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Abstract

In this article, we propose a new extension to a Dynamic Programming Algorithm (DPA) approach for Track-before-
Detect challenges. This extension enables the DPA to process time-delayed sensor data directly. Such delay might
appear because of delays in communication networks. The extended DPA is identical to the recursive standard DPA
in case of all sensor data appear in the timely correct order. Furthermore, an intense evaluation of the Accumulated
State Density (ASD) filter is given on simulation data. Last but not least, we apply a combination of DPA and ASD on
data of a real radar system and present the resulting tracks. Our experience concerning this combination is a
seamless cooperation between the track initialization by DPA and a track maintenance by ASD filter.

Keywords: Track-before-detect, Out-of-sequence, Real data application, Dynamic programming approach, Accumu-
lated state density, TBD, OOSM, DPA, ASD

1. Introduction
Since many years, security applications employing radar
sensors for surveillance objectives are increasingly
important. In situations where targets with a low signal-
to-noise ratio (SNR) appear, it is convenient to apply
tests on track existence utilizing raw sensor data instead
of using thresholded measurements. This approach is
generally called Track-before-Detect (TBD). It enables a
radar system to search for low-observable targets
(LOTs), i.e., objects with a low SNR. These targets can
be invisible to conventional methodologies, as most of
the information about them might be cut off by the
applied threshold. The gain of a TBD algorithm is often
paid by high computational costs. Even today, when
computational power is cheap and highly available, most
of the techniques for TBD still suffer from being hard
to realize for a real time processing of sensor data. First
and foremost, this is due to the huge amount of data to
be considered in each scan.
Capacity and stability of communication channels

such as 3G Networks, WLAN, HF, or WANs are subject
to an ever increasing development. For many fusion
applications, in particular for surveillance tracking, this
enables a user to explore new approaches by exploiting

multiple sensor systems. When the link capacity is very
low or temporarily unavailable, a common centralized
tracking scheme is Track-to-Track Fusion (T2TF) [1].
However, T2TF neglects valuable information on LOTs,
as track initialization is performed only on local sensor
data. Therefore, we address the challenge of TBD and
track maintenance (TM) in distributed sensor applica-
tions by processing all information available depending
on the available bandwidth.
Applications evolving multiple distributed sensors

often suffer from effects of the communication links.
The major challenge therein constitute in particular
time-delayed sensor data, so called Out-of-Sequence
(OoS) measurements, which appear, e.g., by timely misa-
ligned scan rates, varying communication delays, or
asynchronous sensors caching their data in a local sto-
rage. To overcome this challenge, the Accumulated
State Densities (ASDs) filter gives a neat and efficient
scheme to process such OoS measurements [2-4].
Therefore, the ASDs give an optimal estimation filter
for distributed sensor applications performing the TM
part.

1.1. Structure
This article is structured as follows. In Sect. 2, an over-
view to related work is given. The main contribution of
this article is a TBD algorithm which is able to process
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OoS data sets. This algorithm is subject of Sect. 3 and
has been tested intensively on real sensor data. The
tracking results are presented in Sect. 4, which also
includes a numerical evaluation of an ASD filter. The
conclusion of this article is given in Sect. 5.

2. Related work
2.1. Out-of-sequence processing
Since the development of multi-sensor systems, the
challenge of OoS processing is crucial for further devel-
opment in tracking research. Bar-Shalom was the first,
who picked up the problem and provided an exact solu-
tion for lags which are equal or smaller than one update
period [5]. He extended his approach in [6] to a multi-
step lag algorithm called Al1 by applying the equivalent
measurement [7,8] of recent sensor data. This enabled
him to use the derived algorithm on OoS data with an
arbitrary big lag, but as the equivalent measurement
neglects some cross covariances, the result is not an
optimal solution. Further generalizations to MHT and
IMM scheme followed by various groups as [9-12].
In [13], the idea of augmenting past states and current

states for a neat OoS processing occurred. This
approach neglects information of current states about
time-delayed measurements. In particular, when high
maneuvering targets are observed, this results in a sub-
optimal routine. An algorithm calculating the cross-cov-
ariances for each step in between the occurring lag is
given in [14]. An obvious drawback of such an algo-
rithm is the number of measurements to be stored and
numerical costs. In [15], past states are considered to
provide a more comprehensive treatment of issues in
particle filtering. A solution for OoS processing using
particle filters is presented in [16].
All filter techniques presented in this work are based

on the ASD. In 2009, Koch presented a closed formula
for an ASD posterior [2]. His work was continued and
investigated more intensively in [4]. Extensions to MHT
and IMM filtering are given in [3].

