

ent from the log-likelihood function that uses the esti-
mated CSI as the true value of CSI, which is

log p(Y|hi = ĥi, θ) =
N∑
i=1

log

⎛
⎝ +∞∫

−∞
exp

(
−(x − θ)2

2σ 2
s

+
2
√Ed
σ 2
c

�{ĥiyHi,dcd(x)}
)
dx

⎞
⎠ . (45)

By maximizing (45), we obtain a coherent estimator

since there only exists the coherent term �{ĥiyHi,dcd(x)}
in this log-likelihood function. By contrast, there exists a

coherent term �{ĥiyHi,dcd(x)} as well as a non-coherent

term |yHi,dcd(x)|2 in the log-likelihood function in (42).
This means that the MLE obtained from (42) uses the
channel estimate as a “partial” CSI that accounts for the
channel estimation errors. The true value of the channel
coefficients contained in the channel estimate corre-
sponds to the coherent term in the log-likelihood func-
tion, whereas the uncertainty in the channel estimate,
that is, the estimation errors, leads to the non-coherent
term. We will compare the performance of the two esti-
mators through simulations in Section 6.

4 Suboptimal estimator
In the previous section, we developed the MLE with
known CSI, which is not feasible in real-world systems
since perfect CSI cannot be provided especially in WSN
with strict energy constraint. Nevertheless, its

performance can serve as a practical lower bound when
both the observation noise and the communication
errors are in presence.
The MLE with unknown CSI is more practical, but is

too complex for application. Nonetheless, its structure
provides some useful hints to derive low complexity
estimator. In the following, we derive a suboptimal algo-
rithm for the case with unknown CSI.
We first consider an approximation of the PMF, p

(Sm|θ). Following the Lagrange Mean Value Theorem

[30], there exists ξ in an interval [
Sm−�

2 −θ

σs
,

Sm+
�
2 −θ

σs
] that

satisfies

p(Sm|θ) = −Q′(ξ)
�

σs
=

�√
2πσs

exp
(

−ξ2

2

)
. (46)

If the quantization interval Δ is small enough, we can
let ξ equal to the middle value of the interval, that is, ξ
= (Sm - θ)/ss, and obtain an approximate expression of
the PMF as

p(Sm|θ) ≈ pA(Sm|θ) � �√
2πσs

exp

(
−(Sm − θ)2

2σ 2
s

)
.(47)

Substituting (47) into (31) and taking its partial deri-
vative with respect to θ, the likelihood equation is

∂ log p(Y|θ)
∂θ

=
N∑
i=1

∑M−1
m=0 p(yi|cm) ∂pA(Sm|θ)

∂θ∑M−1
m=0 p(yi|cm)pA(Sm|θ) = 0, (48)

where ∂pA(Sm|θ)
∂θ

can be derived as

∂pA(Sm|θ)
∂θ

=
Sm − θ

σ 2
s

· �√
2πσs

exp

(
−(Sm − θ)2

2σ 2
s

)
=
Sm − θ

σ 2
s

pA(Sm|θ). (49)

Substituting (49) into (48), the likelihood equation can
be simplified as

θ =
1
N

N∑
i=1

(∑M−1
m=0 p(yi|cm)pA(Sm|θ)Sm∑M−1
m=0 p(yi|cm)pA(Sm|θ)

)
, (50)

which is the necessary condition for the MLE.
Unfortunately, we cannot obtain an explicit estimator

for θ from this equation because the right-hand side of
the likelihood equation also contains θ. However, con-
sidering the property of the conditional PDF, we can
rewrite (50) as

θ =
1
N

N∑
i=1

(
M−1∑
m=0

p(Sm|yi, θ)Sm

)

=
1
N

N∑
i=1

E[Sm|yi, θ].

(51)
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The term inside the sum of the right-hand side of the
likelihood equation shown in (51) is actually the MMSE
estimator of Smi for a given θ. This indicates that we can
regard the MLE as a two-stage estimator.
During the first stage, it estimates Smi with the

received signals from each sensor. During the second
stage, it combines Ŝmi

by a sample mean estimator.
We present a suboptimal estimator with a similar

two-stage structure. This estimator can be viewed as a
modified EM algorithm [24] since its two-stage struc-
ture is similar to the EM algorithm. Because the likeli-
hood function shown in (31) has multiple extrema
and the equation shown in (50) is only a necessary
condition, the initial value of the iterative computa-
tion is critical to the convergence of the iterative algo-
rithm. To obtain a good initial value, the suboptimal
estimator estimates Smi by assuming it to be uniformly
distributed. Furthermore, since the estimation quality
of the first stage is available, we use BLUE to obtain θ̂
for exploiting the quality information instead of using
the MLE in the M-step as in the standard EM
algorithm.
During the first stage of the iterative computation, the

suboptimal algorithm estimates Smi under MMSE criter-
ion. This estimator requires a priori probability of Smi

that depends on the unknown parameter θ. The initial
distribution of Smi is set to be uniform distribution, that
is, the estimate for a priori PDF of Smi p̂(Smi) =

