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Abstract

Recently, the necessity for content-based music retrieval that can return results even if a user does not know
information such as the title or singer has increased. Query-by-humming (QBH) systems have been introduced to
address this need, as they allow the user to simply hum snatches of the tune to find the right song. Even though
there have been many studies on QBH, few have combined multiple classifiers based on various fusion methods.
Here we propose a new QBH system based on the score level fusion of multiple classifiers. This research is novel in
the following three respects: three local classifiers [quantized binary (QB) code-based linear scaling (LS), pitch-based
dynamic time warping (DTW), and LS] are employed; local maximum and minimum point-based LS and pitch
distribution feature-based LS are used as global classifiers; and the combination of local and global classifiers based

on the score level fusion by the PRODUCT rule is used to achieve enhanced matching accuracy. Experimental
results with the 2006 MIREX QBSH and 2009 MIR-QBSH corpus databases show that the performance of the
proposed method is better than that of single classifier and other fusion methods.
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1. Introduction

With the rapid increase in music data on the Internet,
MP3 players, portable media players (PMP), and smart
phones, it is more difficult for the users to find the cor-
rect file they want. In addition, if they do not know the
information details such as the title and singer’s name,
more time is needed for searching. To overcome these
problems, the query-by-humming (QBH) method has
been introduced as a natural interface based on melody
that can search for the corresponding music file accord-
ing to the user’s humming.

In general, the humming and music data are repre-
sented as magnitude values on a time axis. By using
short time Fourier transform (STFT), the pitch (funda-
mental frequency) can be extracted from the humming
and music data. Although the pitch value corresponds
to musical notes (e.g., the pitch values 440 and 494 Hz
represent the musical notes “la” and “ti” respectively
[1]), there exist fluctuations in the pitch value caused by
the errors in pitch extraction (tracking) due to
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background noise. To overcome these problems, the
note-based method was introduced, where the pitch
sequence is segmented into (musical) notes [2]. Since
the notes have characteristics of discrete values (i.e.,
“do”, “re”, “mi”, etc.), the note-based method is similar
to that representing continuous pitch values as quan-
tized ones. Through representation as discrete values,
fluctuation in the pitch value can be reduced, and the
possibility of the existence of the same note in some
period is increased. Thus, additional features such as the
musical interval, duration, and tempo can be used in the
note-based method [3-8]. However, inaccurate note seg-
mentation from the pitch value can degrade the match-
ing accuracy. Thus, the frame-based method, which uses
the original pitch values as features, has also been stu-
died [2,9-12].

For matching methods, previous research on QBH was
divided into bottom-up and top-down methods [13,14].
In the bottom-up method [3-7,9-11], the two waveforms
of query humming and the target music file are locally
compared. Based on the results of local matching, the
optimal matching path is determined. In contrast, the
global shapes of the two waveforms are compared in the
top-down methods, and the local information of the
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waveform is also used to adjust the matching results of
the global shape [2,8,12]. Based on this taxonomy (i.e.,
note-based and frame-based methods, bottom-up and
top-down methods), previous studies can be classified as
follows [13,14].

Studies involving the first category of note-based and
bottom-up methods have been performed [3-7] as fol-
lows [13,15]. The MELDEX system uses string matching
based on the pitch contour, interval, and duration [3,4].
In the Themefinder system, a user can find the music
theme from the Humdrum database of 16th century
classical music and folk songs on the Internet [5,6]. It
also uses string matching based on the pitch and inter-
val. Blackburn et al. developed a method using string
matching of the up-down-repeat (UDR) string based on
changes in the music melody [7].

In the second category of note-based and top-down
methods, a QBH system based on the earth mover’s dis-
tance (EMD) was proposed [8]. The EMD algorithm can
calculate the minimum cost between the humming and
music features with change in weight, which are used to
calculate the similarity between two melodies.

The studies of [9-11] belong to the third category of
frame-based and bottom-up methods as follows [13,15].
Ghias et al. used pitch data instead of musical notes and
represented them as the UDR string for matching [9].
The Melody Hound system [10] also uses the pitch con-
tours and represents them as the UDR string like [9].
The dynamic time warping (DTW) based method [11]
extracts the pitch vectors from the input singing and
performs bottom-up matching based on DTW using the
input and stored pitch vectors.