2.2. TBD methods
There exist various methodologies to realize TBD. One
can separate four different classes of them: Dynamic
Programming Algorithm (DPA), Particle Filters, Hough
Space Transform, and Subspace Data Fusion. Due to
computational reasons, a practical application of the
Hough Transform on TBD is often limited to non-man-
euvering targets [17,18]. While the numerical costs of
particle filters are high in general, their accuracy (in the-
ory) can achieve any degree desired. Therefore, many
recent research activities concentrate on this approach
for TBD [19]. However, these algorithms still face the
problem that it takes a long time for the modes (i.e., the
tracks) to appear. The subspace approach to TBD

algebraically calculates the posterior of the emitter’s
position given the sensor data with respect to properties
of the antenna [20]. While the results on simulation
data seem to exceed other techniques, it has not been
tested on real data yet. Furthermore, the computational
complexity is very high and therefore it might be diffi-
cult to implement for applications with real time
requirements.
The DPA approach consists of a sequential Log-Likeli-

hood-Ratio (LLR) test for existing targets in each sensor
cell. Unlike conventional track extraction methodologies
on thresholded measurements [21], it calculates the
probability of a track existence without using an esti-
mated spatial covariance matrix of the target state [22].
A score which is a function of this probability is calcu-
lated for each scan. Given the Markov property, this
approach solves the global track search asymptotically in
an efficient way. In the recent time, Orlando et al.
showed that an application to an under-water sonar sys-
tem is possible [23].

3. Track initiation using OoS-DPA
3.1. DPA algorithm
Assume a time series of sensor observations Zk = {z1, ...,
zk} is given, where zk = {y1k , . . ., yNk } is the set of mea-

sured amplitudes or SNRs yik in the corresponding sen-
sor bin θi, i = 1, ..., N. For a complete track
initialization, we are interested in both, the question of
track existence and the associated time series of sensor
bins θ̂k, . . . , θ̂1 for case of a positive result.
Following the description of Arnold et al. [22], we

assume there is a function s(θk, ..., θ1) which is maxi-
mized by the desired sequence of states. This scoring
function respects the observed signal strength and the
underlying target motion. Whereas for the general solu-
tion an exhaustive search over all possible combinations
is necessary, the DPA splits the scoring function into
temporary elements

s(θk, . . . , θ1) =
k∑
i=2

si(θi, θi−1). (1)

This is possible, if the target motion is modeled as a
Markov random walk of first order. Then, the solution
is given by

(θ̂k, . . . , θ̂1) = arg [max
θk

{ max
θk−1

{sk(θk, θk−1) + max
θk−2

{sk−1(θk−1, θk−2)+

. . . + max
θ1

{s2(θ2, θ1)}. . .}].
(2)

An asymptotic solution to this maximization problem
can be calculated stepwise by introducing auxiliary func-
tion chain {hi}i = 1, ..., k-1 which is defined by the follow-
ing recursive expression:
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h1(θ2) = max
θ1

s2(θ2, θ1) (3)

hi(θi+1) = max
θi

{hi−1(θi) + si+1(θi+1, θi)}. (4)

For a given initialization θ̂1, we obtain θ̂i, i ≥ 2, by

θ̂i = arg max
θi

{hi−1(θi)}. (5)

For the derivation of such a score function, we follow
the idea of the conventional track extraction methodol-
ogy [21] and use a sequential likelihood ratio test.
Switching to the logarithmic version of it, we are able to
prove the necessary splitting property of (1). To this
end, we consider the following hypotheses.

• H1: θk, ..., θ1 is associated to a target.
• H0: There is no target.

