
RESEARCH Open Access

Internet-based hardware/software co-design
framework for embedded 3D graphics applications
Chi-Tsai Yeh1,2*, Chun-Hao Wang1, Ing-Jer Huang1 and Weng-Fai Wong3

Abstract

Advances in technology are making it possible to run three-dimensional (3D) graphics applications on embedded
and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics
application development that includes the 3D graphics software, OpenGL ES application programming interface
(API), device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC)
accelerator using transaction-level modeling (TLM). This gives software designers early access to the hardware even
before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches
made available in the software for verification. A unique aspect of our framework is that it allows hardware and
software designers from geographically dispersed areas to cooperate and work on the same framework. Designs
can be entered and executed from anywhere in the world without full access to the entire framework, which may
include proprietary components. This results in controlled and secure transparency and reproducibility, granting
leveled access to users of various roles.

Keywords: Hardware/software co-design, SystemC, Electronic system level, Internet, 3D graphics SoC, Heteroge-
neous hardware interface, Virtual machine

Introduction
3D graphics applications have gained significant popular-
ity in recent decades. The market for both 3D graphics
gaming applications and 3D video applications on mobile
platforms is growing rapidly. The requirements as well as
capabilities of consumer electronics such as personal
digital assistants (PDAs), cell phones, global positioning
systems (GPSs), and immersive teleconferencing vary
significantly. In particular, screen sizes, resolutions, real-
time and energy requirements differ. It is therefore chal-
lenging to meet such diversity all within certain design
time.
System-level design has attracted much attention

because of its ability to cope with the growing complex-
ity of designs. Designing in this way raises the level of
abstraction of the primary specification, allowing
designers to explore the architectural trade-offs and
hardware/software partition decisions that need to be
made at a higher level. Nevertheless, the solution being

developed is usually just a part of a larger eco-system
that consists of other hardware and software.
Electronic system-level (ESL) design and verification

[1], shown in Figure 1, has been proposed to shorten
the development time of embedded applications. The
use of ESL can also help designers to meet some of the
challenges mentioned previously.
The TLM interface standard [2] provides an essential

ESL mechanism for architecture analysis, software devel-
opment, software performance analysis, and hardware ver-
ification by separating computation and communication.
Classifications of TLM are can be found in [3]. Pasricha et
al. [4] demonstrated how the TLM approach can be used
to model an SoC platform for architecture exploration.
System-level design languages (SLDLs) allow designers to

represent of a system at multiple levels of abstraction.
Two leading SLDLs, SystemC [5] and SpecC [6], support
TLM using the channel concept. SystemC has garnered
the most industry support in the United States, while
SpecC lacks industry support [7]. SystemC is a modeling
language built on top of standard C++ by extending the
language with class libraries. Kogel et al. [8] used SystemC
in exploring the design space of a 3D graphics processor.

* Correspondence: yehchitsai@mail.kh.usc.edu.tw
1Department of Computer Science and Engineering, National Sun Yat-Sen
University, Kaohsiung, Taiwan
Full list of author information is available at the end of the article

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

© 2011 Yeh et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:yehchitsai@mail.kh.usc.edu.tw
http://creativecommons.org/licenses/by/2.0

They implemented a system architecture that could
cope with the demands of 3D graphics processing and its
internal memory bandwidth requirements. Crisu et al.
[9,10] presented a design exploration framework for an
embedded 3D graphics accelerator called GRAAL.
GRAAL is an open system that offers a coherent develop-
ment methodology, based on an extensive library of Sys-
temC/register transfer level (RTL) models of graphics
pipeline components.
Rupp et al. [11] assume a design process structure con-

sisting of an algorithmic, architectural, and implementa-
tion stage, as shown in the left-hand side of Figure 2. The
design of embedded systems usually starts with the so-
called algorithmic stage. Development at the algorithmic
stage is aided by such electronic design automation
(EDA) tools as Matlab/Simulink, CoWare SPW, and
Synopsys CoCentric System Studio. Ram Rajagopal et al.
[12] propose a rapid prototyping tool, which leads itself
to a very smooth transition from design to implementa-
tion, allowing for powerful cosimulation strategies. Ptol-
emy [13] shows the importance of using higher-level
representation constructs to build real-time functionality.
Pelcat et al. [14] present an open-source Eclipse-based