The last category involves frame-based and top-down
methods [2,12] as follows [13,14]. Since linear scaling
(LS) based matching cannot solve the problem of non-
linear alignment between the input humming and stored
music data, the recursive alignment (RA) algorithm has
been proposed [2] to solve the problem by attempting
local matching recursively. Ryynanen et al. extracted the
pitch vectors using a time window of fixed length and
used the locality sensitive hashing (LSH) method for
matching [12].

Most of the previous methods used a single matcher
[2-12], which has the limitation of performance
enhancement [13]. To overcome this problem, Wang et
al. combined two classifiers such as EMD and DTW.
However, they used only the weighted SUM method as
a combination rule without comparing various fusion
rules [16]. Thus, Nam et al. proposed the method of
combining only two “local” classifiers of pitch-based
DTW and the quantized binary (QB) code-based LS
algorithm by fusing the scores for the MIN rule based
on the comparisons of various fusion rules [13]. How-
ever, the performance enhancement from using two
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“local” classifiers is limited. That is, because, for measur-
ing the similarity of humming and MIDI data, the points
of humming data are compared with those of MIDI data
one by one (locally), which does not consider the global
shapes formed by humming and MIDI data. Thus, we
propose a new QBH system based on the score level
fusions of multiple classifiers. The pitch values are
extracted using the spectro-temporal autocorrelation
(STA) method. The extracted pitch values are normal-
ized by the mean-shifting, median filtering, average fil-
tering, and min-max scaling methods. Pitch-based linear
scaling (LS), dynamic time warping (DTW), and linear
scaling (LS) with the quantized binary (QB) code of the
pitch data are used as three “local” classifiers. The local
maximum and minimum point-based LS and pitch dis-
tribution feature-based LS are also used as two “global”
classifiers. The global classifier measures the dissimilar-
ity between humming and MIDI data based on the glo-
bal shapes formed by humming and MIDI data.

Finally, through the combination of these five classi-
fiers by the score level fusion of the PRODUCT rule
based on comparisons of various fusion rules, the per-
formance of the QBH system is greatly enhanced. We
proved this by comparing the results for the proposed
method to those for a single classifier and various other
fusion methods. By using both local and global classi-
fiers, the matching accuracies of the proposed method
were enhanced as compared to the previous research
[13] as shown in Tables 1, 2, 3 and 4. Since both the
local and global classifiers are used based on the pitch
values, the proposed method can be regarded as frame-
based and a hybrid of the bottom-up and top-down
methods.

The remainder of this paper is as follows. In Section 2,
the proposed method is explained. The experimental
results are shown in Section 3. The conclusion follows
in Section 4.

2. Proposed method

2.1. Overview of the proposed method

Figure 1 shows the overall procedure of the proposed
method. In our study, the music file was stored in the
musical instrument digital interface (MIDI) file format
[13]. The pitch value is extracted through musical note
estimation from the humming data input by the user.
All the zero values of the humming pitch and MIDI
data were removed [13-15,17,18]. Since MIDI is made
from musical instruments, the MIDI file waveforms
usually include less noise and vibration as compared to
the humming data, whose differences degrade the
matching accuracy. To overcome these problems, the
pitch values of humming and MIDI are normalized; this
includes mean-shifting, median filtering, average filter-
ing, and min-max scaling as follows [13-15,17,18].
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Table 1 Comparison of the matching accuracies using the PV files of the 2006 MIREX QBSH corpus database

Method Criterion
Top 1 (%) Top 10 (%) Top 20 (%) MRR
LS (Section 24.1) 60.17 82.09 91.96 0.678
Pitch based DTW (Section 2.4.2) 57.81 83.77 92.63 0.663
QB code-based LS (Section 2.4.3) 65.00 83.20 93.78 0.716
Feature point overlap (Section 2.4.4) 4120 7245 82.87 0.518
Distribution (Section 24.5) 13.09 57.63 78.87 0.264
Decision level fusion (OR) 5041 80.11 99.00 0616
Previous method [13] 7118 86.13 93.17 0.753
Score level fusion MIN 77.82 85.02 91.62 0.798
MAX 5851 81.12 8846 0.665
SUM 68.72 85.56 9294 0.745
Weighted SUM 69.22 85.60 92.76 0.748
PRODUCT (proposed method) 78.14 85.81 93.08 0.802

Through mean-shifting, both the DC levels of MIDI
and the input humming data are set to 0. The peak,
shaking, and vibration noises are the removed by using
the median and average filtering. Since amplitude varia-
tion exists between the MIDI and input humming, min-
max scaling is used to compensate. The normalized data
are used for matching [13-15,17,18].

