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Abstract

An adaptive example-based super-resolution (SR) using kernel principal component analysis (PCA) with a novel
classification approach is presented in this paper. In order to enable estimation of missing high-frequency
components for each kind of texture in target low-resolution (LR) images, the proposed method performs
clustering of high-resolution (HR) patches clipped from training HR images in advance. Based on two nonlinear
eigenspaces, respectively, generated from HR patches and their corresponding low-frequency components in each
cluster, an inverse map, which can estimate missing high-frequency components from only the known low-
frequency components, is derived. Furthermore, by monitoring errors caused in the above estimation process, the
proposed method enables adaptive selection of the optimal cluster for each target local patch, and this
corresponds to the novel classification approach in our method. Then, by combining the above two approaches,
the proposed method can adaptively estimate the missing high-frequency components, and successful
reconstruction of the HR image is realized.
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1 Introduction
In the field of image processing, high-resolution images
are needed for various fundamental applications such as
surveillance, high-definition TV and medical image pro-
cessing [1]. However, it is often difficult to capture
images with sufficient high resolution (HR) from current
image sensors. Thus, methodologies for increasing reso-
lution levels are used to bridge the gap between
demands of applications and the limitations of hardware;
and such methodologies include image scaling, interpo-
lation, zooming and enlargement.
Traditionally, nearest neighbor, bilinear, bicubic [2],

and sinc [3] (Lanczos) approaches have been utilized for
enhancing spatial resolutions of low-resolution (LR)
images. However, since they do not estimate high-fre-
quency components missed from the original HR
images, their results suffer from some blurring. In order
to overcome this difficulty, many researchers have pro-
posed super-resolution (SR) methods for estimating the
missing high-frequency components, and this enhance-
ment technique has recently been one of the most active

research areas [1,4-7]. Super-resolution refers to the task
which generates an HR image from one or more LR
images by estimating the high-frequency components
while minimizing the effects of aliasing, blurring, and
noise. Generally, SR methods are divided into two cate-
gories: reconstruction-based and learning-based (exam-
ple-based) approaches [7,8]. The reconstruction-based
approach tries to recover the HR image from observed
multiple LR images. Numerous SR reconstruction meth-
ods have been proposed in the literature, and Park et al.
provided a good review of them [1]. Most reconstruc-
tion-based methods perform registration between LR
images based on their motions, followed by restoration
for blur and noise removal. On the other hand, in the
learning-based approach, the HR image is recovered by
utilizing several other images as training data. These
motion-free techniques have been adopted by many
researchers, and a number of learning-based SR meth-
ods have been proposed [9-18]. For example, Freeman
et al. proposed example-based SR methods that estimate
missing high-frequency components from mid-frequency
components of a target image based on Markov net-
works and provide an HR image [10,11]. In this paper,
we focus on the learning-based SR approach.
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Conventionally, learning-based SR methods using princi-
pal component analysis (PCA) have been proposed for
face hallucination [19]. Furthermore, by applying kernel
methods to the PCA, Chakrabarti et al. improved the
performance of the face hallucination [20] based on the
Kernel PCA (KPCA; [21,22]). Most of these techniques
are based on global approaches in the sense that proces-
sing is done on the whole of LR images simultaneously.
This imposes the constraint that all of the training
images should be globally similar, i.e., they should repre-
sent a similar class of objects [7,23,24]. Therefore, the
global approach is suitable for images of a particular
class such as face images and fingerprint images. How-
ever, since the global approach requires the assumption
that all of the training images are in the same class, it is
difficult to apply it to arbitrary images.
As a solution to the above problem, several methods

based on local approaches in which processing is done
for each local patch within target images have recently
been proposed [13,25,26]. Kim et al. developed a global-
based face hallucination method and a local-based SR
method of general images by using the KPCA [27]. It
should be noted that even if the PCA or KPCA is used
in the local approaches, all of the training local patches
are not necessarily in the same class, and their eigen-
space tends not to be obtained accurately. In addition,
Kanemura et al. proposed a framework for expanding a
given image based on an interpolator which is trained in
advance with training data by using sparse Bayesian esti-
mation [12]. This method is not based on PCA and
KPCA, but calculates the Bayes-based interpolator to
obtain HR images. In this method, one interpolator is
estimated for expanding a target image, and thus, the
image should also contain only the same kind of class.
Then it is desirable that training local patches are first
clustered and the SR is performed for each target local
patch using the optimal cluster. Hu et al. adopted the
above scheme to realize the reconstruction of HR local
patches based on nonlinear eigenspaces obtained from
clusters of training local patches by the KPCA [8].
Furthermore, we have also proposed a method for
reconstructing missing intensities based on a new classi-
fication scheme [28]. This method performs the super-
resolution by treating this problem as a missing intensity
interpolation problem. Specifically, our previous method
introduces two constraints, eigenspaces of HR patches
and known intensities, and the iterative projection onto
these constraints is performed to estimate HR images
based on the interpolation of the missing intensities
removed by the subsampling process. Thus, in our pre-
vious work, intensities of a target LR image are directly
utilized as those of the enlarged result. Thus, if the tar-
get LR image is obtained by blurring and subsampling

its HR image, the intensities in the estimated HR image
contain errors.
In conventional SR methods using the PCA or KPCA,

but not including our previous work [28], there have
been two issues. First, it is assumed in these methods
that the LR patches and their corresponding HR patches
that are, respectively, projected onto linear or nonlinear
eigenspaces are the same, these eigenspaces being
obtained from training HR patches [8,27]. However,
these two are generally different, and there is a tendency
for this assumption not to be satisfied. Second, to select
optimal training HR patches for target LR patches, dis-
tances between their corresponding LR patches are only
utilized.
Unfortunately, it is well known that the selected HR

patches are not necessarily optimal for the target LR
patches, and this problem is known as the outlier pro-
blem. This problem has also been reported by Datsenko
and Elad [29,30].
In this paper, we present an adaptive example-based

SR method using KPCA with a novel texture classifica-
tion approach. The proposed method first performs the
clustering of training HR patches and generates two
nonlinear eigenspaces of HR patches and their corre-
sponding low-frequency components belonging to each
cluster by the KPCA.
Furthermore, to avoid the problems of previously

reported methods, we introduce two novel approaches
into the estimation of missing high-frequency compo-
nents for the corresponding patches containing low-fre-
quency components obtained from a target LR image:
(i) an inverse map, which estimates the missing high-fre-
quency components, is derived from a degradation
model of the LR image and the two nonlinear eigen-
spaces of each cluster and (ii) classification of the target
patches is performed by monitoring errors caused in the
estimation process of the missing high-frequency com-
ponents. The first approach is introduced to solve the
problem of the assumptions utilized in the previously
reported methods. Then, since the proposed method
directly derives the inverse map of the missing process
of the high-frequency components, we do not rely on
their assumptions. The second approach is introduced
to solve the outlier problem. Obviously, it is difficult to
perfectly perform classification that can avoid this pro-
blem as long as the high-frequency components of the
target patches are completely unknown. Thus, the pro-
posed method modifies the conventional classification
schemes utilizing distances between LR patches directly.
Specifically, the error caused in the estimation process
of the missing high-frequency components by each clus-
ter is monitored and utilized as a new criterion for per-
forming the classification. This error corresponds to the
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minimum distance of the estimation result and the
known parts of the target patch, and thus we adopt it as
the new criterion. Consequently, by the inverse map
determined from the nonlinear eigenspaces of the opti-
mal cluster, the missing high-frequency components of
the target patches are adaptively estimated. Therefore,
successful performance of the SR can be expected. This
paper is organized as follows: first, in Section 2, we
briefly explain KPCA used in the proposed method. In
Section 3, we discuss the formulation model of LR
images. In Section 4, the adaptive KPCA-based SR algo-
rithm is presented. In Section 5, the effectiveness of our
method is verified by some results of experiments. Con-
cluding remarks are presented in Section 6.