framework, which aims to facilitate the exploration and
development processes in this context.
The availability of modeling architectural tools is inade-

quate when compared to the other two stages of the design
process. The only familiar language at this stage is SystemC,
introduced earlier. Synopsys ConvergenSC, which is part of
Platform Architect [15], supplies many mature components
using SystemC and provides a convenient environment in
which integrates SystemC and RTL components.
The Galaxy Implementation Platform [16] is a compre-

hensive solution that supports the implementation stage,
and is also referred to as the open Milkyway database [17].
This environment is capable of integrating a wide range of
Synopsys commercial EDA tools and third-party EDA
tools.
Figure 3 presents a recent survey of the most popular

EDA tools. As the figure shows, there is no single EDA
tool that supports the entire design process from initial
concept to final product. The article provides a loose
structure of hardware/software co-design. Hardware and
software designers facilitate their familiar tools/methods
on their own under the proposed environment pre-
sented in next section.

System Design

Hardware Design Verification

Time

T
ra

di
tio

na
l M

et
ho

do
lo

gy
E

SL
 M

et
ho

do
lo

gy

System Integration

Software Design

Hardware Design

System Design

System Integration(HW/SW)

early verification

Reduced Time

Software Design

early design
Verification

Figure 1 The comparison of traditional and ESL methodology.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 2 of 18

Previous hardware/software co-design frameworks
have only considered the design-under-test (DUT) appli-
cation for hardware components. However, a realistic
system usually contains full hardware, consisting of

processors, main memory, vector interrupt controller
(VIC), and so on, and full software, such as device dri-
vers, an operating system (OS), APIs, file system, and so
on. Thus, additional hardware and software should be

Specs System Functional
Executable Model

Functional
Simulation

DUT Hardware DUT Software

Algorithm

HW/SW
Partitioning

Functional
untimed/timed

Transactional
Transactional
Co simulation

Software
Test pattern

DUT Hardware DUT Software

Architecture m
C Transactional

Behavioral

BCA

Co-simulation

Co-simulation

Other software such
as driver, OS, and API

Other hardware such as
Processor and memory

Software

Architecture

Sy
st

em

BCA

RTL

Co-simulation
on VM with ISS

Formal
Verification

Timing
Analysis

Object code

Implementation Ve
ril

og

Gate Level
Netlist

Physical
I l t ti

Layout

Co-simulation
On Physical board

p

V
H

D
L/

V

Implementation
y

Verification

Figure 2 Full hardware/software co-design framework during the three stages.

Matlab

SPW

LisaTek

CoCentric Studio

ConvergenSC

PowerEscape

C compiler

Design Compiler

Leonardo

Galaxy

Encounter

Virtuoso

ArchitecturalAlgorithmic Implementation

Figure 3 Overview of the EDA tools supports for the entire design process [18].

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 3 of 18

added for building the complete hardware/software co-
simulation system, as shown in the middle of Figure 2.
Obviously, it exists a huge gap from a standalone hard-

ware/software application to complete system environ-
ment. Therefore, the article proposes a framework for
hardware/software co-design that permits multiple teams
that are geographically dispersed to reproduce each others’
results, and to cooperate in the architecture stage of the
design by means of the Internet. This allows the software
team to go into development at the earliest possible time.
The rest of the article is organized as follows. We will

first describe the concept of our proposed framework and
then describe the hardware and software aspects in detail.
Followed by our experiment results and reproduces the
proposed platform in different parts of the world. Finally,
we conclude.

Internet-based hardware/software co-design in
the architecture stage
Figure 2 outlines the hardware/software co-design fra-
mework. Then, Figure 4 explains in detail the Internet-
based co-design method in the architecture stage. In the
implementation development stage, a hardware vendor
delivers the hard/soft intellectual property (IP) core(s) to
the software team during their development of the sys-
tem. Software designers may need to download a bin
stream of an IP core into a field programmable gate
array (FPGA), and then plug the FPGA into a develop-
ment board, for example, Versatile Platform Baseboard
(PB) [B19] and Leopard 6 SoC Design Platform [20], to
start software development.
There are significant drawbacks to this process. First,