Five scores (distances) are calculated from five classi-
fiers: pitch-based LS, pitch-based DTW, QB code-based
LS, local maximum and minimum point-based LS, and
pitch distribution feature-based LS. Finally, the five cal-
culated scores are combined by the PRODUCT rule.
Based on the combined score, the ranking of the match-
ing MIDI file is determined in the database. The correct
MIDI file (corresponding to the humming) is found
based on the calculated ranking.

2.2. Pitch extraction using musical note estimation
In the proposed QBH system, the sampling period of
pitch data is 32 ms. In particular, a voice-activity

detection algorithm is used to extract the pitch only
from the voiced frames [13,17-19]. The voiced frames
are estimated and the integer pitch data are then
searched by the STA method with the format expanded
speech signal S{#), in which both temporal and spectral
autocorrelations (SAs) are used [13,17,18,20]. The tem-
poral autocorrelation (TA) for lag 7 and the SA methods
are defined as shown in Equations 1 and 2 [13,18].

N—-7t-—1
> S(m)Sy(n+7)
Ri@)= " (1)
N—t—1 N—-7t-—1
> S Y Spn+r)
n=0 n=0
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,;, Sy (k) S¢ (ke + ke )
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> Sk Y SHlk+ke)
k=0 k=0

Table 2 Comparison of matching accuracies using the PV files of the 2009 MIR-QBSH corpus database

Method Criterion
Top 1 (%) Top 10 (%) Top 20 (%) MRR
LS (Section 2.4.1) 58.38 82.14 91.87 0.666
Pitch-based DTW (Section 2.4.2) 56.64 84.28 9293 0.657
QB code-based LS (Section 2.4.3) 64.18 8232 91.08 0.706
Feature point overlap (Section 2.4.4) 42.16 72.85 82.66 0.525
Distribution (Section 2.4.5) 12.83 57.14 78.84 0.264
Decision level fusion (OR) 50.56 79.74 98.83 0617
Previous method [13] 70.14 86.16 93.04 0.746
Score level fusion MIN 76.74 84.39 91.53 0.789
MAX 5942 79.92 88.08 0.667
SUM 6827 85.93 9341 0.743
Weighted SUM 69.11 85.19 9341 0.747
PRODUCT (proposed method) 7717 85.89 93.07 0.794
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Table 3 Comparison of matching accuracies using the extracted pitch data by the STA pitch extractor with the 2006

MIREX QBSH corpus database

Method Criterion
Top 1 (%) Top 10 (%) Top 20 (%) MRR
LS (Section 24.1) 52.31 7762 8945 0610
Pitch-based DTW (Section 2.4.2) 51.76 79.75 8942 0.605
QB code-based LS (Section 2.4.3) 5935 78.94 89.20 0.664
Feature point overlap (Section 2.4.4) 3761 68.22 79.26 0483
Distribution (Section 2.4.5) 10.55 53.49 76.15 0239
Decision level fusion (OR) 46.13 75.03 98.56 0.573
Previous method [13] 6540 82.37 91.12 0.702
Score level fusion MIN 72.08 79.78 88.56 0.747
MAX 5851 81.12 8846 0.665
SUM 63.15 81.29 90.32 0.693
Weighted SUM 62.68 81.11 9046 0.690
PRODUCT (proposed method) 7298 81.50 90.32 0.754

In Equation 1, N is a frame size of 240 samples. S/(k)
is the Kth Fourier spectrum of S{u), and k , = K/t in
Equation 2 [13,18]. The STA method finds the time-
domain pitch period 7* because the TA and SA methods
produce pitch doubling and halving, respectively [13,18].
7* is defined as shown in Equation 3 [13,18].

3)

where 7,;, and 7, are set to 7 and 107 samples,
respectively, for a sampling frequency of 8000 Hz
[13,18].