1
M. After

a temporary estimate of θ had been obtained, we use

p(Smi |θ̂) to update p̂(Smi). The MMSE estimator during
the first stage is

Ŝmi = E[Smi |yi] =
M−1∑
mi=0

p(Smi |yi)Smi , (52)

where

p(Smi |yi) =
p(yi|Smi)p̂(Smi)

p(yi)
=

p(yi|Smi)p̂(Smi)∑M−1
mi=0 p(yi|Smi)p̂(Smi)

.(53)

Because there is a one-to-one and onto mapping
between Sm and cm, p(yi|Smi) is equal to p(yi|cmi), which
is shown in (32). After replacing p(yi|Smi) in (53) with
p(yi|cmi) and substituting it into (52), we have

Ŝmi =

∑M
mi=0 p(yi|cmi)p̂(Smi)Smi∑M
mi=0 p(yi|cmi)p̂(Smi)

. (54)

Now we derive the mean and variance of Ŝmi
, which

will be used in the BLUE of θ.
If p̂(Smi) equals to its true value, the MMSE estimator

in (54) is unbiased because

E[Ŝmi ] =
∫
CL

Ŝmi p(yi)dyi

=
∫
CL

∑M−1
m=0 p(yi|cmi)p̂(Smi)Smi∑M−1
m=0 p(yi|cmi)p̂(Smi)

M−1∑
m=0

p(yi|cmi)p̂(Smi)dyi

=
∫
CL

M−1∑
m=0

p(yi|cmi)p̂(Smi)Smidyi

=
M−1∑
m=0

p̂(Smi)Smi

= E[Smi ].

(55)

However, p̂(Smi) in our algorithm is not the true value
since we use θ̂ instead of θ to get it. Therefore, the
MMSE estimate may be biased. Because it is hard to
obtain this bias in practical systems, we regard the
MMSE estimator as an unbiased estimate in our subop-
timal algorithm and evaluate the resulting performance
loss via simulations later.
The variance of the MMSE estimate can be derived as

Var[Ŝmi |yi] = E[S2mi
|yi] − E2[Smi |yi]

=

∑M
mi=0 S

2
mi
p(yi|cmi)p̂(Smi)∑M

mi=0 p(yi|cmi)p̂(Smi)
− Ŝ2mi

.
(56)

Then, the BLUE for estimating θ is

θ̂ =

⎛
⎝ N∑

j=1

1

σ 2
s + Var[Ŝmj |yj]

⎞
⎠

−1
N∑
i=1

Ŝmi

σ 2
s + Var[Ŝmi |yi]

.(57)

Let k denote the index of the iteration, the iterative
algorithm performed at the FC can be summarized as
follows:
(S1) When k = 1, set p̂(Smi)

(k) = 1
/
M as the initial

value.
(S2) Compute Ŝ(k)mi

, i = 1, ..., N, and its variance with
(54) and (56).
(S3) Substitute Ŝ(k)mi

and its variance into (57) to get

θ̂ (k).
(S4) Update p̂(Smi) using pA(Smi |θ̂), i.e.,

p̂(Smi)
(k+1) = pA(Smi |θ̂ (k)).

(S5) Repeat step (S2) ~ (S4) to obtain θ̂ (k+1) until the
algorithm converges or a predetermined number of
iterations is reached.
Note that this suboptimal algorithm differs from the

one proposed in [9], which applies maximal a posteriori
(MAP) criterion to detect binary observations of sensors
and then uses the results as the true values of the obser-
vations in a MLE derived in noise-free channels. Our
suboptimal algorithm inherits the structure of the MLE
developed in fading channels, which gives “soft” esti-
mates of the quantized observations at first, and
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combines them with a linear optimal estimator after-
ward. By conducting these two stages iteratively, the
estimation accuracy is improved rapidly. Although the
suboptimal algorithm may converge to local optimal
solutions due to the non-convexity of the original opti-
mization problem, it still performs fairly well as will be
shown in the simulation results. The convergence beha-
vior of the algorithm will be studied in Section 5.4.