the IPs have to be in place before the software team can
start working. This can potentially lengthen the time to
market, or corners such as the verification time will have
to be cut. Secondly, the software team needs to learn
how to use the EDA tools or the FPGA to work on the
hardware. This adds new risk factors for verification,
because the errors may be caused by the hardware design
or simply malfunctions of the FPGA itself. Finally, there
is an additional cost factor when using EDA tools or
FPGA development platforms, especially if the software
team does not already possess them.
In our proposed framework, software designers join the

system development at the architecture stage, shown in
Figure 2. However, because the development environment
is the same for everyone involved, the software designers
will consider that they co-design with the hardware team
at the physical implementation (FPGA) stage.
QEMU [21] provides a full system simulation platform,

which includes microprocessors, peripheral devices,
memories, interconnection buses, etc., to act as a virtual
machine (VM). It is also able to boot and run an unmodi-
fied commercial operating system like as Linux. Jing-

Wun Lin et al. [22] proposed a full system simulation
that extended the QEMU-SystemC project provided by
GreenSocs [23]. They presented a high-performance
framework for hardware/software co-design and co-
verification. Unlike their framework, by leveraging virtua-
lization, our proposal allows the software designers to
run their program on QEMU, serviced by hardware IPs
located in another part of the world. This allows the
hardware and software teams to reproduce each other’s
work rapidly over the Internet. Using a TLM model and
the standard protection provided by the Internet allows
both sides to hide the content of their IPs, without com-
promising any functionality. Both teams can verify their
own work using this framework.
Table 1 shows examples of the hardware and software

components. We applied our framework to the design of
a 3D graphics hardware accelerator that is integrated in a
SoC platform. Using generic 3D graphics application on
a workstation, the software team can produce the results
they desire without the hardware or a device driver. This
allows them to develop the upper layers of the software
stack. However, in the lower layers, the device drivers
cannot be written and tested without the hardware. Our
framework enables the software and hardware teams to
adopt a uniform set of test patterns for verifying their
designs.
Reproducibility is a key aspect of our framework. It

allows for instant feedback on the latest committed design,
be it hardware or software, from other members of the
team. Yet, the use of TLM means that access to the inner
details of each component can be controlled, monitored,
and managed. For example, if the hardware team do not
wish to reveal an IP to the other members, they can do so
by exposing only its interfaces, so that users can still use
the component for their own subsystems. The use of the
Internet does carry some risks, but there are already a
large set of established protocols and mechanisms, such as
the secure sockets layer (SSL) or virtual private network
(VPN), that can minimize any risks caused.

Software development environment
From a software perspective, a full system consists of
applications, the operating systems, device drivers, API,
etc. In our 3D case study of hardware-software design
flow, the software development environment is shown
in Figure 5, and the factors of the corresponding com-
ponents is shown in Table 2. We explain further the
components in the sections below.

Requisition for building guest software environment
A strategic design choice we made from the start of the
project was to use open source resources and industry
standards. ARM processors are a common processor to
embedded systems. The software designers build the

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 4 of 18

guest ARM software environment under host Intel x86
processor. They facilitate cross-platform compiler, GNU
Compiler Collection (GCC) [24], to build the guest soft-
ware, such as Linux kernel [25,26], Busybox [27], 3D gra-
phics device driver, OpenGL ES API, 3D graphics test
benches, and so on. Then, the software designers config-
ure QEMU platform as Versatile PB and build QEMU as
an executable program under host platform. Finally, they
execute the software under guest platform QEMU.

3D Graphics Device Driver
According to the 3D graphics test benches shown in
Figure 6, The software designers implemented four
functions in the device driver. When the user inserts the
3D graphics device driver into the kernel, the function
3D_init_module() allocates the necessary memory
blocks, such as the 3D vertex buffer, 2D vertex buffer, Z
buffer, and 32-bit temporary frame buffer. It also
informs the Geometry Engine (GE) and the Rendering

Table 1 The examples of hardware/software co-design components

HW/SW Co-design components Examples

Software development OS, file system, device driver, API, test benches, and so on.

Hardware development platform QEMU, VirtualBox, etc.

Versatile PB development baseboard, Leopard 6 SoC Design Platform, etc.