Tt =arg maxtminirirmax{RT(T) + RS(T)}

2.3. Normalization of the extracted features

In general, there are many differences between the MIDI
data and user’s humming data, and normalization is
required. As the first step, all zero value components
obtained from the silent (muted) samples are removed.

All the zero values in the humming pitch and MIDI
data are removed [13-15,17,18].

Since the MIDI is made using musical instruments,
the waveform of MIDI files usually includes less noise
and vibration as compared to the humming data, as
shown in Figure 2; the differences degrade the matching
accuracy. To overcome these problems, the pitch values
of humming and MIDI are normalized; this includes
mean-shifting, median filtering, average filtering, and
min-max scaling as follows [13-15,17,18].

The mean level of the humming is usually different
from that of the MIDI data, as shown in Figure 2a, b.
Through mean-shifting, both the DC levels of the MIDI
and input humming data are set to 0 [13-15,17,18]. The
peak, shaking, and vibration noises are removed by med-
ian and average filtering. These noises are the surround-
ing and line noises that often occur during recording

Table 4 Comparison of matching accuracies using the extracted pitch data by the STA pitch extractor with the 2009

MIR-QBSH corpus database

Method Criterion
Top 1 (%) Top 10 (%) Top 20 (%) MRR
LS (Section 2.4.1) 5777 81.63 92.10 0.660
Pitch-based DTW (Section 2.4.2) 5541 83.68 9255 0.647
QB code-based LS (Section 2.4.3) 62.88 8197 90.90 0.699
Feature point overlap (Section 2.4.4) 42.00 72.74 82.69 0.527
Distribution (Section 24.5) 12.16 5832 79.87 0.261
Decision level fusion (OR) 51.28 79.30 99.07 0619
Previous method [13] 69.10 8542 92.78 0.736
Score level fusion MIN 7712 83.93 91.29 0.790
MAX 5913 81.09 88.29 0.665
SUM 68.97 85.71 93.55 0.745
Weighted 69.08 85.20 9341 0.745
SUM
PRODUCT (proposed 77.27 85.56 93.12 0.793

method)
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Figure 1 Overall procedure of the proposed method.

and can also be caused by the vibrato of the user’s voice
[13-15,17,18]. The median filter is an order-statistic fil-
ter [21] and is strong enough to remove the random
peak noise [13-15,17,18]. The average filter is used to
eliminate the shaking and vibration noises [13-15,17,18].

Since an amplitude variation exists between the MIDI
and input humming, min-max scaling can be used to
compensate [13-15,17,18]. These normalized data are
used for matching. Figure 3 shows the normalized pitch
data of Figure 2.
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Figure 2 Extracted pitch contours before normalization: (a) the

MIDI file; (b) the humming file.

. 6
Pitch
Data *
2
. Time(ms)
rNYRLREREE S
-2
-4
-6
(a)
. 6
Pitch
Data *
2
. Time(ms)
-2
-4
-6
(b)
Figure 3 Normalized pitch contours of Figure 2: (a) the MIDI file;
(b) the humming file.

2.4. Matching algorithm

2.4.1. Pitch-based LS algorithm

There are many algorithms for matching input humming
and an MIDI file. Of these, the linear scaling (LS) algo-
rithm is the simplest and quite effective. The main idea
of this method is rescaling the input humming. The
length of the input humming is not always equal to the
corresponding part in the MIDI data [17]. Therefore, the
length of the input humming should be compressed or
stretched to reach the length of the correct part in the
MIDI file [2]. In this study, humming data was stretched
by a scale factor from 1.0 x to 2.0 x at increments of 0.05
x (1.0 x, 1.05 %, 1.1 x, 1.15 x,..., 2.0 x) for matching, as
shown in Figure 4 [17]. The optimal scale factors and
steps were empirically determined for the database.

Correct patt
in MIDI file
Scale factor= 1.0
(original input humming)
Scale factor = 1. 1\/\%]
Scale factor=1.2
(matched with MIDI)
Scale factor = 2.0\/\_/——\_\/\/'J

Figure 4 Example of using the LS algorithm to match
humming and MIDI [17,18].
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The dissimilarity between the MIDI and humming is
calculated by the Euclidean distance (ED), as shown in
Equation 4 [17].

ED(p.q) = | D (pi — i) )

i=1

In Equation 4, p; and ¢g; are the pitch values in the
input humming and the corresponding part of the MIDI
file, respectively.