Using the LLR test, we obtain for the cumulative scor-
ing function s:

s(θk, . . . , θ1) = log
(
p(θk, . . . , θ1|Zk)

p(H0|Zk)

)
. (6)

Applying Bayes’ Theorem on the argument, we obtain

p(θk, . . . , θ1|Zk)
p(H0|Zk)

=
p(zk|θk)
p(zk|H0)

.
p(θk, . . . , θ1|Zk−1)

p(H0|Zk−1)
. (7)

Because of the Markov assumption, the following
equation holds.

p(θk, . . . , θ1|Zk−1) = p(θk|θk−1)p(θk−1, . . . , θ1|Zk−1). (8)

Combining the above equations yields for the cumula-
tive scoring function

s(θk, . . . , θ1) = log
(

p(zk|θk)
p(zk|H0)

)
+ log(p(θk|θk−1)) + s(θk−1, . . . , θ1) (9)

= sk(θk, θk−1) + s(θk−1, . . . , θ1) (10)

=
k∑
i=2

si(θi, θi−1). (11)

This satisfies the required assumption of (1). There-
fore, the auxiliary functions hi(θi+1) are given by:

hk−1(θk) = log
(

p(zk|θk)
p(zk|H0)

)
+ max

θk−1

{log (p(θk|θk−1)) + hk−2(θk−1)}. (12)

Various approaches have been discussed to estimate
the signal dependent log-term of hk-1 (see [24] and lit-
erature cited therein). For sensors for which the
assumption of a Gaussian distributed SNR with mean s̄
and additive noise holds, the expression simplifies to

log
(

p(zk|θk)
p(zk|H0)

)
=
(yθkk − s̄)

2 − (yθkk )
2

2
, (13)

where yθkk represents the measured SNR in sensor bin
θk rescaled such that the noise covariance is unity.

3.2. Out-of-sequence DPA
As stated in Sect. 1, low computational costs of a TBD
algorithm are crucial for real applications. Therefore, it
would be highly inconvenient to reprocess stored data
in situations where time-delayed measurements occur, i.
e., OoS data. In this section, we propose an extension to
the DPA algorithm described in Sect. 3.1 such that it
can update its states directly on OoS data sets. In parti-
cular, we state how to establish the links between the
states in order to obtain the estimated time series of
bins θ̂n, θ̂n+1, . . . , θ̂k.
3.2.1. Update of the score
Because of time limitations, it is generally not intended
to retrospectively update the scores and links of the past
states of time tl for tl <tk. Therefore, the current score
values for each sensor bin only reflects the exact poster-
ior for a given state θk at time tk. Let us now assume a
time-delayed sensor data set zm originating from time tm
<tk occurs. The goal is now to calculate the score condi-
tioned on the new measurement data set Zk, m: = Zk ∪
{zm}. As in the above scheme, we have

s(θk, . . . , θm, . . . , θ1) = log
(
p(θk, . . . , θm, . . . , θ1|Zk,m)

p(H0|Zk,m)

)
. (14)

Again, we might apply Bayes’ Theorem on the argu-
ment of the logarithm and obtain

p(θk, . . . , θm, . . . , θ1|Zk,m)
p(H0|Zk,m)

=
p(zm|θm)
p(zm|H0)

· p(θk, . . . , θm, . . . , θ1|Zk)
p(H0|Zk)

(15)

=
p(zm|θm)
p(zm|H0)

· p(θm|θk . . . , θ1)︸ ︷︷ ︸
(∗)

· p(θk, . . . , θ1|Z
k)

p(H0|Zk)
. (16)

The term (*) needs a fully smoothed state time series
θk, ..., θ1 for a precise calculation. However, during the
track extraction phase we might assume the target to be
not maneuvering very strong. Therefore, an appropriate
approximation is given by

p(θm|θk . . . , θ1) ≈ p(θm|θk), (17)

which is not covered by the Markov property, because
we might have k >m > 1. In such a case, it would be
necessary to incorporate the system dynamics from the
past and the future to obtain an exact result on the con-
ditional density of θm. For the sake of simplicity, we only
incorporate the system dynamics from the recent
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processing step k. Using this approximation, we end up
with a straight forward score update by the auxiliary
function

hk(θm) = log
(
p(zm|θm)
p(zm|H0)