2 Kernel principal component analysis
In this section, we briefly explain KPCA used in the
proposed method. KPCA was first introduced by Schölk-
opf et al. [21,22], and it is a useful tool for analyzing
data which contain nonlinear structures. Given target
data xi (i = 1, 2, . . . , N), they are first mapped into a
feature space via a nonlinear map: φ : RM → F , where
M is the dimension of xi .Then we can obtain the data
mapped into the feature space, j(x1), j(x2), . . . , j(xN).
For simplifying the following explanation, we assume
these data are centered, i.e.,

N∑
i=1

φ(xi) = 0. (1)

For performing PCA, the covariance matrix

R =
1
N

N∑
i=1

φ(xi)φ(xi)′ (2)

is calculated, and we have to find eigenvalues l and
eigenvectors u which satisfy

λu = Ru. (3)

In this paper, vector/matrix transpose in both input
and feature spaces is denoted by the superscript ‘.
Note that the eigenvectors u lie in the span of j(x1), j

(x2), . . . , j(xN), and they can be represented as follows:

u = �α, (4)

where Ξ = [j(x1), j(x2), . . . , j(xN)] and a is an N × 1
vector. Then Equation 3 can be rewritten as follows:

λ�α = R�α. (5)

Furthermore, by multiplying Ξ’ by both sides, the fol-
lowing equation can be obtained:

λ�′�α = �′R�α. (6)

Therefore, from Equation 2, R can be represented by
1
N

��′ , and the above equation is rewritten as

NλKα = K2α, (7)

where K = Ξ’Ξ. Finally,

Nλα = Kα, (8)

is obtained. By solving the above equation, a can be
obtained, and the eigenvectors u can be obtained from
Equation 4.
Note that (i, j)th element of K is obtained by j(xi)’j

(xj). In kernel methods, it can be obtained by using ker-
nel trick [21]. Specifically, it can be obtained by some
kernel functions �(xi, xj) using only xi and xj in the
input space.

3 Formulation model of LR images
This section presents the formulation model of LR
images in our method. In the common degradation
model, an original HR image F is blurred and deci-
mated, and the target LR image including the additive
noise is obtained. Then, this degradation model is repre-
sented as follows:

f = DBF + n, (9)

where f and F are, respectively, vectors whose ele-
ments are the raster-scanned intensities in the LR image
f and its corresponding HR image F. Therefore, the
dimension of these vectors are, respectively, the number
of pixels in f and F. D and B are the decimation and
blur matrices, respectively. The vector n is the noise
vector, whose dimension is the same as that of f. In this
paper, we assume that n is the zero vector in order to
make the problem easier. Note that if decimation is per-
formed without any blur, the observed LR image is
severely aliased.
Generally, actual LR images captured from commer-

cially available cameras tend to be taken without suffer-
ing from aliasing. Thus, we assume that such captured
LR images do not contain any aliasing effects. However,
it should be noted that for realizing the SR, we can con-
sider several assumptions, and thus, we focus on the fol-
lowing three cases:
Case 1 : LR images are captured based on the low-

pass filter followed by the decimation procedure, and
any aliasing effects do not occur, where this case corre-
sponds to our assumption. Therefore, we should esti-
mate the missing high-frequency components removed
by the low-pass filter.
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Case 2 : LR images are captured by only the decima-
tion procedure without using any low-pass filters. In
this case, some aliasing effects occur, and interpolation-
based methods work better than our method.
Case 3 : LR images are captured based on the low-

pass filter followed by the decimation procedure, but
some aliasing effects occur. In this case, the problem
becomes much more difficult than those of Cases 1 and
2. Furthermore, in our method, it becomes difficult to
model this degradation process.
We focus only on Case 1 to realize the SR, but some

comparisons between our method and the methods
focusing on Case 2 are added in the experiments.
For the following explanation, we clarify the defini-

tions of the following four images:
HR image F whose vector is F in Equation 9 is the

original image that we try to estimate.
Blurred HR image F̂ whose vector is BF is obtained

by applying the low-pass filter to the HR image F. Its
size is the same as that of the HR image.
LR image f whose vector is f (= DBF) is obtained by

applying the subsampling to the blurred HR image F̂ .
High-frequency components whose vector is F - BF

are obtained by subtracting BF from F.
Note that the HR image, the blurred HR image, and

the high-frequency components have the same size. In
order to define the blurred HR image, the LR image,
and the high-frequency components, we have to provide
which kind of the low-pass filter is utilized for defining
the matrix B. Generally, it is difficult to know the details
of the low-pass filter and provide the knowledge of the
blur matrix B. Therefore, we simply assume that the
low-pass filter is fixed to the sinc filter with the ham-
ming window in this paper. In the proposed method,
high-frequency components of target images must be
estimated from only their low-frequency components
and other HR training images. This means when the
high-frequency components are perfectly removed, the
problem becomes the most difficult and useful for the
performance verification. Since it is well known that the
sinc filter is suitable one to effectively remove the high-
frequency components, we adopted this filter. Further-
more, the sinc filter has infinite length coefficients, and
thus we also adopted the hamming window to truncate
the filter coefficients. The details of the low-pass filter is
shown in Section 5. Since the matrix B is fixed, we dis-
cuss the sensitivity of our method to the errors in the
matrix B in Section 5.
In the proposed method, we assume that LR images

are captured based on the low-pass filter followed by
the decimation, and aliasing effects do not occur.
Furthermore, the decimation matrix is only an operator
which subsamples pixel values. Therefore, when the

magnification factor is determined for target LR images,
the matrices B and D can be also obtained in our
method. Specifically, the decimation matrix D can be
easily defined when the magnification factor is deter-
mined. In addition, the blurring matrix B is also defined
by the sinc function with the hamming window in such
a way that target LR images do not suffer from aliasing
effects. In this way, the matrices B and D can be
defined, but in our method, these matrices are not
directly utilized for the reconstruction. The details are
shown in the following section.
As shown in Figure 1, by upsampling the target LR

image f, we can obtain the blurred HR image F̂ . How-
ever, it is difficult to reconstruct the original HR image
F from F̂ since the high-frequency components of F are
missed by the blurring. Furthermore, the reconstruction
of the HR image becomes more difficult with increase
in the amount of blurring [7].