2.4.2. Pitch-based DTW algorithm

It is often the case that the original music file includes
the whole song, while a user hums the part of the song.
Thus, the length of the humming is different from that
of the stored music file. In addition, a user can hum fas-
ter or slower as compared to the original music file, and
some parts can be missing or added during humming.
Thus, a matcher that can solve these problems should
be considered; the DTW method [13-15,18] was used in
this study. DTW matching is mainly used to measure
the dissimilarity between two waveforms through inser-
tion and deletion.

For good matching by DTW, some constraints are
required. The first is for starting and ending positions.
In other words, the starting and ending positions of the
two waveforms to be matched should be the same for
the DTW algorithm [13,18]. Supposing that Figure 5a, b
are the humming and MIDI files, respectively; these two
waveforms can be successfully matched by DTW since
the starting and ending positions of these two wave-
forms are coincident, even though the lengths on the
time axis are different from each other [13,18]. How-
ever, since the ending position of Figure 5c is different

Pitch
Data

Pitch
Data

Iime Time

(a) (b)

Pitch
Data

Time

(c)
Figure 5 First constraint in the DTW matching algorithm: (a)
input humming data; (b) MIDI data with the same starting and
ending positions as (a); (c) MIDI data with different ending positions
from (a).
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from that of Figure 5a, these two waveforms cannot be
successfully matched by DTW [13,18].

The second constraint is the search space [13,18], as
shown in Figure 6. The red line from A to B shows the
optimal path for matching between the MIDI and hum-
ming data. However, since the DTW algorithm cannot
know the optimal path globally, all of the paths from A
to B are attempted if there is no prior knowledge; in
each path, the dissimilarity between the MIDI and hum-
ming waveforms is measured. In this case, based on the
knowledge that a user usually hums a song quite simi-
larly to the original music file (not much faster or
slower), we can reduce the search space. In other words,
by simply searching the paths in the part of the whole
space, the MIDI can be successfully matched with the
humming data in reduced matching time [13,14,18]. In
our study, we defined the search space as the parallelo-
gram shape defined by ADBF in Figure 6. By using the
line boundary of the search space instead of the curve,
we can reduce the processing time [13,14,18]. By chan-
ging the positions of D and F in Figure 6, we can easily
define the size of the searching area of the DTW
method [13,14,18]. However, excessive reduction of the
search space can degrade the matching accuracy. Thus,
the optimal size was experimentally determined in terms
of matching accuracy. The experimental results showed
that the matching accuracy was best when the ratio of
line lengths DE to CE was 0.25 [13].

Since any part of the original music can be hummed
by a user, the starting position for matching was not
known in general. Thus, the searching procedure shown

Figure 6 Constraint of search space for DTW.
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in Figure 6 was performed by moving the starting posi-
tion of the humming file relative to the MIDI file
[13-15,18], as shown in Figure 7.

Since the length of the input humming is not always
equal to the part in the MIDI data, all of the MIDI data
were stretched by scale factors [13,14,18] from 1.0 x to
2.0 x in increments of 0.2 x (1.0 x, 1.2 x, 1.4 x, 1.6 x,...,
2.0 x) for matching.

At each position, the dissimilarity between the hum-
ming and MIDI features was measured using Equation 5
[13-15,18,22]:

=1
¥ [ri(m) — g(m — ps))?

"=0 , 0<mm—ps<M-—1 (5)
M

dps(riy 5) = L ot
> r?(m)\/ z a7 (m — ps)

Humming Data

Pitch Data

~

_ r
Time

; A
Pitch Data

~__ MIDI Data

‘ Timé
7 Humming Data
Pitch Data / i
=
! Time
\ N
Pitch Data MIDI Data
r—
‘ Time
K Humming Data
Pitch Data |
Time

Pitch Datd] MIDI Data

Timé
Figure 7 Matching by moving starting position of the
humming data relative to the MIDI data.
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In Equation 5, g; (m-ps) and ri(m) represent the hum-
ming data and MIDI file, respectively. g; (m) is matched
with r;(m) by shifting the constant intervals of ps
[13-15,18], as shown in Figure 7.