)
+ max

θk
{log(p(θm|θk)) + hk−1(θk)}. (18)

Nevertheless, this score references to the states at time
tm, therefore a similar approximation might be neces-
sary, if the following data set is originated at time tk+1.
3.2.2. Obtaining the links
Assume, at time tk the score hk−1(θ̂k) for sensor bin

θ̂k ∈ {1, . . . , N} exceeds the threshold μt for track con-
firmation. If the fixed length for track initialization is k -
n + 1, we additionally need to gather θ̂k−1, ... , θ̂n. As we
can save the backward links which carry out the maxi-
mization in the auxiliary function hi-1(·), this is a trivial
task, if all sensor data appear in the timely correct
order. An example is given in Figure 1 where a time-bin
diagram is shown. The three paths in this figure overlap
in some parts, while their score at the most recent
instant of time belongs to distinct sensor bins.
Let us now consider the OoS case. If μt is exceeded by

the score for some θ̂m referring to time tm, we gather the
sequence of states {θ̂j}j by following the links starting at

θ̂m. Using the reversed order of the data appearance, this
link is always unique. Therefore, we obtain a unique
track sequence θ̂k, . . . , θ̂n with tm Î [tk, tn] by ordering
the elements of the path accordingly to their instant of
time of origination. This procedure is visualized in Fig-
ure 2 for the timely ordered case (a) and OoS case (b).

4. Evaluation and application results
4.1. DPA evaluation
The evaluation of the OoS-DPA is separated into two
parts. The first part considers the runtime duration
when OoS sensor data appears in comparison to a
reprocessing scheme, which starts at the last instant of
time such that the remaining data can be used in the

timely correct order. The second part addresses the
obtained track accuracy. To this end, the ordered DPA
output is taken as a reference. For both parts, the data
set provided by DSO National Laboratories from a 2D
radar system is applied as input. While for the time
measurements the whole set of 400 × 372 sensor bins
are taken into account, the accuracy performance test
concentrates on a small 10 × 10 bins subset. Processing
15 data scans in the correct order with a standard DPA
algorithm yields exactly one target. By means of this
result, we evaluate number, states, and processing speed
estimated by the extended DPA in the OoS case.
Figure 3 presents the results of processing speed for

both algorithms, the reprocessing DPA and the OoS-
DPA. As the reprocessing takes a lot of time, it is
obvious that the speed of such a scheme is much lower
than a direct update. Furthermore, the time consump-
tion increases linearly in the mean time delay. This
behavior, of course, is as expected.
Next, we have a look at the DPA output. We examine

the deviation between the ordered case and OoS case
for a single target. To this end, we study a small subset
of the radar data and compare the results in terms of
bin deviations, non-detections and false tracks. As
shown in Figure 4, the mean deviation of a track con-
sisting of 15 states is up to 3 bins in the range axes. At
a range bin size of 60 m, this corresponds to 180 m
range off-set. The main reasons for this off-set is most
probably the approximation in motion penalties men-
tioned in the section above. The mean deviation on the
bearing axis is below 0.5°, thus all estimated bearing
bins are almost the same. Note that the deviation in
both, range and bearing, are highly dependent on the
observed case. However, this shows that the OoS-DPA
is able to establish a target track such that it can be
maintained by a tracker. Furthermore, Figure 5 shows
that the chosen target was detected by the OoS-DPA in
almost every run. There were only three non-detections
at a mean time delay of 5s out of 1000 runs (blue line).
As mentioned above, a quite small subset of 10 × 10
bins was considered for this evaluation. However, the
red line shows, that there was no run with a second
(false) target detection in it.