4 KPCA-based adaptive SR algorithm
An adaptive SR method based on the KPCA with a
novel texture classification approach is presented in this
section. Figure 2 shows an outline of our method. First,
the proposed method clips local patches from training
HR images and performs their clustering based on the
KPCA. Then two nonlinear eigenspaces of the HR
patches and their corresponding low-frequency compo-
nents are, respectively, obtained for each cluster.
Furthermore, the proposed method clips a local patch ĝ
from the blurred HR image F̂ and estimates its missing
high-frequency components using the following novel
approaches based on the obtained nonlinear eigen-
spaces: (i) derivation of an inverse map for estimating
the missing high-frequency components of g by the two
nonlinear eigenspaces of each cluster, where g is an ori-
ginal HR patch of ĝ and (ii) adaptive selection of the

optimal cluster for the target local patch ĝ based on
errors caused in the high-frequency component estima-
tion using the inverse map in (i). As shown in Equation
9, estimation of the HR image is ill posed, and we can-
not obtain the inverse map that directly estimates the
missing high-frequency components. Therefore, the pro-
posed method models the degradation process in the
lower-dimensional nonlinear eigenspaces and enables
the derivation of its inverse map. Furthermore, the sec-
ond approach is necessary to select the optimal non-
linear eigenspaces for the target patch ĝ without
suffering from the outlier problem. Then, by introducing
these two approaches into the estimation of the missing
high-frequency components, adaptive reconstruction of
HR patches becomes feasible, and successful SR should
be achieved.
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In order to realize the adaptive SR algorithm, the
training HR patches must first be assigned to several
clusters before generating each cluster’s nonlinear eigen-
spaces. Therefore, the clustering method is described in
detail in 4.1, and the method for estimating the missing
high-frequency components of the target local patches is
presented in 4.2.

4.1 Clustering of training HR patches
In this subsection, clustering of training HR patches into
K clusters is described. In the proposed method, we cal-
culate a nonlinear eigenspace for each cluster and
enable the modeling of the elements belonging to each
cluster by its nonlinear eigenspace. Then, based on
these nonlinear eigenspaces, the proposed method can
perform the clustering of training HR patches in this

subsection and the high-frequency component estima-
tion, which simultaneously realizes the classification of
target patches for realizing the adaptive reconstruction,
in the following subsection. This subsection focuses on
the clustering of training HR patches based on the non-
linear eigenspaces.
From one or some training HR images, the proposed

method clips local patches gi (i = 1, 2, . . . , N; N being
the number of the clipped local patches), whose size is
w × h pixels, at the same interval. Next, for each local
patch, two images, gLi and gHi , which contain low-fre-

quency and high-frequency components of gi, respec-
tively, are obtained. This means gi, gLi , g

H
i , respectively,

correspond to local patches clipped from the same posi-
tion of (a) HR image, (b) Blurred HR image, and (d)

F̂

f

Blur Decimate

HR image Blurred HR image

LR image

F

Upsample

Figure 1 Illustration of the formulation model of LR images.

HR imageF F̂Blurred HR image 

…

Cluster 1 Cluster 2 Cluster K

Training HR image
Clipped HR patches ),,2,1( Nigi K=

Clustering algorithm

of training HR patches

Estimation of missing high-frequency components

Adaptive selection of the optimal cluster

Target local

patch ĝ

Estimated HR patch of g

Nonlinear eigenspace of HR patches in cluster k

Nonlinear eigenspace of corresponding low-frequency components in cluster k

Figure 2 Outline of the KPCA-based adaptive SR algorithm. The proposed method is composed of two procedures: clustering of training HR
patches and estimation of missing high-frequency components of a target image. In the missing high-frequency component estimation
algorithm, adaptive selection of the optimal cluster is newly introduced in the proposed method.

Ogawa and Haseyama EURASIP Journal on Advances in Signal Processing 2011, 2011:138
http://asp.eurasipjournals.com/content/2011/1/138

Page 5 of 29



high-frequency components shown in the previous sec-
tion. Then the two vectors li and hi containing raster-
scanned elements of gLi and gHi , respectively, are calcu-

lated. Furthermore, li is mapped into the feature space
via a nonlinear map: φ : Rwh → F [22], where the non-
linear map whose kernel function is the Gaussian kernel
is utilized. Specifically, given two vectors a and b (Î
Rwh), the Gaussian kernel function in the proposed
method is defined as follows:

κ(a, b) = exp
(

−||a − b||2
σ 2
1

)
, (10)

where σ 2
1 is a parameter of the Gaussian kernel. Then

the following equation is satisfied:

φ(a)′φ(b) = κ(a, b). (11)

Then a new vector ji = [j(li)’, hi’]’ is defined. Note
that an exact pre-image, which is the inverse mapping
from the feature space back to the input space, typically
does not exist [31]. Therefore, the estimated pre-image
includes some errors. Since the final results estimated in
the proposed method are the missing high-frequency
components, we do not utilize the nonlinear map for hi
(i = 1, 2, . . . , N).
From the obtained results ji (i = 1, 2, . . . , N), the

proposed method performs clustering that minimizes
the following criterion:

C =
K∑
k=1

Nk∑
j=1

||lkj − l̃kj ||2 + ||hk
j − h̃

k
j ||2, (12)

where Nk is the number of elements belonging to
cluster k. Generally, superscript is used to indicate the
power of a number. However, in this paper, only k does

not represent the power of a number. The vectors lkj

and hk
j (j = 1, 2, . . . , Nk), respectively, represent li and

hi of gi (i = 1, 2, . . . , N) assigned to cluster k. In Equa-
tion 12, the proposed method minimizes C with respect
to the belonging cluster number of each local patch gi.
Each known local patch belongs to the cluster whose
nonlinear eigenspace can perform the most accurate
approximation of its low- and high-frequency compo-
nents. Therefore, using Equation 12, we try to determine
the clustering results, i.e., which cluster is the optimal
for each known local patch gi.

Note that in Equation 12, l̃
k
j and h̃

k
j in the input

space are, respectively, the results projected onto the
nonlinear eigenspace of cluster k. Then, in order to cal-
culate them, we must first obtain the projection result

φ̃k
j onto the nonlinear eigenspace of cluster k for each

φk
j = [φ(lkj )

′, hk′
j ]

′. Furthermore, when φk
j = [φ(lkj )

′, hk′
j ]

′

is defined and its projection result onto the nonlinear

eigenspace of cluster k is defined as φ̃k
j in the feature

space, the following equation is satisfied:

φ̃k
j = UkUk′

(
φk
j − φ̄k

)
+ φ̄k, (13)

where Uk is an eigenvector matrix of cluster k, and φ̄k

is the mean vector of φk
j (j = 1, 2, . . . , Nk) and is

obtained by

φ̄k =
1
Nk

�kek. (14)

In the above equation, ek = [1, 1, . . . , 1]’ is an Nk × 1

vector. As described above, φ̃k
j is the projection result

of φk
j onto the nonlinear eigenspace of cluster k, i.e.,

the approximation result of φk
j in the subspace of clus-

ter k. Therefore, Equation 13 represents the projection
of j-th element of cluster k onto the nonlinear eigen-

space of cluster k. Note that from Equation 13, φ̃k
j can

be defined as φ̃k
j = [ζ k′

j , h̃
k′

j ]
′. In detail, ζ k

j corresponds

to the projection result of the low-frequency compo-

nents in the feature space. Furthermore, h̃
k
j corresponds

to the result of the high-frequency components, and it

can be obtained directly. However, l̃
k
j in Equation 12

cannot be directly obtained since the projection result

ζ k
j is in the feature space. Generally, we have to solve

the pre-image estimation problem of l̃
k
j from ζ k

j , i.e.,

l̃
k
j
, which satisfies ζ k

j
∼= φ(l̃

k
j ) , has to be estimated. In

this paper, we call this pre-image approximation as
[Approximation 1] for the following explanation. Gener-

ally, if we perform the pre-image estimation of l̃
k
j from

ζ k
j , estimation errors occur. In the proposed method,

we adopt some useful derivations in the following expla-

nation and enable the calculation of ||lkj − l̃
k
j ||2 in Equa-

tion 12 without directly solving the pre-image problem

of ζ k
j .