2.4.3. QB code-based LS algorithm

For the third matcher, the LS algorithm based on the
QB code of the pitch data was used [13]. Since the origi-
nal pitch data have variations as compared to the MIDI
file, we represent the continuous pitch values as quan-
tized binary numbers to reduce small differences
between the pitch values of the humming and MIDI
[13,17]. Figure 8 shows an example of obtaining the QB
codes from the pitch data. The range between the mini-
mum and maximum pitch values is uniformly divided
into ten sections, and 9-bit code is assigned in each sec-
tion. In detail, the codes of 000000000, 000000001,
000000011, 000000111,..., 111111111 are assigned to
section 0, 1, 2, 3,..., 9, respectively [17].

If we assign 000000001 and 000000010 in Sections 1
and 2, respectively, the small variation in pitch value at
the boundary position of these two sections can causes
2-bit errors (000000001 — 000000010, or 000000001 «
000000010). To solve this problem, we assigned 9-bit
codes so that in each consecutive section, each code
changes by 1 bit, i.e., 000000000 — 000000001,
000000001 — 000000011, 000000011 — 000000111
[13,17].

As shown in Figure 8, the pitch values of -4.53 and
5.00 are represented as 000000000 and 111111111,
respectively. The pitch value of -2.12 is represented as
000000011. The optimal number of the section shown
in Figure 8 was experimentally determined to be 10.

The QB codes of humming data were linearly stretched
on the time (horizontal) axis by a scale factor [13,17]
from 1.0 x to 2.0 x at increments of 0.05 x (1.0 x, 1.05 x,
1.1 %, 1.15 x,..., 2.0 x) for matching, similar to the pitch-
based LS algorithm of Section 2.4.1 and Figure 4.

The dissimilarity between the MIDI file and humming
data was measured based on the HD, as shown in

5.00 — 111111111
A

Pitch® |
Data: — Section 9

—Scction 8

Section 3
_ Section 2
Section 1
__Section 0

v
=4.33 —» 000000000 2,12 — 000000011

2
Figure 8 Example of QB codes obtained from the pitch data.
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Equation 6 [13,17]. Since the HD just includes the
operation of exclusive OR, its processing speed is faster
than other distance metrics such as the Euclidean dis-
tance that include the operation of a square root.

up _ 1A®BI ©
N

where A and B represent the extracted QB codes of
the MIDI and input humming data, respectively. ®
means the Boolean exclusive-OR operator between two
QB codes. N is the total number of bits of the QB code
for the MIDI or input humming data [13,17].

2.4.4. Local maximum and minimum point-based LS
algorithm

Pitch-based LS, DTW and QB code-based LS algorithms
perform matching based on details and local information
of the pitch. Thus, these methods have the disadvantage
in terms of processing speed, and their performances can
be affected by local variations in the pitch data. The local
maximum and minimum point-based LS algorithm was
introduced as a global classifier [18,23].

As shown in Figure 9, the MIDI data are matched
with the humming data based on the local maximum
and minimum points.

The local maximum and minimum points are detected
as follows [18,23]. Based on the graph and calculated
gradient of the pitch data shown in Figure 9a, b, three
states are defined: ascending, descending, and zero

N 12
Pitch
Data™®

CAALL I O e |

1
8
15
r4

O\\Dmol\mn—twl.ﬂl\lc!gmor*-q-—i
TESRLEIARESSEAMBNAS
L e B B I ]
Time(ms)

@)

Figure 9 Local maximum and minimum point-based LS
algorithm [18,23]. (a) humming data; (b) MIDI data.
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gradients. By tracing and calculating the gradient of the
graph shown in Figure 9, if the ascending state changes
to a zero gradient or descending state at the current
point, that is a local maximum. If the descending state
changes to a zero gradient or ascending state at the cur-
rent point, that is a local minimum. Finally, if the zero
gradient state changes to an ascending or descending
state, that is a local minimum or maximum, respectively.

As shown in Figure 9, if two local maximum or mini-
mum points (of humming and MIDI data) belong to a
same rectangle with same kind (maximum or minimum
point), the two points belong to a same rectangle with
different kind, and the two points belong to different
rectangles, their distances are determined as 5, 4 and 0,
respectively [18,23].

In general, the length of humming data is frequently
not same to that of MIDI data. So, the horizontal posi-
tions of minimum or maximum points of MIDI data are
linearly stretched from 1.0 x to 2.0 x with the step of
0.2 while matching [18,23]. The width of rectangle is
linearly altered considering the stretching factor (scale
factor) [18,23].