4.2. Numerical evaluation of the ASD filter
This section analyses the performance of an ASD filter in
comparison to other existing techniques. Appropriate can-
didates for such a comparison are a standard Kalman filter
(KF), which has to reprocess some stored sensor data in
case of an OoS measurement, and the algorithm called
Al1 from Bar-Shalom et al. [6]. On the one hand, the KF
needs a lot of storage for all measurements within a time
window and extra time for reprocessing depending on the
size of the lag of an OoS measurement. On the other

Figure 1 Time-bin diagram for three DPA paths.
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hand, the Al1 consists of the algorithm A1 from [5]
applied to the equivalent measurement [7,8] of the set of
sensor data since the time of the last update before the
time of the OoS measurement. Therefore, it is an approxi-
mation of the optimal estimate, but it does not require a
storage of all sensor data. The degree of approximation
depends on the level of process noise. In the evaluation
below, we compare the resulting performance for different
evolution noise levels.
In the following simulation scenarios, a target moves in

a non-deterministic manner through a two-dimensional
space. A virtual sensor observes this target once a second
by measuring its range and bearing. These measurements
suffer from an additional zero-mean Gaussian distributed
noise. In particular, the noise level we use a variance of

σ 2
ϕ = 1 and σ 2

ϕ = 1 millidegree2 in range and bearing,
respectively. All mentioned filters are initialized with the
perfect start values of the targets position and velocity.
Furthermore, they use a perfect matching evolution
model. For the latter, we chose a Continuous White Noise
Acceleration Model [25], i.e., the transition probability
density function for a given state xk at time tk to xk+1 at tk
+1 is given by the following linear Gaussian model:

p(xk+1|xk) = N (xk+1; Fk+1|kxk,Qk+1 | k), (19)

where

Fk+1|k =
(
1 T1
O 1

)
, (20)

��� ���

Figure 2 Links obtained by some θm where m = k (a) and m = k - 1 (b).

Figure 3 Mean processing time per scan over increasing mean time delay.
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Qk+1|k = q ·
( 1

3T
3 · 1 1

2T
2 · 1

1
2T

2 · 1 T · 1
)
, (21)

T = (tk + 1- tk). (22)

Here, the parameter q describes the speed variance for
an update interval of T = 1 s. We use the abbreviation 1
for an identity matrix in the dimension 2. For each
setup of this parameter, 1000 Monte Carlo simulations
were run, where we tracked the target for 500 steps.

The communication link effect is simulated by an addi-
tional Poisson distributed delay μk with mean and var-
iance �̄k for each measurement transfer from the sensor
to the fusion center. This causes a regular appearance of
OoS measurements. After every update, we quantify the
root mean squared error (RMSE) of the filters estimate
according to the real target position. Furthermore, we
meter the processing time of the filter for each run.
This reveals the efficiency regarding to the numerical
complexity of the algorithm.

Figure 4 Mean track deviation for OoS-DPA.

Figure 5 Mean number of false tracks and non-detections.
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In Figures 6, 7, 8, 9, 10, and 11, the results of the
RMSE over an increasing mean time delay �̄k = E[�k]
are presented. It can easily be seen that the accuracy of
the Al1 algorithm decreases for stronger maneuvering
targets and highly delayed measurements. For almost
deterministic targets (q = 0.01), a difference in the per-
formance between the three algorithms cannot be
observed. In any case, the ASD filter has an equal
RMSE to the reprocessing KF. However, the ASD filter
is much more efficient regarding to the numerical com-
plexity of the state smoothing and OoS processing. This
can be seen in Figures 12 and 13, where a boxplot of
the processing time is given for each algorithm. Here,
one can also see that the effect of reprocessing measure-
ments in this simple case (i.e., perfect data-to-target
association, no false measurements, perfect detection) is
very low. This effect, however, will increase in more rea-
listic scenarios, where those conditions are not given.
Furthermore, the advantage of a unified handling of fil-
tering and retrodictiona becomes obvious, as the ASD
algorithm handles it in less than half of the time
required for a separate retrodiction.