In the above equation,

Uk = [uk
1,u

k
2, . . . ,u

k
Dk] (Dk < Nk) (15)

is an eigenvector matrix of ΞkHkHkΞk’, where Dk is the
dimension of the eigenspace of cluster k, and it is set to
the value whose cumulative proportion is larger than
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Th. The value Th is a threshold to determine the
dimension of the nonlinear eigenspaces from its cumu-

lative proportion. Furthermore, �k = [φk
1, φk

2, . . . , φk
Nk]

and Hk is a centering matrix defined as follows:

Hk = Ek − 1
Nk

ekek
′
, (16)

where Ek is the Nk × Nk identity matrix. The matrix H
plays the centralizing role, and it is commonly used in
general PCA and KPCA-based methods.

In Equation 15, the eigenvectors uk
d (d = 1, 2, . . . , Dk)

are infinite-dimensional since uk
d (d = 1, 2, . . . , Dk) are

eigenvectors of the vectors φk
j (j = 1, 2, . . . , Nk) with

the infinite dimension. This means that the dimension

of the eigenvectors must be the same as that of φk
j .

Then since φk
j is infinite dimensional, the dimension of

uk
d is also infinite. It should be noted that since there

are Dk eigenvectors uk
d (d = 1, 2, . . . , Dk) , these Dk vec-

tors span the nonlinear eigenspace of cluster k. From
the above reason, Equation 13, therefore, cannot be cal-
culated directly. Thus, we introduce the computational
scheme, kernel trick, into the calculation of Equation 13.
The eigenvector matrix Uk satisfies the following singu-
lar value decomposition:

�kHk ∼= Uk�kVk′, (17)

where Λk is the eigenvalue matrix and Vk is the eigen-
vector matrix of HkΞk’ΞkHk. Therefore, Uk can be
obtained as follows:

Uk ∼= �kHkVk�k−1
. (18)

As described above, the approximation of the matrix
Uk is performed. This is a common scheme in KPCA-
based methods, where we call this approximation
[Approximation 2], hereafter. Since the columns of the
matrix Uk are infinite-dimensional, we cannot directly
use this matrix for the projection onto the nonlinear
eigenspace. Therefore, to solve this problem, the matrix
Uk is approximated by Equation 18 for realizing the ker-
nel trick. Note that if Dk becomes the same as the rank
of Ξk, the approximation in Equation 18 becomes
equivalent relationship.
From Equations 14 and 18, Equation 13 can be rewrit-

ten as

φ̃k
j

∼= �kHkVk�k−2
Vk′Hk�k′

(
φk
j − 1

Nk
�kek

)
+

1
Nk

�kek

= �kWk�k′
(

φk
j − 1

Nk
�kek

)
+

1
Nk

�kek,
(19)

where

Wk = HkVk�k−2
Vk′Hk. (20)

Next, since we utilize the nonlinear map of the Gaus-

sian kernel, ||lkj − l̃
k
j ||2 in Equation 12 satisfies

φ(lkj )
′φ(l̃

k
j ) = exp

⎧⎨
⎩−||lkj − l̃

k
j ||2

σ 2
1

⎫⎬
⎭

∼= φ(lkj )
′ζ k
j .

(21)

Furthermore, given �k
l = [φ(lk1), φ(lk2) . . . , φ(lkNk)]

and �k
h = [hk

1, h
k
2, . . . , hk

Nk] , they satisfy

�k = [�k′
l , �k′

h ]
′. Thus, from Equation 19, ζ k

j in Equa-

tion 21 is obtained as follows:

ζ k
j

∼= �k
lW

k�k′
(

φk
j − 1

Nk
�kek

)
+

1
Nk

�k
l e

k. (22)

Then, by using Equations 21 and 22, ||lkj − l̃
k
j ||2 in

Equation 12 can be obtained as follows:

||lkj − l̃
k
j ||2 = −σ 2

1 log
{
φ(lkj )

′φ(l̃
k
j )

}
∼= −σ 2

1 log
{
φ(lkj )

′ζ k
j

}
∼= −σ 2

1 log
{
φ(lkj )

′�k
lW

k�k′
(

φk
j − 1

Nk
�kek

)
+

1
Nk

φ(lkj )
′�k

l e
k
}
.

(23)

Furthermore, since h̃
k
j is calculated from Equation 19

as

h̃
k
j
∼= �k

hW
k�k′

(
φk
j − 1

Nk
�kek

)
+

1
Nk

�k
he

k, (24)

||hk
j − h̃

k
j ||2 in Equation 12 is also obtained as follows:

||hk
j − h̃

k
j ||2 ∼=

∥∥∥∥hk
j − �k

hW
k�k′

(
φk
j − 1

Nk
�kek

)
− 1

Nk
�k

he
k

∥∥∥∥
2

. (25)

Then, from Equations 23 and 25, the criterion C in
Equation 12 can be calculated. It should be noted that
for calculating the criterion C, we, respectively, use
Approximations 1 and 2 once through Equations 21-25.
In Equation 13, Uk is utilized for the projection onto the

eigenspace spanned by their eigenvectors

uk
d (d = 1, 2, . . . , Dk) . Therefore, the criterion C repre-

sents the sum of the approximation errors of

φk
j (j = 1, 2, . . . , Nk) in their eigenspaces. This means

that the squared error in Equation 12 corresponds to the
distance from the nonlinear eigenspace of each cluster in
the input space. Then, the new criterion C is useful for the
clustering of training HR local patches. From the cluster-
ing results, we can obtain the eigenvector matrix Uk for
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φk
j (j = 1, 2, . . . , Nk) belonging to cluster k. Further-

more, we define φ̂k
j = [φ(lkj )

′, 0’]′ (j = 1, 2, . . . , Nk) and

also calculate the eigenvector matrix Û
k for

φ̂k
j (j = 1, 2, . . . , Nk) belonging to cluster k. Finally, we

can, respectively, obtain the two nonlinear eigenspaces of
HR training patches and their corresponding low-fre-
quency components for each cluster k.

4.2 Adaptive estimation of missing high-frequency
components
In this subsection, we present an adaptive estimation of
missing high-frequency components based on the
KPCA. We, respectively, define the vectors of g and ĝ

as j* = [j(l)’, h’]’ and φ̂ = [φ(l)′, 0’]′ in the same way

as ji and φ̂i . From the above definitions, the following
equation is satisfied:

φ̂ =
[
EDφ×Dφ

ODφ×wh

Owh×Dφ
Owh×wh

]
φ∗

= 	φ∗,
(26)

where Ep × q and Op × q are, respectively, the identity
matrix and the zero matrix whose sizes are p × q. Further-
more, Dj represents the dimension of the feature space, i.
e., infinite dimension in our method. The matrix EDφ×Dφ

is the identity matrix whose dimension is the same as that
of j(l) and Owh × wh represents the zero matrix which
removes the high-frequency components. As shown in the
previous section, our method assumes that LR images are
obtained by removing their high-frequency components,
and aliasing effects do not occur. This means our problem
is to estimate the perfectly removed high-frequency com-
ponents from the known low-frequency components.
Therefore, the problem shown in this section is equivalent
to Equation 9, and the solution that is consistent with
Equation 9 can be obtained.
In Equation 26, since the matrix Σ is singular, we can-

not directly calculate its inverse matrix to estimate the
missing high-frequency components h and obtain the
original HR image. Thus, the proposed method, respec-
tively, maps j* and φ̂ onto the nonlinear eigenspace of