2.4.5. Pitch distribution feature-based LS algorithm

In general, the overall pitch waveform of humming tends
to be more similar to that of the genuine MIDI file as
compared to that of different MIDI files. Thus, we used
the pitch distribution feature-based LS algorithm as
another global classifier [23]. The waveforms of hum-
ming and the MIDI file, such as that shown in Figure 3,
are considered as the pitch distributions.

The seven histogram features (energy, entropy, med-
ian, variance, skewness, kurtosis, and coefficient of varia-
tion) are extracted for calculating the similarity of two
distributions [23].

Each feature represents the overall shape of the pitch
waveform [23]. The skewness represents the measure of
asymmetry [24]. Kurtosis represents the measure of peak-
edness. Based on the seven feature values, the ED between
the humming and MIDI file is calculated, and the ranking
of the matched MIDI file is determined in the database
based on the distance [23]. Since the lengths of the hum-
ming and MIDI data can be different, the MIDI data are
stretched by a scale factor [23] from 1.0 x to 2.0 x (1.0 x,
1.2 x,..., 2.0 x) by linear scaling and matched as shown in
Figure 4. The optimal scale factors and steps were also
empirically determined with the database.

2.5. Combining five scores by score level fusion

Given one humming data sample, five matching scores
to one MIDI file can be obtained by the five matchers
(Section 2.4). With these five scores, we obtain one final
score by using the score level fusion method. Various
methods exist for score level fusion [25], such as the
MIN, MAX, PRODUCT, SUM, and Weighted SUM
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rules as follows [13]. Through the MIN rule, we select
the minimum value of all of the scores. The MAX rule
selects the maximum score. The PRODUCT rule
obtains the multiplied value of all of the scores. The
SUM rule obtains the summed value of all of the scores.
The Weighted SUM rule obtains the summed value
with weights. The optimal weight values for the
Weighted SUM rule were empirically determined.

For example, assuming that the five scores are 0.4, 0.3,
0.2, 0.7, and 0.8, the MIN, MAX, PRODUCT, SUM, and
Weight SUM (with weights of 1, 2, 3, 4, and 5) scores
are 0.2, 0.8, 0.01344 (0.4 x 0.3 x 0.2 x 0.7 x 0.8), 2.4
(0.4 +03+02+0.7 +0.8), and 8.4 (0.4 x 1 + 0.3 x 2
+0.2 x 3+ 0.7 x4 + 0.8 x 5), respectively.

3. Experimental result

In this study, two open databases were used to compare
accuracy like [13]: the 2006 MIREX QBSH corpus and
2009 MIR-QBSH corpus. These two are the most com-
monly used for performance comparisons [26,27]. They
include 48 MIDI files as original music melodies. The
2006 MIREX QBSH corpus was used for the Query by
Singing and Humming (QBSH) International Contest
(MIREX 2006, 2007 and 2008). There are 2,797 singing
and humming queries, and they are stored in the wave
file format. The 2009 MIR-QBSH corpus was used in
MIREX 2009. Although the number of MIDI files is the
same to that of the 2006 MIREX QBSH corpus, the
number of singing and humming queries was increased
to 4,431. Both the 2006 MIREX QBSH corpus and 2009
MIR-QBSH corpus were collected from 118 persons
using telephones, microphones, etc. to consider various
recording conditions. In the first experiment, the pitch
vector (PV) files of the databases were used for perfor-
mance comparisons. The pitch values in the PV files
were manually extracted; they were mainly used for the
matching performance excluding the performance of the
pitch extractor. The sampling period of pitch values in
the PV file was 32 ms, and there were 250 pitch values
in each query file since the recording time was 8 s
[13,14,17].

First, we measured the performances of five matching
algorithms (Section 2.4) with the PV files of the 2006
MIREX QBSH corpus database, as shown in Table 1.
The mean reciprocal rank (MRR) is shown in Equation
7 and was used as the performance measurement criter-
ion; it was widely used in previous studies for the QBH
and MIREX contests [13,14,17,18,23,28].