4.3. Implementation setup for real data set
Depending on the given circumstances, either communi-
cation channels might be of limited capacity, or high
bandwidth links might be available. To cover these pos-
sible situations, we consider three different setups:

(i) Single sensor performing TBD on a local sensor
site which is connected to a Fusion Center (FC)

which maintains the tracks. OoS measurements
appear due to varying delays on this link. This setup
is visualized in Figure 14.
(ii) Multiple sensors with separated local TBD mod-
ules connected to a FC performing an ASD (see Fig-
ure 15). In this scenario, as well as in the previous
one, only new tracks and thresholded measurements
are sent via the network.
(iii) Sensors connected to a FC performing a centra-
lized TBD methodology and maintaining the tracks.
In this scenario, the raw sensor data are sent to the
FC, depicted in Figure 16.

The data set used was provided by DSO National
Laboratories (DSO) and consists of raw sensor data
obtained by a two-dimensional radar system. It includes
389 scans, which corresponds to about 15 min at a
given scan rate of T = 2.2 s. At certain instants of time,
up to ten targets can be found. The test for existing tar-
gets is done by a DPA algorithm. If the test for target
existence turns out with a positive result, a new track is
initialized. It consists of the Least Squared Errors (LSE)
approximation of the recent 15 states and is passed to
the TM. This maintenance also essentially consists of a
Sequential-Likelihood-Ratio test, as proposed in [21].
The result of it is called LR-score and depends on the
choice of various parameters. Most of them will be
explained below.
4.3.1. Filter parameters
Essentially, there are two thresholds A <B to test for
track continuation. A LR-score below A will lead to a

Figure 6 Simulative results for q = 10.0.
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track deletion, while a score above B indicates a track
confirmation. If the score is in between of both, the
track is continued, but not be confirmed, i.e., its track-
ing results are not displayed. A new track arising from
the DPA is initialized with an LR-score LR0 = 1/10 · B.
Therefore, it is not assumed to be confirmed, unless it
can be observed by the TM for at least one additional

step, depending on the chosen values for track detection
PD and the mean false measurement density rF.
Another important parameter for TM is μtm, which

gives a lower bound for the distance of two targets
before their corresponding tracks are merged. A similar
threshold is given on a lower level, as we use a Multi-
ple-Hypotheses-Tracker (MHT) [24] extension for the

Figure 7 Simulative results for q = 5.0.

Figure 8 Simulative results for q = 2.0.
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ASD filter [3]. In order to keep numerical expenses at a
decent level, similar hypotheses are merged, if their
weighted distance d = (x1 - x2)⊤ (P1 + P2)-1 (x1 - x2) is
lower than the threshold μhm [26]. Here, xi and Pi repre-
sent the state and the covariance, respectively, for the
ith track. Furthermore, hypotheses with a probability
lower than a threshold μp are deleted immediately.

An overview of all mentioned parameters is given in
Table 1.
4.3.2. Results
In order to give a comparison in the mean tracking
error, an exact ground-truth trace for some targets
would be necessary. However, such a trace is not avail-
able for the real data set. Therefore, we present the

Figure 9 Simulative results for q = 1.0.

Figure 10 Simulative results for q = 0.1.
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gained tracking results as situation pictures at an arbi-
trarily chosen but fixed instant of time.
4.3.3. Scenario one
At first, we have a look at the results of scenario one.
Here, a Poisson distributed delay for both, measure-
ments and DPA output of a single sensor, is inserted
with a mean delay �̄k of 0,10, and 20 s, respectively. Fig-
ure 17(a) - 17(c) and 17(d) - 17(f) shows all tracks
occurring at the 300th scan, i.e., at time t = 660 s, in

range-bearing and x-y space, respectively. On the left
hand, a star indicates a position of track initialization,
while a diamond is set at the track deletion. A green
line in between shows the trace of a target. It includes
all positions obtained by processing the data arrived up
to the chosen scan. Due to possible delays for �̄k > 0,
information contained in scans of later instants of time
might be processed already. This explains why some
tracks appear advanced further in comparison to the

Figure 11 Simulative results for q = 0.01.

Figure 12 Processing time for ordered case, �̄k = 0 s.
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Figure 13 Processing time for OoS case, �̄k = 20 s.

Figure 14 One sensor, TBD, and ASD.