HR patches and that of their low-frequency components
in cluster k. Furthermore, the projection corresponding
to the inverse matrix of Σ is derived in these subspaces.
We show its specific algorithm in the rest of this sub-
section and its overview is shown in Figure 3.
First, the vector j* is projected onto the Dk-dimen-

sional nonlinear eigenspace of cluster k by using the
eigenvector matrix Uk as follows:

p = Uk ′
(φ∗ − φ̄k). (27)

Furthermore, the vector φ̂ is also projected onto the
Dk-dimensional nonlinear eigenspace of cluster k by

using the eigenvector matrix Û
k as follows:

p̂ = Û
k′ (

φ̂ − φ̃k
)
, (28)

where φ̃k is defined as

φ̃k =
1
Nk

�̂
k
ek, (29)

and �̂
k
= [φ̂k

1, φ̂
k
2, . . . , φ̂k

Nk] . Furthermore, j* is

approximately calculated as follows:

φ∗ ∼= Ukp + φ̄k. (30)

In the above equation, the vector of the original HR
patch is approximated in the nonlinear eigenspace of
cluster k, where we call this approximation [Approxima-
tion 3]. The nonlinear eigenspace of cluster k can per-
form the least-square approximation of its belonging
elements. Therefore, if the target local patch belongs to
cluster k, accurate approximation can be realized. Then
the proposed method introduces the classification pro-
cedures for determining which cluster includes the tar-
get local patch in the following explanation. Next, by
substituting Equations 26 and 30 into Equation 28, the
following equation is obtained:

p̂ ∼= Û
k′
�

(
Ukp + φ̄k

)
− Û

k′
φ̃k. (31)

Thus,

Û
k′
�Ukp ∼= p̂ − Û

k′
�φ̄k + Û

k′
φ̃k

= p̂
(32)

since

φ̃k = �φ̄k. (33)

The vector φ̃k corresponds to the mean vector of the

vectors φ̂k
j whose high-frequency components are

removed from φk
j (j = 1, 2, . . . , Nk) . Then

φ̃k =
1
Nk

�̂
k
ek

=
1
Nk

��kek

= �

(
1
Nk

�kek
)

= 	φ̄k

(34)

is derived, where �̂
k
= [φ̂k

1, φ̂
k
2, . . . , φ̂k

Nk] .
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In Equation 32, if the rank of Σ is larger than Dk, the
matrix Û

k′
�Uk becomes a non-singular matrix, and its

inverse matrix
(
Û

k′
�Uk

)−1
80can be calculated. In

detail, the rank of the matrices Û
k and Uk is Dk.

Although the rank of Σ is not full and its inverse matrix
cannot be directly obtained, the rank of Û

k′
�Uk

becomes min (Dk, rank(Σ)). Therefore, if rank(Σ) ≥ Dk,(
Û

k′
�Uk

)−1
can be calculated. Then

p ∼=
(
Û

k′
�Uk

)−1
p̂. (35)

Finally, by substituting Equations 27 and 28 into the
above equation, the following equation can be obtained:

Uk′
(φ∗ − φ̄k) ∼=

(
Û

k′
�Uk

)−1
Û

k′ (
φ̂ − φ̃k

)
. (36)

Then we can calculate an approximation result

φk

(
=

[
φk
1
′
,hk ′]′)

of j* from cluster k’s eigenspace as

follows:

φk = Uk
(
Û

k′
�Uk

)−1
Û

k′ (
φ̂ − φ̃k

)
+ φ̄k. (37)

Furthermore, in the same way as Equation 19, we can
obtain the following equation:

φk ∼= �kTk�̂
k′ (

φ̂ − �φ̄k
)
+ φ̄k, (38)

where Tk is calculated as follows:

Tk = HkVk(V̂
k′
Hk�̂

k′
��kHkVk)−1V̂

k′
Hk (39)

and V̂
k is an eigenvector matrix of �̂

k′
HkHk�̂

k. Note

that the estimation result, which we have to estimate, is

HR imageF

F̂Blurred HR image

Nonlinear eigenspace of 

HR patches in cluster k

Nonlinear eigenspace of corresponding 

low-frequency components in cluster k

Σ
1−

Σ

1

ˆ
−

⎟
⎠

⎞
⎜
⎝

⎛ ′ kk
ΣUU

⎟
⎠

⎞
⎜
⎝

⎛ ′ kk
ΣUÛ

′k
U

′k
Û

k
U

Singular

Non-singular

p

p̂

Figure 3 Overview of the algorithm for estimating missing high-frequency components. The direct estimation of HR patches from their LR
patches is infeasible since the matrix Σ is singular and its inverse matrix cannot be obtained. Thus, the proposed method projects those two
patches onto the low-dimensional subspaces and enables the derivation of the projection corresponding to the inverse matrix of Σ.
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the vector h of the unknown high-frequency compo-
nents. Since Equation 38 is rewritten as

[
φk
l

hk

]
∼=

[
�k

l
�k

h

]
Tk�k′

l

{
φ(l) − φ̄k

1

}
+

[
φ̄k
l

h̄
k

]
, (40)

where φ̄k =
[
φ̄k′
l , h̄

k′]
′. Thus, from Equations 14 and

40, the vector hk, which is the estimation result of h by
cluster k, is calculated as follows:

hk ∼= �k
hT

k�k′
l

{
φ(l) − 1

Nk
�k

l e
k
}
+

1
Nk

�k
he

k. (41)

Then, by utilizing the nonlinear eigenspace of cluster
k, the proposed method can estimate the missing high-
frequency components. In this scheme, we, respectively,
use Approximations 2 and 3 once through Equations
31-41.
The proposed method enables the calculation of the

inverse map which can directly reconstruct the high-fre-
quency components. In the previously reported methods
[8,27], they simply project the known frequency compo-
nents to the eigenspaces of the HR patches, and their
schemes do not correspond to the estimation of the
missing high-frequency components. Thus, these meth-
ods do not always provide the optimal solutions. On the
other hand, the proposed method can provide the opti-
mal estimation results if the target local patches can be
represented in the obtained eigenspaces, correctly. This
is the biggest difference between our method and the
conventional methods.
Furthermore, we analyze our method in detail as

follows.

It is well-known that the elements φk
j of

gkj (j = 1, 2, . . . , Nk) , which are gi belonging to cluster

k, can be correctly approximated in their nonlinear
eigenspace in the least-squares sense. Therefore, if we
can appropriately classify the target local patch into the
optimal cluster from only the known parts ĝ , the pro-
posed method successfully estimates the missing high-
frequency components h by its nonlinear eigenspace.
Unfortunately, if we directly utilize ĝ for selecting the
optimal cluster, it might be impossible to avoid the out-
lier problem. Thus, in order to achieve classification of
the target local patch without suffering from this pro-
blem, the proposed method utilizes the following novel
criterion as a substitute for Equation 12:

C̃k = ||l − lk||2, (42)

where lk is a pre-image of φk
l . In the above equation,

since we utilize the nonlinear map of the Gaussian

kernel, ||l - lk||2 is satisfied as follows:

φ(l)′φ(lk) = exp

{
−||l − lk||2

σ 2
l

}

∼= φ(l)′φk
l ,

(43)

and φk
l is calculated from Equations 14 and 40 below.