5 Performance analysis and discussion
5.1 Asymptotic performance w.r.t. number of the sensors
Now we discuss the asymptotic performance of the
MLEs w.r.t. the number of sensors N by studying the
Fisher information as well as the Cramér-Rao lower
bound (CRLB) of the estimators.
We first consider the MLE with unknown CSI, where

the channel coefficients are i.i.d. random variables. In
this case, given θ, the received signals from different
sensors are i.i.d. among each other; thus, the Fisher

information, defined as IN(θ) = −E
[

∂2 log p(Y|θ)
∂θ2

]
, linearly

increases with the number of the sensors. Therefore, the
CRLB, which is the reciprocal of the Fisher information,
decreases at a speed of 1/N, which is the same as the
BLUE lower bound of centralized estimation [14].
When CSI is available at the FC, the received signals

are no longer identical distributed. In this case, the
Fisher information depends on the channel realizations.
In the sequel, we will show that the mathematical
expectation of the Fisher information over h is always
lower than that with unknown CSI, which means that
the knowledge about the channels provides more infor-
mation to improve the estimation quality.
Denote the Fisher information with known CSI as IC

(θ), which depends on the channel coefficient vector h.
Considering that p(Y|θ) = Eh[p(Y|h, θ)], we have

Eh[IC(θ)] = −Eh

[
EY

[
∂2 log p(Y|h, θ)

∂θ2

]]

= Eh

⎡
⎢⎣ ∫
CN×L

(
∂p(Y|h,θ)

∂θ

)2
p(Y|h, θ) dY

⎤
⎥⎦ .

(58)

The terms in the integration of (58) are convex in p
(Y|h, θ) because

∂2

∂p(Y|h, θ)2

⎛
⎜⎝
(

∂p(Y|h,θ)
∂θ

)2
p(Y|h, θ)

⎞
⎟⎠ =

2
(

∂p(Y|h,θ)
∂θ

)2
p(Y|h, θ)3 ≥ 0. (59)

Since the integration can be viewed as a nonnegative
weighted summation, which will preserve the convexity
of the functions [28], (58) is a convex function of p(Y|h,
θ). Following Jensen’s inequality and the convexity of

(58), we have

Eh[IC(θ)] ≥
∫

CN×L

(
∂Eh[p(Y|h,θ)]

∂θ

)2
Eh[p(Y|h, θ)] dY

=
∫

CN×L

(
∂p(Y|θ)

∂θ

)2
p(Y|θ) dY

= IN(θ).

(60)

Therefore, the asymptotic performance of the MLE
with known CSI is superior to that of the MLE with
unknown CSI, where the CRLB of the latter decreases at
the speed of 1/N.

5.2 Computational complexity
5.2.1 MLE with known CSI
Since the parameter being estimated is a scalar, one-
dimensional searching algorithms can be used to obtain
the maximum of the log-likelihood function. However,
because the log-likelihood function shown in (11) is
non-concave and has multiple extrema, we need to find
all its local maxima to get the global maximum.
Exhaustive searching method can be used to find the

global maximum. In order to make the MSE introduced
by discrete searching neglectable, we let the searching
step size be less than Δ/N; thus, we need to compute
the value of the likelihood function at least M × N
times to obtain the MLE.
The FC applies (11), (12) and (13) to compute the

values of the likelihood function with different θ. The
exponential term in (12) is independent from θ; thus, it
can be computed before searching and be stored for
future use.
Given θ, we still need to compute p(Sm|θ), m = 0, ...,

M - 1, which complexity is O(M), then to obtain each
value of the likelihood function with M additions and M
multiplications. Therefore, the computational complexity
for getting one value of log p(Y|h, θ) is O(MN).
After considering the operations required by the

exhaustive searching, the overall complexity of the MLE
is O(M2N2).
5.2.2 MLE with unknown CSI
The difference between the MLEs with known and
unknown CSI is that p(yi|cm) is used in MLE with
unknown CSI instead of p(yi|hi, cm). Since p(yi|cm) can
also be computed before the searching, this difference
has no impact on the complexity of the MLE with
unknown CSI. The computational complexity of the
MLE with unknown CSI is also O(M2N2).
5.2.3 Suboptimal estimator
For each iteration of the suboptimal estimator, we need
to get Ŝmi

and its variance with (54) and (56) and then
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obtain the estimate of θ with (57). The complexity is
similar to that of computing the log-likelihood function,
which is O(MN). If the algorithm converges after It
iterations, the complexity of the suboptimal estimator
will be O(ItMN).