Figure 15 Multiple sensors and TBD, single ASD.
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ordered case (�̄k = 0 s). A similar effect can be observed
in the x-y space on the right hand. Here, the red rectan-
gle indicates the sensor position and estimated positions
in an ASD are plotted by blue crosses. With increasing
mean delay �̄k, the accumulated state positions are
stretched further apart. This is due to the fact that the
ASD contains states corresponding to a wider range of
points in time.
4.3.4. Scenario two
For an evaluation of the second scenario, the data set was
split up. Two sensors were simulated, the first using all
even scans, the second using all odd scans. Furthermore,
in order to obtain a gain of the sensor fusion on common
tracks, each sensors Field of View (FoV) was restricted to
a fixed part of a full circle. This is shown in Figure 18,
where the filled area corresponds to the FoV.
The tracking results are given in Figure 19. As one

can see, the all tracks of the optimal case, where �̄k = 0,
can be recovered in the OoS cases. To this end, the
fusion center benefits from both sensors without the
need of storing and reprocessing data. The thresholded
measurements from sensor 1 can be seen in Figure 19

(d)-19(f) as thin black dots. The effects described for
scenario one apply in this situation, too.

5. Conclusion
In this article, we proposed a new extension to the DPA
approach for TBD challenges. This extension enables
the DPA to process time-delayed sensor data directly.
These might appear because of delays in communication
networks. The extended DPA is identical to the stan-
dard DPA for case all sensor data appears in the timely
correct order. Therefore, one might speak of a natural
extension. However, some approximations to the exact
solution are necessary to prevent dramatically increasing
costs on numerical power. In an evaluation on a data
set of a real radar system, this approximation was
shown to have at most marginal effect on the results.
This is supposed to hold whenever the observed targets
are in a non- or moderate-maneuvering state during the
track extraction phase.
Then we numerically proved that the intensity of the

process noise can have severe impact on the estimation
error when using approximations. The results clearly

Figure 16 Multiple sensors, single TBD, and ASD.

Table 1 Parameter overview for TM

Parameter Value Explanation

PD 0.6 Detection probability for a target by thresholded sensor data.

|FoV| π · (60 m × 400)2 ≈ 1.8 × 109 m2 Size of sensors Field of View (FoV)

rF 100/|FoV| Clutter density

A (1 - PD)/(1 - rF) Track deletion threshold

B PD/rF Track confirmation Threshold

C 1030 · B Maximum LR-score of tracks. This prevents a numerical overflow of LR-score

LR0 1/10 · B Initial value of LR-score for new tracks

μtm 5 × 103 Threshold for track merging

μhm 1 × 102 Threshold for hypotheses merging

μp 0.01 Threshold for hypotheses dumping

ASD length 15 Number of states in the ASD filter
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show that an ASD filter processes OoS measurements
optimally in terms of a mean squared error, i.e., equiva-
lent to a KF reprocessing outdated data.
Last but not least, we applied the combination of a

DPA and an ASD on data of a real radar sensor system.
As no ground-truth is available, we cannot derive an

estimation error. However, the situation pictures give an
impression of how seamless this combination worked
out. The experienced process time might be higher than
a KF using Global Nearest Neighbor (GNN) [24], but it
is still applicable for real time processing. Furthermore,
it is clear that tracking results of an MHT is superior to
the GNN scheme, because it involves all measurements
within the selected gate [27]. A more profound analysis
of this consideration about tracking performance and
processing time is left as future work at this point.

Endnote
aWe prefer the term retrodiction to smoothing, as it com-
bines the process of prediction and a retrospective view.

��� k̄ = ��� k̄ =

��� k̄ = 1 ��� k̄ = 1

��� k̄ = 2 ��� k̄ = 2

Figure 17 Track visualization in range-bearing space (a)-(c) and x-y space (d)-(f) after 300 scans for various mean delays �̄k. (a)

�̄k = 0 s, (b) �̄k = 10 s, (c) �̄k = 20 s, (d) �̄k = 0 s, (e) �̄k = 10 s, (f) �̄k = 20 s.

Figure 18 Field of view of sensor 1 (left) and sensor 2 (right).
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