φk
l

∼= �k
l T

k�k′
l

(
φ(l) − 1

Nk
�k

l e
k
)
+

1
Nk

�k
l e

k. (44)

Then, from Equations 43 and 44, the criterion C̃k in
Equation 42 can be rewritten as follows:

C̃k ∼= −σ 2
l log

{
φ(l)′�k

l T
k�k′

l

(
φ(l) − 1

Nk
�k

l e
k
)
+

1
Nk

φ(l)′�k
l e

k
}
. (45)

In this derivation, Approximation 1 is used once. The
criterion C̃k represents the squared error calculated
between the low-frequency components lk reconstructed
with the high-frequency components hk by cluster k’s
nonlinear eigenspace and the known original low-fre-
quency components l.
We introduce the new criterion into the classification

of the target local patch as shown in Equations 42 and
45. Equations 42 and 45 utilized in the proposed
method represent the errors of the low-frequency com-
ponents reconstructed with the high-frequency compo-
nents by Equation 40. In the proposed method, if both
of the target low-frequency and high-frequency compo-
nents are perfectly represented by the nonlinear eigen-
spaces of cluster k, the approximation relationship in
Equation 32 becomes the equal relationship. Therefore,
if we can ignore the approximation in Equation 38, the
original HR patches can be reconstructed perfectly. In
such a case, the errors caused in the low-frequency and
high-frequency components become zero. However, if
we apply the proposed method to general images, the
target low-frequency and high-frequency components
cannot perfectly be represented by the nonlinear eigen-
spaces of one cluster, and the errors are caused in those
two components. Specifically, the caused errors are
obtained as

C̃k
true = ||l − lk||2 + ||h − hk||2 (46)

from the estimation results. However, we cannot cal-
culate the above equation since the true high-frequency
components h are unknown. There will always be a
finite value for the last term ||h - hk||2. However, since
h is unknown, we cannot know this term, and thus
some assumptions become necessary. Thus, we assume
that this term is constant, i.e., if we set ||h - hk||2 = 0,
the result will not change. Therefore, we set ||h - hk||2
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= 0 and calculate the minimum errors C̃k of C̃k
true . This

means the proposed method utilizes the minimum
errors caused in the HR result estimated by the inverse
projection which can optimally provide the original
image for the elements of each cluster. Then the pro-
posed method utilizes the error C̃k in Equation 45 as
the criterion for the classification. In the previously
reported method based on KPCA [8], they only applied
the simple k-means method to the known low-frequency
components for the clustering and the classification.
Thus, this approach is quite independent of the KPCA-
based reconstruction scheme, and there is no guarantee
of providing the optimal clustering and classification
results. On the other hand, the proposed method derives
all of the criteria for the clustering and the classification
from the KPCA-based reconstruction scheme. There-
fore, it can be expected that this difference between the
previously reported method and our method provides a
solution to the outlier problem.
From the above explanation, we can see C̃k in Equa-

tion 45 is a suitable criterion for classifying the target
local patch into the optimal cluster kopt. Then, the pro-

posed method regards hk
opt

estimated by the selected

cluster kopt as the output, and l + hkopt becomes the esti-
mated vector of the target HR patch g.
As described above, it becomes feasible to reconstruct

the HR patches from the optimal cluster in the pro-
posed method. Finally, we clip local patches (w × h pix-

els) at the same interval (w̃ × h̃ pixels) from the blurred

HR image F̂ and reconstruct their corresponding HR
patches. Note that each pixel has multiple reconstruc-
tion results if the clipping interval is smaller than the
size of the local patches. In such a case, the proposed
method outputs the result minimizing Equation 45 as
the final result. Then, the adaptive SR can be realized by
the proposed method.

5 Experimental results
In this section, we verify the performance of the pro-
posed method. As shown in Figures 4a, 5a, and 6a, we
prepared three test images Lena, Peppers, and Goldhill
utilized in many papers. In order to obtain their LR
images shown in Figures 4b, 5b, and 6b, we subsampled
them to quarter size by using the sinc filter with the
hamming window. Specifically, the filter w(m, n) of size
(2L + 1) × (2L + 1) is defined as

w(m, n) =
{
0.54 + 0.46cos

(πm
L

)}{
0.54 + 0.46cos

(πn
L

)}[
sin

(
πm
s

)
πm

sin
(

πn
s

)
πn

]
(|m| ≤ L, |n| ≤ L), (47)

where s corresponds to the magnification factor, and
we set L = 12. In these figures, we simply enlarged the
LR images to the size of the original images. When we

estimate an HR result from its LR image, the other two
HR images and Boat, Girl, Mandrill are utilized as the
training data. In the proposed method, we simply set its
parameters as follows: w = 8, h = 8, w̃ = 8, h̃ = 8 , Th =

0.9, σ 2
l is 0.075 times the variance of ||li - lj||

2 (i, j = 1,

2, . . . , N), and K = 7. Note that the parameters σ 2
l and

K seem to affect the performance of the proposed
method. Thus, we discuss the determinations of these
two parameters and their sensitivities in Appendix. In
this experiment, we applied the previously reported
methods and the proposed method to Lena, Peppers,
and Goldhill and obtained their HR results, where the
magnification factor was set to four. For comparison, we
adopt the method utilizing the sinc interpolation, which
is the same filter used in the downsampling process and
the most traditional approach, and three previously
reported methods [8,11,27]. Since the method in [11] is
a representative method of the example-based super-
resolution, we utilized this method in the experiment.
Furthermore, the method [27] is also a representative
method which utilizes KPCA for performing the super-
resolution, and its improvement is achieved by utilizing
the classification scheme in [8]. Therefore, these two
methods are suitable for the comparison to verify the
proposed KPCA-based method including the novel clas-
sification approach. In addition, the methods in [12,28]
have been proposed for realizing accurate SR. Therefore,
since these methods can be regarded as state-of-the-art
ones, we also adopted them for comparison of the pro-
posed method.
First, we focus on test image Lena shown in Figure 4.

We, respectively, show the HR images estimated by the
sinc interpolation, the previously reported methods
[8,11,12,27,28], and the proposed method in Figures 4c-
i. In the experiments, the HR images estimated by both
of the conventional methods and the proposed method
were simply high-boost filtered for better comparison as
shown in [27]. From the zoomed portions shown in Fig-
ures 7 and 8, we can see that the proposed method pre-
serves the sharpness more successfully than do the
previously reported methods. Furthermore, from the
other two results shown in Figures 5, 6, and 9, 10, 11,
12, we can see various kinds of images are successfully
reconstructed by our method. As shown in Figures 4, 5,
6, 7, 8, 9, 10, 11, 12, Goldhill contains more high-fre-
quency components than the other two test images
Lena and Peppers. Therefore, the difference of the per-
formance between the previously reported methods and
the proposed method becomes significant.
In the previously reported methods, the obtained HR

images tend to be blurred in edge and texture regions.
In detail, the proposed method keeps the sharpness in

Ogawa and Haseyama EURASIP Journal on Advances in Signal Processing 2011, 2011:138
http://asp.eurasipjournals.com/content/2011/1/138

Page 11 of 29



edge regions of test image Lena as shown in Figure 7.
Furthermore, in the texture regions which are shown in
Figure 8, the difference between the proposed method

and the other methods becomes significant. Further-
more, in Figures 9 and 10, the center regions contain
more high-frequency components compared with the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4 Comparison of results (Test image “Lena”, 512 × 512 pixels) obtained by using different image enlargement methods. (a)
Original HR image. (b) LR image of (a). HR image reconstructed by (c) sinc interpolation, (d) reference [11], (e) reference [27], (f) reference [8],
(g) reference [12], (h) reference [28], and (i) the proposed method.
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other regions. Thus, the proposed method successfully
reconstructs sharp edges and textures. As described
above, test image Goldhill contains more high-frequency
components than the other two test images, the differ-
ence of our method and the other ones is quite signifi-
cant. Particularly, in Figure 11, roofs and windows can

be successfully reconstructed with keeping sharpness by
the proposed method. In addition, in Figure 12, the
whole areas can be also accurately enhanced.
Some previously reported methods such as [12,27]

estimate one model for performing the SR. Then, if var-
ious kinds of training images are provided, it becomes