5.3 Discussion about transmission codebook issues
As we have discussed, the transmission codebooks can
represent various quantization, coding and modulation
schemes as well as the training symbols. Here, we dis-
cuss the impact of the codebooks on the decentralized
MLEs.
We rewrite the conditional PDF with known CSI

shown in (10) as

p(yi|hi, x) =
1

(πσ 2
c )

L exp
(

−Ed|hi|2
σ 2
c

)
exp

(
−‖ yi ‖22

σ 2
c

+
2
√Ed�{hiyHi c(x)}

σ 2
c

)
. (61)

Comparing the conditional PDF with unknown CSI p
(yi|x) shown in (28) with p(yi|hi, x) shown in (61), we
see that both PDFs depend on the correlation between
the received signals yi and the transmitted symbols c(x).
With known CSI, the optimal estimator is a coherent
algorithm, since (61) relies on the real part of the corre-
lation, yHi c(x). With unknown CSI, the optimal estima-
tor is a non-coherent algorithm, since (28) depends on
the square norm of yHi c(x). Because
yHi c(x) =

√Edh∗
i c

H(xi)c(x) + nH
c,ic(x), both MLEs depend

on the cross-correlation of the transmit symbols cH(xi)c
(x).
If there exist two transmit symbols cm and cn in the

transmission codebook that have the same norm, that is,

cm = cnejφ , (62)

then p(yi|x) will have two identical extrema since the
MLE with unknown CSI only depends on |yHi c(x)|2.
Such a phase ambiguity will lead to severe performance
degradation to the decentralized estimator. Therefore,
the autocorrelation matrix of the codebook plays a criti-
cal role on the performance of the MLE, especially
when CSI is unknown.
Many transmission schemes have this phase ambiguity

problem, for example, when the natural binary code and
BPSK are applied to represent each quantized observa-
tion and to modulate. For any cm in such a transmission
codebook, defined as Ctn, there exists cm′ in Ctn that
satisfies cm′ = -cm. Therefore, Ctn is not a proper code-
book. Another example is AF, the messaging function of
which is c(x) = Gx, where G is the amplification gain.
The MLE with unknown CSI is unable to distinguish x
from -x when using this messaging function.
In order to handle the phase ambiguity problem

inherent in the codebook Ctn, we can simply insert
training symbols into the transmit symbols. Though

heuristic, this approach provides fairly good perfor-
mance because the MLE exploits the training symbols
to estimate the channel coefficients implicitly as we
have shown. Moreover, since from the later simulations
we see that the MLE without CSI and without training
symbols does not perform well, we need to insert train-
ing symbols when we apply the decentralized estimator.
Since the MLEs are associated with the autocorrela-

tion matrix of the transmission codebook, this allows us
to enhance the performance of the estimators by sys-
tematically designing the codebook. Nonetheless, this is
out of the scape of this paper. Some preliminary results
for optimizing the transmission codebooks are shown in
[31].

5.4 Convergence of the suboptimal estimator
For an iterative algorithm θ(k+1) = T(θ(k)), we call that
the algorithm is convergent if the distance between θ(k
+1) and a fixed point of T(θ) is smaller than the distance
between θ(k) and this fixed point, where the fixed points
of T(θ) are the points that satisfy equation θ = T(θ).
This means that after each iteration, the output of the
algorithm is closer to a fixed point.
Define F as a fixed point of T(θ) in (j1, j2). The algo-

rithm is convergent if |θ(k+1) - F|<|θ(k) - F| for all θ(k) Î
(j1, j2).
In the following, we first study the convergence beha-

vior of an iterative algorithm obtained directly from the
likelihood equation (50) due to the mathematically tract-
ability, where T(θ) is defined as the right-hand side of
equation (50). The iteration algorithm of the suboptimal
estimator can be regarded as a modified version of this
algorithm, which will be discussed afterward.
To simplify the notation, we rewrite T(θ) as a function

of ∂ log p(Y|θ)
∂θ

. From Eqs. (48), (49) and (50), we have

T(θ) =
σ 2
s

N
∂ log p(Y|θ)

∂θ
+ θ . (63)

Since the iterative function shown in (63) is derived
from the likelihood equation, all stationary points of the
log-likelihood function are fixed points of T(θ). Denote
Fn, n = 1, 2, ..., as the local maxima of the log-likelihood
function, which are sorted in ascending order. Since the
log-likelihood function is a continuous function of θ,
there exists a minimum between two adjacent maxima.
The minimum between Fn and Fn+1 is defined as jn.
We will show in the following that in each interval (jn-

1, jn), the algorithm converges to Fi after ignoring the
effect of the non-extremal stationary points of log-likeli-
hood function.
Assume that there is no non-extremal stationary point

in (jn-1, jn). Because Fn is a maximum, the sign of
∂ log p(Y|θ (k))