Design Under Test (DUT) TLM (SystemC - Synopsys EDA tool),
RTL (Verilog, VHDL)

Physical implementation (FPGA - Xilinx Virtex-V xc5vlx330), etc.

a. Architecture Development b. Implementation Development

root file system
DUT testbenchesSoftware

development

root file system
DUT testbenches

DUT software stack DUT software stack

OS DUT device driver

Vi t l H d eI t t I/O I t f
Hardware

Ph i l H d eI/O I t f

OS DUT device driver

DUT software stack

Virtual HardwareInternet I/O Interface

Internet

development
platform

Physical HardwareI/O Interface

Physical signal

DUT

TLM/RTL FPGA
Figure 4 The Internet-based hardware/software co-design environment (a) The proposed Internet-based method for hardware/software co-
design in the architecture stage; (b) The hardware/software co-design using hardware development baseboard in the implementation stage.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 5 of 18

Engine (RE) modules of the base addresses of these
memory blocks.
By calling the mmap() function, the 3D graphics test

benches can move 3D vertices into the 3D vertex buffer.
After configuring the context table (CT) of the GE, the
test benches will enable the GE to start 3D graphics
operations. The CT contains the control registers of the
GE, while the control registers for the RE are collec-
tively known as the register table (RT).
The 3D graphics SoC provides two interrupt signals

that represent the GE and RE, respectively, shown at the
bottom of Figure 4. When the interrupt service routine
(ISR) in the device driver receives the GE IRQ, this
function will pull down the GE interrupt request (IRQ),
and start the RE to continue the operation immediately.
The RE stores its results in the 32-bit temporary

frame buffer, and then raises an IRQ to notify the ISR

of 3D graphics device driver to truncate the pixel data
from 32- to 16-bits. The truncation is necessitated by
the difference in bit width between the development
platform and the 3D graphics SoC. Finally, the 3D gra-
phics object is displayed on the output screen.

3D graphics test benches
The software designers development two types of 3D
graphics test benches. The first type of test benches
accesses 3D graphics device driver directly and owns
only one object per frame. We have four 3D graphics
test benches as shown in Table 3. The first two rows
show the images in the test benches, and the last row
gives the complexity of these test benches. Each vertex
consists of 10 words. Each test bench has four modes,
namely, the GE mode, RE mode, single frame mode,
and multi-frame mode. The other type of test benches

File system, BusyBox
3D graphics
testbenches 3D graphics

G
C

C

testbenches

Linux kernel for ARM93D graphics driver

OpenGL ES

Guest OS

3D graphics
testbenches

cross com
pg p

QEMU for Versatile PB3D graphics SoCGuest platform

Host OS Linux for x86

piler

Host platform Workstation with Intel processor
Linux for x86

Figure 5 The software development environment for 3D graphics application.

Table 2 Corresponding configuration list of software development

Components Requirement

Internet IO interface Address: 0xc230_0000,
Size: 0x80_0000, IRQ:29 and 30

Linux kernel for ARM 2.6.28-6 for Versatile PB

Cross-platform compiler GCC 3.4

root file system • Support ext2 file system
• Adopt BusyBox for Linux utilities

Device driver • Initiate 3D graphics SoC
• Map physical memory address to logical memory address
• Handle interrupt service routine
• Truncate buffer data

API OpenGL ES 1.x or 2.x

3D graphics test program Four test benches for 3D graphics SoC

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 6 of 18

cooperates with OpenGL ES 1.x [28] and owns multiple
objects per frame, as shown in Table 4.

The QEMU interface
This article leverages the QEMU VM to replace the
Versatile PB, thereby facilitating hardware and software
co-design. The software stack used on top of the QEMU
is shown in Figure 5. The IO interface in the QEMU is
similar to the AMBA High-performance Bus (AHB) sys-
tem bus that connects the Versatile PB and the FPGA.
The latter implements the 3D graphics SoC hardware.
This interface is part of the IO interface on the QEMU,
as shown on the left-hand side of Figure 7.