Figure 5 Comparison of results (Test image “Peppers”, 512 × 512 pixels) obtained by using different image enlargement methods. (a)
Original HR image. (b) LR image of (a). HR image reconstructed by (c) sinc interpolation, (d) reference [11], (e) reference [27], (f) reference [8],
(g) reference [12], (h) reference [28], and (i) the proposed method.
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difficult to successfully estimate the high-frequency
components, and the obtained results tend to be
blurred. Thus, we have to perform clustering of training
patches in advance and reconstruct the high-frequency
components by the optimal cluster. However, if the
selection of the optimal cluster is not accurate, the

estimation of the high-frequency components becomes
also difficult. We guess that the limitation of the
method in [8] occurs from this reason. The detailed
analysis is shown later.
Note that our previously reported method [28] also

includes the classification procedures, but its SR

Figure 6 Comparison of results (Test image “Goldhill” (512 × 512 pixels) obtained by using different image enlargement methods. (a)
Original HR image. (b) LR image of (a). HR image reconstructed by (c) sinc interpolation, (d) reference [11], (e) reference [27], (f) reference [8],
(g) reference [12], (h) reference [28], and (i) the proposed method.
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approach is different from our approach. This means the
method in [28] performs the SR by interpolating new
intensities between the intensities of LR images. Thus,
the degradation model is different from that of this
paper. Thus, it suffers from some degradation. On the
other hand, the proposed method realizes the super-
resolution by estimating missing high-frequency compo-
nents removed by the blurring in the downsampling

process. In detail, the proposed method derives the
inverse projection of the blurring process by using the
nonlinear eigenspaces. Since the estimation of the
inverse projection for the blurring process is an ill-
posed problem, the proposed method performs the
approximation of the blurring process in the low-dimen-
sional subspaces, i.e., the nonlinear eigenspaces, and
enables the derivation of its inverse projection.

Figure 7 Zoomed example 1 of test image “Lena”. (a)-(i) Zoomed portions of Figure 4a-i, respectively.
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Next, in order to quantitatively verify the performance
of the proposed method and the previously reported
methods in Figures 4, 5, 6, we show the structural simi-
larity (SSIM) index [32] in Table 1. Unfortunately, it has
been reported that the mean squared error (MSE) peak
signal-to-noise ratio and its variants may not have a
high correlation with visual quality [8,32-34]. Recent

advances in full-reference image quality assessment
(IQA) have resulted in the emergence of several power-
ful perceptual distortion measures that outperform the
MSE and its variants. The SSIM index is utilized as a
representative measure in many fields of the image pro-
cessing, and thus, we adopt the SSIM index in this
experiment. As shown in Table 1, the proposed method

Figure 8 Zoomed example 2 of test image “Lena”. (a)-(i) Zoomed portions of Figure 4a-i, respectively.
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Figure 9 Zoomed example 1 of test image “Peppers”. (a)-(i) Zoomed portions of Figure 5a-i, respectively.

Figure 10 Zoomed example 2 of test image “Peppers”. (a)-(i) Zoomed portions of Figure 5a-i, respectively.
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has the highest values for all test images. Therefore, our
method realizes successful example-based super-resolu-
tion subjectively and quantitatively.
As described above, the MSE cannot reflect perceptual

distortions, and its value becomes higher for images

altered with some distortions such as mean luminance
shift, contrast stretch, spatial shift, spatial scaling, and
rotation, etc., yet negligible loss of subjective image
quality. Furthermore, blurring severely deteriorates the
image quality, but its MSE becomes lower than those of

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 11 Zoomed example 1 of test image “Goldhill”. (a)-(i) Zoomed portions of Figure 6a-i, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 12 Zoomed example 2 of test image “Goldhill”. (a)-(i) Zoomed portions of Figure 6a-i, respectively.

Table 1 Image reconstruction performance comparison (SSIM) of the proposed method and the previously reported
methods

Test image LR image Sinc [11] [27] [8] [12] [28] Proposed method

Lena 0.7114 0.8542 0.8029 0.8356 0.8289 0.8530 0.8443 0.8708

Peppers 0.7206 0.8449 0.7935 0.8229 0.8181 0.8406 0.8283 0.8664

Goldhill 0.5987 0.7488 0.7095 0.7673 0.7610 0.7642 0.7594 0.8116

(a) (b) (c) (d)

(e) (f) (g)
Figure 13 Classification results of “Lena”. (a)-(g), respectively, correspond to clusters 1-7.
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(a) (b) (c) (d)

(e) (f) (g)
Figure 14 Classification results of “Peppers”. (a)-(g), respectively, correspond to clusters 1-7.

(a) (b) (c) (d)

(e) (f) (g)
Figure 15 Classification results of “Goldhill”. (a)-(g) respectively, correspond to clusters 1-7.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 16 HR image reconstructed by the previously reported methods and the proposed method from the LR images obtained by
the Haar and Daubechies filters (Test image “Lena”). HR image reconstructed from the LR image obtained by using the Haar filter by (a)
reference [11] (SSIM index: 0.7941), (b) reference [27] (SSIM index: 0.8235), (c) reference [8] (SSIM index: 0.8159), (d) reference [12] (SSIM index:
0.8428), (e) reference [28] (SSIM index: 0.8337), and (f) the proposed method (SSIM index: 0.8542). HR image reconstructed from the LR image
obtained by using the Daubechies filter by (g) reference [11] (SSIM index: 0.7950), (h) reference [27] (SSIM index: 0.8455), (i) reference [8] (SSIM
index: 0.8148), (j) reference [12] (SSIM index: 0.8458), (k) reference [28] (SSIM index: 0.8320), and (l) the proposed method (SSIM index: 0.8508).
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the above alternation. On the other hand, the SSIM
index is defined by separately calculating the three simi-
larities in terms of the luminance, variance, and struc-
ture, which are derived based on the human visual

system (HVS) not accounted for by the MSE. Therefore,
it becomes a better quality measure providing a solution
to the above problem, and this is also confirmed in sev-
eral researchers.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 17 Zoomed example 1 of Figure 16. (a)-(l) Zoomed portions of Figure 16a-l, respectively.
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We discuss the effectiveness of the proposed method.
As explained above, many previously reported methods,
which utilize the PCA or KPCA for the SR, assume that
LR patches (middle-frequency components) and their
corresponding HR patches (high-frequency components)
that are, respectively, projected onto linear or nonlinear
eigenspaces are the same. However, there is a tendency
for this assumption not to be satisfied for general
images. On the other hand, the proposed method
derives the inverse map, which enables estimation of the
missing high-frequency components in the nonlinear
eigenspace of each cluster, and solves the conventional
problem. Furthermore, the proposed method monitors
the error caused in the above high-frequency compo-
nent estimation process and utilizes it for selecting the
optimal cluster. This approach, therefore, solves the out-
lier problem of the conventional methods. In order to
confirm the effectiveness of this novel approach, we
show the percentage of target local patches that can be
classified into correct clusters. Note that the ground
truth can be obtained by using their original HR images.
From the obtained results, the previously reported
method [8] can correctly classify about 9.29% of the
patches and suffers from the outlier problem. On the
other hand, the proposed method selects the optimal
clusters for all target patches, i.e., we can correctly clas-
sify all patches using Equation 45 even if we cannot uti-
lize Equations 12 and 46. Furthermore, we show the
results of the classification performed for the three test
images in Figures 13, 14, 15. Since the proposed method
assigns local images to seven clusters, seven assignment
results are shown for each image. In these figures, the
white areas represent the areas reconstructed by cluster
k (k = 1, 2, . . . , 7). Note that the proposed method per-
forms the estimation of the missing high-frequency
components for the overlapped patches, and thus, these
figures show the pixels whose high-frequency compo-
nents are estimated by cluster k minimizing Equation
45. Then the effectiveness of our new approach is veri-
fied. Also, in the previously reported method [11], the
performance of the SR severely depends on the provided
training images, and it tends to suffer from the outline
problems. Consequently, by introducing the new
approaches into the estimation scheme of the high-fre-
quency components, accurate reconstruction of the HR
images can be realized by the proposed method.
Next, we discuss the sensitivity of the proposed