∂θ (k)
is always different from the sign of (θ(k) - Fn)
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for all jn-1 <θ(k) <jn. Following the corollary shown in
Appendix, the algorithm is convergent if

σ 2
s

N
∂2 log p(Y|θ)

∂θ2
> −2, ∀θ ∈ (φn−1, φn). (64)

Taking the second-order partial derivative of log p
(Y|θ), we have

σ 2
s

N
∂2 log p(Y|θ)

∂θ2

=
1

Nσ 2
s

N∑
i=1

⎛
⎝M−1∑

m=0

S2m
p(yi|cm)p(Sm|θ)∑M−1

m=0 p(yi|cm)p(Sm|θ) −
(
M−1∑
m=0

Sm
p(yi|cm)p(Sm|θ)∑M−1

m=0 p(yi|cm)p(Sm|θ)

)2
⎞
⎠− 1.

(65)

By defining

fm,i =
p(yi|cm)p(Sm|θ)∑M−1

m=0 p(yi|cm)p(Sm|θ) , (66)

we have fm, i ≥ 0 and
∑M−1

m=0 fm,i = 1. Therefore, fm, i, m
= 0, ..., M - 1 can be regarded as a PMF. Then, the term
in (65) can be rewritten as

M−1∑
m=0

S2m
p(yi|cm)p(Sm|θ)∑M−1

m=0 p(yi|cm)p(Sm|θ)−
(
M−1∑
m=0

Sm
p(yi|cm)p(Sm|θ)∑M−1

m=0 p(yi|cm)p(Sm|θ)

)2

=
M−1∑
m=0

S2mfm,i−
(
M−1∑
m=0

Smfm,i

)2

≥ 0, (67)

and consequently,

σ 2
s

N
∂2 log p(Y|θ)

∂θ2
≥ −1, (68)

which satisfies (64). Therefore, the iterative algorithm
is convergent.
Now we discuss the non-minimum stationary points

of the log-likelihood function. Considering a minimum

jn, for any θ Î (Fn, Fn+1), the sign of ∂ log p(Y|θ)
∂θ

is the

same as that of (θ - jn) on both sides of jn, which does
not satisfy the sufficient and necessary condition shown
in Appendix. Therefore, the algorithm does not con-
verge to jn unless θ(k) exactly equals jn. Any distur-
bance will perturb θ(k+1) far from this minimum point.
As to any non-extremal stationary point θ̄, the sign of
∂ log p(Y|θ)

∂θ
is the same as that of (θ − θ̄) at one side of

this point. The disturbance with proper direction will
also make θ(k+1) far from this point.
When the communication SNR tends to infinity, that

is, sc ® 0, there is only one p(yi|cm), m = 0, ..., M - 1,
that can be positive. All other p(yi|cm) tend to 0. By

substituting this into (65), we have σ 2
s
N

∂ log p(Y|θ)
∂θ

= −1. It

is not hard to verify that in this case, |θ(k+1) - Fm| = 0
for any θ(k). It means that the iterative algorithm con-
verges to a local maximum of the log-likelihood func-
tion exactly after one iteration.
At practical communication SNR levels,

σ 2
s
N

∂ log p(Y|θ)
∂θ

> −1, which will affect on the convergent

speed of the algorithm.

Now we consider the iterative algorithm of the subop-
timal estimator. Similar to the previous discussion, we
rewrite the suboptimal algorithm (57) as a function of p
(yi|θ) and its partial derivatives. After taking the first-
and second-order partial derivatives of p(yi|θ) and com-
paring them with (54), (56) and (57), the suboptimal
estimator can be rewritten as

θ (k+1) =
σ 2
s

∑N
i=1 wi(θ (k)) ∂p(yi|θ (k))

∂θ (k)∑N
j=1 wj(θ (k))

+ θ (k), (69)

where

wi(θ) =
(
2 + σ 2

s
∂2p(yi|θ)

∂θ2

)−1

. (70)

This estimator has the same form as the algorithm
defined by (63). Therefore, following the same argu-
ment, we can show that a sufficient condition that the
suboptimal estimator be convergent is

∂

∂θ

σ 2
s

∑N
i=1 wi(θ)

∂p(yi|θ)
∂θ∑N

j=1 wj(θ)
> −2, (71)

where

∂

∂θ

σ 2
s

∑N
i=1 wi(θ)

∂p(yi|θ)
∂θ∑N

j=1 wj(θ)

=
σ 2
s

(∑N
i=1

∑N
j=1 w

′
i(θ)wj(θ)

∂p(yi|θ)
∂θ

+
∑N

i=1

∑N
j=1 wi(θ)wj(θ)

∂2p(yi|θ)
∂θ2 −∑N

i=1

∑N
j=1 wi(θ)w′

j(θ)
∂p(yi|θ)

∂θ

)
(∑N

j=1 wj(θ)
2
)

=
σ 2
s

∑N
i=1 wi(θ)

∂2p(yi|θ)
∂θ2∑N

j=1 wj(θ)
.