1 1
MRR = 7
k ; rank; @

where k is the number of input files and rank; means
the ranking of the correct MIDI file (corresponding to
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the input humming file) as calculated by the proposed
method. For example, suppose that there are only two
input humming files (k of Equation 7 is 2). Given the
first input humming file, the ranking of the correct
MIDI file is inaccurately measured as the sixth rank
(rank; of Equation 7 is 1/6) by the proposed method.
Given the second input humming file, that of the cor-
rect MIDI file is accurately calculated as the first rank
(rank; of Equation 7 is 1/1). In this case, the MRR is cal-
culated as 0.583 ((1/2) x (1/6 + 1/1)). If all of the cor-
rect MIDI files (corresponding to the input humming
files) are accurately measured as the first rank, the cal-
culated MRR becomes 1, and the maximum MRR is 1
[13].

Top 10 represents the probability that the correct
MIDI file (corresponding to the input humming file) is
included in the 10 highest ranked candidates among the
48 MIDI files [13,17,23]. In Tables 1, 2, 3 and 4, the
decision level fusion (OR) is obtained as follows [13].
For example, if the ranking is “2” according to the first
classifier, the result is represented as “000010”. If the
ranking is “4” according to the second matcher, the
result is shown as “000100”. The combined ranking by
OR rules is “000110” through the bit OR operation of
the bits “000010” and “000100” [13]. We did not include
the results of the AND rule since the most calculated
bit became 0 through the bit AND operation, and the
consequent ranking values of most of the MIDI files
became the same [13].

As shown in Table 1, the performance of the proposed
method was the best as compared to the single classifier,
other fusion methods, and the previous method. The
previous method [13] combines only two classifiers of
pitch-based DTW and QB code-based LS algorithm by
the score fusions of the MIN rule.

In the next experiment, we measured the perfor-
mances of the five matching algorithms (Section 2.4)
with the PV files of the 2009 MIR-QBSH corpus data-
base as shown in Table 2. The performance of the pro-
posed method was the best as compared to the other
methods.

In the next experiment, we tested the pitch files auto-
matically extracted by the STA method (Section 2.2)
from the 2006 MIREX QBSH corpus database. As
shown in Table 3, the performance of the proposed
method was the best as compared to the other methods.

In the last experiment, we tested the pitch files auto-
matically extracted by the STA method (Section 2.2)
from the 2009 MIR-QBSH corpus database. As shown
in Table 4, the performance of the proposed method
was the best as compared to the other methods.

Since the 2006 MIREX QBSH corpus database was
used for the MIREX 2008 contest, we compared the
performance of the proposed method to those of the



Nam et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:21

http://asp.eurasipjournals.com/content/2011/1/21

participants in MIREX 2008 like [13]. The performances
of Ryynanen et al.’s method [12] and Wang et al.’s
method [16] ranked the highest (MRR of 0.93). The
MRR of our method was seventh (MRR of 0.802). The
2009 MIR-QBSH corpus database was used for MIREX
2009 contest, and the MRR for the highest ranked
method was 0.91, whereas that of the proposed method
was third (MRR of 0.794).

We measured the processing time when one humming
file is matched with 48 MIDI data on a desktop compu-
ter consisting of Intel Core 2 Quad 2.33 GHz CPU, 4
GB RAM, and Windows XP OS. Experimental results
showed that the processing time of each score level
fusion method (MIN, MAX, SUM, Weighted SUM, and
PRODUCT rules) was same as 0 ms. Another results on
the desktop computer of slower speed (Intel Core 2
Duo 2.1 GHz CPU, 2 GB RAM, and Windows XP OS)
showed that the processing time of all methods (MIN,
MAX, SUM, Weighted SUM, and PRODUCT rules)
were same as 0 ms, also.

4. Conclusion

In this paper, we propose a new QBH system that uses
the STA method as a pitch extractor and score level
fusion of five matchers based on the PRODUCT rule. We
also normalized the features of the music and humming
data through mean-shifting, median and average filtering,
and the min-max scaling method to eliminate the sur-
rounding and peak noises that occur during recording.

In future works, we plan to research the methods to
increase the matching accuracy and combine multiple
classifiers using a training-based method. Furthermore,
using a pre-classification method based on the global
features, we would research about the reduction of
search time and matching errors [13]. In addition, we
would study about the matching algorithm based on the
significant points such as the local maximum, minimum
or onset points.
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