The QEMU provides two functions to support master
read/write operations. We also considered interrupt
handling, and slave read/write operations from the slave
interface, used by the 3D graphics SoC. After considering

3D graphics 3D graphicsg p
testbench

g p
device driver 3D Graphics SoC

2.Open device
1. 3D_init_module

Memory

Data flow

Signal flow

3.Call mmap() 4.Map the physical address
to logical address

Signal flow
Functional

block
Storage, IP

block

5. Move Vertex
data and
configure CT/RT 3D vertex buffer

Vertex table

block

6.Geometry Module
& Tile Divider

2D vertex buffer
Interrupt

7.Interrupt Service
8.Rendering Engine Z buffer

32’bit Temp Buffer

Routine

Interrupt

16’bit Frame Buffer

32 bit Temp Buffer
9. Truncate data

10. Complete a frame

Figure 6 The data flow of 3D graphics application.

Table 3 Four 3D graphics test benches

Testbenches Triangle Box Cube Teapot

Vertex number 3 36 144 18,960

Table 4 Experimental results of six 3D graphics
testbenches with OpenGL ES 1.x

Singapore Taiwan Ratio

GM Operation Time 7,000 7,000 1.00

GM Data Idle 148,716,120 16,925,520 8.79

GM Wrapper Active 157,076,520 18,584,060 8.45

GM Wrapper Time 160,767,200 18,700,440 8.60

RE Operation Time 26,054,220 2,253,390 11.56

RE Data Idle 8,435,329,980 649,543,730 12.99

RE Wrapper Active 8,495,771,060 653,808,750 12.99

RE Wrapper Time 8,495,839,140 653,876,830 12.99

GE (times) Receive 516

Send 604

RE (times) Receive 26,003

Send 51,385

Total simulation time 1,808 s 148 s 12.22

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 7 of 18

all the necessary operations, we defined two directions of
communication consisting of seven types of operations,
as shown in Figure 7.
The QEMU interface has three threads that allow it to

handle different tasks. The QEMU R/W thread is a
main thread provided by the QEMU in charge of pro-
cessing the master read/write requests issued from the
device driver. This thread will issue mReadRequest
and mWriteRequest requests through an outgoing
socket, and receives mReadAck acknowledgment
through an incoming socket. The QEMU receiver thread
receives any incoming network packages consisting of
IRQRequest, sReadRequest, sWriteRequest,
and mReadAck from the SystemC module shown on
the right-hand side of Figure 7. The QEMU receiver
acts as a slave interface and an interrupt controller.
Depending on the content of the messages, it will read
or write data from or to the QEMU, raise or pull down
an interrupt signal, or pass mReadAck data to the
QEMU R/W thread. The connection thread is responsi-
ble for maintaining the connection between the QEMU
and the SystemC module.
For hardware/software co-verification, a QTracer

module is embedded in the QEMU interface that stores
data of the 2D coordinate vertices and frame buffer into
a file. The framebuffer viewer is used to output the file,

as shown in Figure 8. The diff command can also be
used to compare the data to the expected log data [28].

Communication interface and 3D graphics SOC
This section introduces the hardware development
environment of the proposed co-design framework con-
sisting of two hardware parts. Figure 9 presents the
block diagram of the full development environment.
The first part is the QEMU and the authors create a vir-
tual communication between the QEMU and the 3D
graphics SoC. In principle, the software and hardware
teams work concurrently, but in physical locations that
are geographically dispersed. Therefore, the Internet is
the best media for maintaining continuous communica-
tion between the teams. The second part is the 3D gra-
phics SoC itself. This main part of the hardware design
is implemented in SystemC using different abstraction
levels.

The SystemC interface
The 3D graphics SoC is implemented in SystemC. The
block diagram is shown on the left-hand side of Figure
9. We implemented a SystemC interface (SCI) to com-
municate with the QEMU via transmission control pro-
tocol/internet protocol (TCP/IP). The SCI acts as a TCP/
IP server that waits for the QEMU requests. The SCI

SystemC_InterfaceQEMU_Interface

mRead(request)

mWrite(request)

sRead(ack)
MasterTC

P

SC
Receiver

Bus request

Master read

Incom

TC
P

O
utgoQEMU

R/W P/IP Soc

Master write

Sl d

m
e

O

sRead_ack

P/IP SocIn
o

R/W

R d k
IRQ(request)

sRead(request)

sWrite(request)

Slave

ket Slave read

Slave write
VIC

O
utgo

ket
ncom

eQEMU
Receiver

mRead_ack

clk nReset

sWrite(request)

mRead(ack)