(72)

By letting N = 1, we can obtain from (68) that for all i,

σ 2
s

∂2p(yi|θ)
∂θ2 ≥ −1, and all wi(θ) > 0. Therefore,

∂

∂θ

σ 2
s

∑N
i=1 wi(θ)

∂p(yi|θ)
∂θ∑N

j=1 wj(θ)
≥ −1, (73)

which satisfies the condition (71).
When the communication SNR tends to infinity, all

σ 2
s

∂p(yi|θ)
∂θ

tend to -1 as discussed. The estimator shown

in (57) degenerates into the algorithm shown in (63). It
is also convergent to a local maximum of the log-likeli-
hood function exactly after one iteration.
At practical communication SNR levels, we can see

from (72) that ∂2p(yi|θ)
∂θ2 is weighted by itself since wi(θ)

depends on ∂2p(yi|θ)
∂θ2 . A larger ∂2p(yi|θ)

∂θ2 will make the

weight wi(θ) smaller. Therefore, the value of the partial
derivative in (73) is closer to -1 compared with the
iterative algorithm defined with (63) given yi and θ̂ (k),
which increases the speed of convergence.
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6 Simulation results
We use the Monte Carlo method to evaluate the perfor-
mance of the estimators. In each trail, the parameter θ
is generated from a uniformly distributed source within
its dynamic range. We use the MSE of estimating θ,
that is, E[(θ − θ̂)2], as a performance metric. The obser-
vation SNR considered in simulations is defined as [12]

γs = 20log10

(
W
σs

)
. (74)

We use Ed, the energy consumed by each sensor to
transmit one observation, to define the communication
SNR in order to fairly compare the energy efficiency of
the estimators with different transmission schemes. The
communication SNR is defined as

γc = 10log10

( Ed
N0

)
. (75)

An M = 16 level uniform quantizer is considered,
where each quantized value can be represented by a K =
4 bit binary sequence. We do not consider the binary
quantizer, which only performs well in low observation
SNR.
The codebooks used in the simulations are summar-

ized in Table 1. Considering the general features of
WSNs, that is, usually short data packets are transmitted
and each sensor is of low cost, we use a simple error
control coding (ECC) scheme, the cyclic redundancy
check (CRC) codes with generation polynomial G(x) =
x4 + x + 1, as an example of the coded transmission.
The codebook is denoted as Ctc. For comparison,
uncoded transmission is also evaluated, where natural
binary code is applied to represent each quantization,
which codebook is denoted as Ctn. We consider BPSK
modulation for all codebooks. Because the code length
of the uncoded transmission is shorter than that of the
coded transmission, the energy to transmit each symbol
will be higher for a given Ed. Due to the phase ambiguity
problem discussed in Section 5.3, we also consider the
codebook with training symbols Ctp.
When CSI is known at the FC, we evaluate the perfor-

mance of the MLE with codebook Ctn. The simulation
results are marked as “MLE CSI” in the legend. When
CSI is unknown and the codebook is still Ctn, the
legends for MLE and the supoptimal estimator are
“MLE NoCSI” and “Subopt NoCSI,” respectively. When

CSI is unknown and the codebook is Ctp, where 2 or 5
training symbols are inserted, the simulation results are
marked as “MLE NoCSI TS2/5” and “Subopt NoCSI
TS2/5.” We also evaluate the performance of the MLE
with a near-optimal codebook obtained in [31], which is
marked as “MLE NoCSI OPT.” As discussed in Section
3.2, the FC can use the training symbols to estimate the
CSI and use the estimated CSI as the known CSI to esti-
mate θ. We evaluate this estimator with the codebook
Ctp, which is marked as “MLE EstCH TS2/5.”
To demonstrate the performance gain of the proposed

estimators, two traditional fusion-based estimators and
AF transmission are simulated. In the fusion-based esti-
mators, the FC first demodulates the transmitted data
from each sensor, then reconstructs the observation of
each sensor from the demodulated symbols following
the rule of quantization and finally combines these esti-
mated observations with BLUE fusion rule to produce
the estimate of θ. When ECCs are applied at the sen-
sors, the receiver at the FC will exploit its error detec-
tion ability to discard the data that cannot pass the
error check. The fusion-based estimators using code-
book Ctn and Ctc are denoted as “Fusion-NoECC” and
“Fusion-CRC” in the legends of the figures, respectively.
For AF, the amplification gain G is designed to make
the average transmission power of the sensors equals to
that of the digital communication schemes. We also use
the MLE at the FC to estimate θ, which is marked as
“AF” in the legend.
The MSE of the Quasi-BLUE [14] is shown as the per-

formance lower bound with legend “Q-BLUE Bound.”
This MSE is obtained in perfect communication scenar-
ios with the same M-level quantizer as other estimators.