method and the previously reported methods to the
errors in the matrix B. Specifically, we calculated the LR
images using the Haar and Daubechies filters and recon-
structed their HR images using the proposed and con-
ventional methods as shown in Figures 16, 17, 18. From
the obtained results, it is observed that not only the pre-
viously reported methods but also the proposed method

is not so sensitive to the errors in the matrix B. In the
proposed method, the inverse projection for estimating
the missing high-frequency components is obtained
without directly using the matrix B. The previously

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 18 Zoomed example 2 of Figure 16. (a)-(l) Zoomed
portions of Figure 16a-l, respectively.
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reported methods do not also utilize the matrix B,
directly. Then they tend not to suffer from the degrada-
tion due to the errors in the matrix B.
Finally, we show some experimental results obtained

by applying the previously reported methods and the
proposed method to actual LR images captured from a
commercially available camera “Canon IXY DIGITAL
50”. We, respectively, show two test images in Figures
19a and 20a and their training images in Figures 19b, c
and 20b, c. The upper-left and lower-left areas in Fig-
ures 19a and 20a, respectively, correspond to the target
images, and they were enlarged by the previously
reported methods and the proposed method as shown
in Figures 21 and 22, where the magnification factor
was set to eight. It should be noted that the experiments
were performed under the same conditions as those
shown in Figures 4, 5, and 6. From the obtained results,

we can see that the proposed method also realizes more
successful reconstruction of the HR images than those
of the previously reported methods. As shown in Figures
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, the difference between the proposed method and
the previously reported methods becomes more signifi-
cant as the amount of the high-frequency components
in the target images becomes larger. In detail, regions at
sculptures and characters, respectively, shown in Figures
21 and 22 have successfully been reconstructed by the
proposed method.

6 Conclusions
In this paper, we have presented an adaptive SR
method based on KPCA with a novel texture classifica-
tion approach. In order to obtain accurate HR images,
the proposed method first performs clustering of the

(a) (b) (c)
Figure 19 Test image and Training images. (a) Target image (101 × 101 pixels) whose upper-left area (50 × 50 pixels) is enlarged as shown
in Figure 21. (b) Training image 1 (1600 × 1200 pixels). (c) Training image 2 (1600 × 1200 pixels).

(a) (b) (c)
Figure 20 Test image and training images. (a) Target image (101 × 101 pixels) whose lower-left area (50 × 50 pixels) is enlarged as shown in
Figure 22. (b) Training image 1 (1600 × 1200 pixels). (c) Training image 2 (1600 × 1200 pixels).
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training HR patches and derives an inverse map for
estimating the missing high-frequency components
from the two nonlinear eigenspaces of training HR
patches and their corresponding low-frequency

components in each cluster. Furthermore, the adaptive
selection approach of the optimal cluster based on the
errors caused in the estimation process of the missing
high-frequency components enables each HR patch to

(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 21 Results obtained by applying the previously reported methods and the proposed method to the actual LR image shown in
Figure 19a: (a) LR image. HR image reconstructed by (b) sinc interpolation, (c) reference [11], (d) reference [27], (e) reference [8], (f) reference
[12], (g) reference [28], and (h) the proposed method. The magnification factor is set to eight, and the obtained results are 400 × 400 pixels.
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be reconstructed successfully. Then, by combining the
above two approaches, the proposed method realizes
adaptive example-based SR. Finally, the improvement
of the proposed method over previously reported
methods was confirmed.

In the experiments, the parameters of our method
were set to simple values from some experiments. These
parameters should be adaptively determined from the
observed images. Thus, we need to complement this
determination algorithm.

(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 22 Results obtained by applying the previously reported methods and the proposed method to the actual LR image shown in
Figure 20a. (a) LR image. HR image reconstructed by (b) sinc interpolation, (c) reference [11], (d) reference [27], (e) reference [8], (f) reference
[12], (g) reference [28], and (h) the proposed method. The magnification factor is set to eight, and the obtained results are 400 × 400 pixels.
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Appendix: Determination of parameters
The determination of the parameters utilized in the pro-
posed method is shown. The parameters which seem to
affect the performance of the proposed method are σ 2

l

and K. Therefore, we change these parameters and dis-
cuss the determination of their optimal values and their
sensitivities to the proposed method. Specifically, we set
σ 2
l to a time the variance of ||li - lj||

2 (i, j = 1, 2, . . . ,
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(e) (f)
Figure 23 Relationship between σ 2

l , K, and the SSIM index of the reconstruction results. Results of (a) Lena, (b) Peppers, (c) Goldhill, (d)
Boat, (e) Girl, and (f) Mandrill.
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N), where a was changed as a = 0.05, 0.075, . . . , 0.2.
Furthermore, K was set to K = 4, 5, . . . , 10. In the
experiments, the magnification factor was set to two for
the simplicity. Figure 23 shows the relationship between
σ 2
l , K, and the SSIM index of the reconstruction results

for six test images Lena, Peppers, Goldhill, Boat, Gril,
and Mandrill. Note that for each test image, the other
five HR images were utilized as the training images. The
determination of the parameters σ 2

l and K and their

sensitivities are shown as follows:
Parameter of the Gaussian kernel

σ 2
1 (= 0.075 × the variance of ||li − lj||2)From Figure 23,

we can see the SSIM index almost monotonically
increases with decreasing σ 2

l . When the parameter of

the Gaussian kernel is set to a larger value, the expres-
sion ability of local patches tends to become worse. On
the other hand, if it is set to a smaller value, the overfit-
ting tends to occur. Therefore, from this figure, we set

the parameter of the Gaussian kernel as σ 2
l = 0.075 ×

the variance of ||li - lj||
2 since the performance of the

proposed method for the three test images tends to
become the highest. Note that this parameter is not so
sensitive as shown in the results of Figure 23, i.e., the
results are not sensitive to the parameter even if we set
it to the larger or smaller values.
Number of clusters: K(= 7)From Figure 23, we can see

the SSIM index of the proposed method becomes the
highest value when K = 7 in several images, and the per-
formance is not severely sensitive to the value of K. The
parameter K is the number of clusters, and it should be
set to the number of textures contained in the target
image. However, since it is difficult to automatically find
the number of textures in the target image, we simply
set K = 7 in the experiments. The adaptive determina-
tion of the number of clusters will be the subject of the
subsequent reports.

Abbreviations
HR: high-resolution; KPCA: kernel principal component analysis; LR: low-
resolution; PCA: principal component analysis; SR: super-resolution.
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