6.1 Convergence of the suboptimal estimator
We first study the convergence of the suboptimal esti-
mator. Figure 1 depicts the MSEs of the suboptimal esti-
mator as a function of the number of iterations. As
discussed in 5.4, at high communication SNR levels, the
MSE of the suboptimal estimator is convergent after
one iteration, that is, the MSE does not decrease with
the iterations any more. At low communication SNR
levels, the convergent speed becomes lower.

6.2 MSE versus the communication SNR
Figure 2 depicts the MSEs of the estimators with known
and unknown CSI.
When CSI is known at the FC, it is shown from Fig-

ure 2a that the MLE outperforms the fusion-based
estimators. The MSE of the MLE approaches to the
Quasi-BLUE lower bound rapidly with the increasing
of the communication SNR. As expected, the MLE
with AF transmission, marked as AF, is inferior to the
MLE with digital communication using 4-bits

Table 1 The summary of the codebooks considered

Codebook Error control coding Training symbols Modulation

Ctn No No BPSK

Ctc CRC No BPSK

Ctp No 2 or 5 BPSK
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quantization, marked as MLE CSI. This justifies the
conclusions in [19-21], which show that AF is not
optimal in fading channels.
According to the performance analysis for BPSK mod-

ulation in Rayleigh fading channels [32], the BER of the
transmission scheme with codebook Ctn exceeds 0.15
when gs <3 dB. ECC can improve the transmission per-
formance for high communication SNR, but it causes
more errors for low SNR. For the transmission schemes
using CRC, the BER is even worse because long codes
will reduce the transmission energy per symbol. For
such a high BER, the fusion-based estimators do not
perform well. Most of the demodulated data will be
dropped due to the error check; thus, the fusion-based
estimators do not have enough information to exploit,
which finally leads to the worse MSE performance.
When CSI is unknown at the FC, the MSEs of the

MLE with unknown CSI and with two different ways of
using training symbols for channel estimation are shown
in Figure 2b. One is the MLE obtained from the log-
likelihood function in (42), and the other is the estima-
tor obtained from (45), which uses the estimated chan-
nel coefficients as their true values. As expected, our

MLE shown in (42) performs better, because it takes
into account the uncertainty of the channel estimation.
Because there exists phase ambiguity in the schemes

with Ctn and AF transmission, simulation results show
that the MSEs of the MLE and suboptimal estimator
using these two transmission schemes are very large and
do not decrease when gc increases. Therefore, they are
not shown on the figures.
When we insert training symbols, the performance of

the MLE with unknown CSI improves significantly, but
it is still much worse than that of the MLE with known
CSI at low communication SNR levels. It is interesting
to see that using more training symbols does not
improve the performance of the MLE as expected,
because inserting training symbols will reduce the
energy for the data symbols when the energy for trans-
mitting an observation is fixed. Our simulations show
that the best performance is obtained when Lp = 2. This
is consistent with the observation of [33], where the
optimal Lp equals to

√
K .

As discussed, inserting training symbols is a heuristic
way to improve the performance. It is shown in the fig-
ure that a codebook designed by using optimization

10-3

10-2

10-1

M
SE

0 1 2 3 4 5 6
Iterations

. . . . . .. Subopt NoCSI c=3dB
Subopt NoCSI c=6dB
Subopt NoCSI c=9dB
Subopt NoCSI c=12dB

Figure 1 The convergence of the suboptimal estimator when gs = 20 dB and N = 10. The communication SNRs are, respectively, 3, 6, 9
and 12 dB, which are marked in the legend.
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method outperforms all the codebooks with training
symbols.

6.3 MSE versus the number of sensors
Figure 3 shows the MSEs of the estimators with known
CSI and unknown CSI as a function of the number of
sensors N. We see that the MSEs of all the estimators

decrease at the speed of 1/N for large enough N, but
the MSEs do not approach the lower bound due to the
communication errors. This validates our asymptotic
performance analysis for the MLEs both with known
CSI and with unknown CSI in 5.1. Moreover, we
observe that the proposed estimators perform much bet-
ter than the fusion-based estimators. It means that the

Figure 2 The MSEs of the estimators with known CSI and unknown CSI as a function of communication SNR when N = 10 and gs = 20 dB.
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networks with conventional approaches must activate
more sensors to achieve the same MSE performance as
those with our estimators, which will lead to low energy
and bandwidth efficiency.

7 Conclusion
In this paper, we studied decentralized estimation for a
deterministic parameter using digital communications
over orthogonal multiple-access fading channels with a

Figure 3 The MSEs of the estimators with known and unknown CSI, where gc = 6 dB and gs = 20 dB.

Wang and Yang EURASIP Journal on Advances in Signal Processing 2011, 2011:132
http://asp.eurasipjournals.com/content/2011/1/132

Page 15 of 17



multiple-bit quantizer. By introducing a general messa-
ging function, the proposed estimators can be applied
for various quantization, coding and modulation
schemes, including AF transmission, binary quantization
and with or without training symbols.
We derived the MLEs with both known and unknown

CSI. The MLE with known CSI can serve as a practical
performance lower bound of existing decentralized esti-
mators. It is shown that the MLE with multi-level quan-
tization outperforms the MLE with AF as well as the
fusion-based estimators.
The MLE with unknown CSI is more realistic. With-

out training symbols, it does not perform well due to
the phase ambiguity. When inserting training symbols
before data symbols, it estimates channel coefficients
implicitly and exploits the channel estimates in an opti-
mal way. Under the energy constraint, only a few sym-
bols are beneficial for training channels, while more
training symbols will lead to performance degradation.
To design an estimator with affordable complexity, we
developed a suboptimal estimator that converges rapidly.
The proposed estimator performs well. It exhibits simi-
lar performance as the MLE at high SNRs and has
minor performance loss at low SNRs.

Appendix
Proposition: For an iterative algorithm θ(k+1) = T(θ(k))
with a form that T(θ) = f(θ) + θ, this algorithm con-
verges to a fixed point F of T(θ) if and only if

−2(θ − �) < f (θ) < 0, ∀θ − � > 0, (76)

and

0 < f (θ) < 2(� − θ), ∀θ − � < 0. (77)

Proof: We first prove that (76) and (77) are sufficient
conditions. For the function T(θ) = f(θ) + θ and its fixed
point F, we have

|θ (k+1) − �| = |T(θ (k)) − �| = |f (θ (k)) + θ (k) − �|.(78)
When θ(k) - F > 0, substituting (76) into (78), we have

|θ (k+1) − �| = |f (θ (k)) + θ (k) − �| < |θ (k) − �|, (79)

which shows that the algorithm is convergent. When
θ(k) - F < 0, substituting (77) into (78), we also obtain
the inequality shown in (79). Therefore, (76) and (77)
are sufficient conditions of the convergence.
Now we prove that they are also necessary conditions.

If the algorithm is convergent, we have

|θ (k+1) − �| = |f (θ (k)) + θ (k) − �| < |θ (k) − �|. (80)

When θ(k) - F > 0, (80) can be rewritten as

|f (θ (k)) + θ (k) − �| < θ (k) − �

⇒ −(θ (k) − �) < f (θ (k)) + θ (k) − � < (θ (k) − �).
(81)

After the simplifications, we can obtain (76) from (81).
Similarly, when θ(k) - F < 0, (77) can be obtained fol-

lowing the same procedure. Therefore, (76) and (77) are
necessary conditions. □
Corollary: A sufficient condition that the algorithm

converges to F is f(θ)(θ - F) < 0, ∀θ ≠ F, and f′(θ) > -2.
Proof: Since F is a fixed point of T(θ), we have F = T

(F) = f(F) + F, thus f(F) = 0. When θ(k) - F > 0 and f′
(θ) > -2, we have

f (θ (k)) =

θ (k)∫
�

f ′(θ)dθ ≥
θ (k)∫
�

−2dθ = −2(θ (k) − �). (82)

When θ(k) - F < 0 and f′(θ) > -2, we have

f (θ (k)) =

�∫
θ (k)

−f ′(θ)dθ ≤
�∫

θ (k)

2dθ = 2(� − θ (k)). (83)

Therefore, the first inequality in (76) and the second
inequality in (77) are satisfied. From the condition f(θ)(θ
- F) < 0, it is not hard to find that the second inequality
in (76) and the first inequality in (77) are also satisfied.
Thus, the iterative algorithm is convergent following
Proposition. □
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