VIC
operation

QTracer SCTracer

Irq30 Irq29
Figure 7 The communication of QEMU and SystemC.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 8 of 18

contains a master and a slave ports, as well as six main
processes as shown on the right-hand side of Figure 7.
The master read, master write, slave read,
and slave write processes communicate with system
bus. The SC receiver process gathers all incoming
messages from the QEMU, and forwards them to the
corresponding processes. The VIC operation process
handles interrupts 29 and 30 from the 3D graphics SoC,
while the SCTracer records the transactions on the
master and slave ports. These can be reproduced later
without full software execution. The SCTracer also
stores the frame buffer in a file for checking. This will
aid in offine debugging and architectural design space
exploration.
Figure 10 shows the finite state machine (FSM) of the

AHB master wrapper of the SCI. When the master wrap-
per receives a package, Q, from the QEMU that contains
an mRead or mWrite command, the FSM will transit
from the Idle to the Request state. The SCI then calls
the different functions provided by the AHB Library to
process the master read or write command. To complete
an mWrite operation, the SCI will notify the SC receiver
that it has consumed the packet, and so the SC receiver
may go ahead and receive another packet. For an mRead
operation, the SCI enters the Read Ack state, and com-
municates the results of the read to the QEMU.
Figure 11 shows the FSM of the AHB slave wrapper in

the SCI. The read data and write data states mean
that AHB slave wrapper reads data from, or writes data
to the QEMU. The SCI sends the packet to the QEMU
for read/write data via TCP/IP on the Internet.

However, the state of read data needs to wait for the
QEMU to send a read acknowledgement response.

Two types of deadlock
Figure 12 presents the static structure of the SCI, and
then Figures 10 and 11 describe the dynamic state tran-
sition of the SCI according to the interaction of system
operation. However, these figures are unable to detect
certain problems, such as deadlocks. Some processes
will hold resources, while at the same time requiring
other resources held by others. The result is a deadlock.
Figure 13 shows two types of deadlock that can happen
in the SCI. The first type of deadlock happens when the
QEMU wants to read data from the 3D graphics SoC,
while at the same time, the 3D graphics SoC also wants
to access the QEMU’s memory. The master read process
in the SCI holds both the locks for the QEMU read-
write in the QEMU interface, and the SC receiver. At
the same time, a slave read process requires the SC
receiver to return data from the QEMU, and has suc-
cessfully locked the AHB bus, resulting in a deadlock.
According to our 3D graphics test benches, the master
read process usually requires the values of the registers
in the 3D graphics SoC.
However, this happens less frequently than the slave

read process needs to read data from the 3D graphics
SoC. Therefore, to resolve this deadlock, we force the
master read process to give up the SC receiver. The SC
receiver will record the master read request, and re-
request the AHB bus when it is idle. The QEMU will be
suspended until this happens.

QEMU Virtual MachineQEMU Virtual Machine3D graphics SoC

Slave ARM9

QEMU Virtual MachineQEMU Virtual Machine

Master

Rendering
Engine

Rendering
Engine

3D graphics SoC

Geometry EngineGeometry Engine
QEMU

Interface
SystemC
Interface

Slave
Interface

ARM9
CPU

Master
InterfaceMaster

Wrapper
Slave

Wrapper
Master

Wrapper
Slave

Wrapper T
C

P/

Master

AHB BUSAHB BUS

Slave

AHB BUSAHB BUS
OS, device
driver, etc.

Default

/IP

Master
Interface

SDRAM
Slave

Interface
DecoderArbiter Default

Master

Figure 8 Frame buffer viewer: the verification tool of QEMU and SystemC.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 9 of 18

The second type of deadlock is shown at the bottom of
Figure 13. During the time when the application is writing
to the control registers, the 3D graphics SoC may concur-
rently attempt to read data from the memory of the
QEMU. A deadlock occurs as the master write process is
unable to lock the bus, but the slave read is unable to
complete its data request via the SC receiver. We store the
request of the master write process into a cyclic queue to
solve this deadlock, because the master write process does
not wait for an acknowledgement. This solution results in
a race condition between the SC receiver and the master
write process as the SC receiver attempts to enqueue
while the master write process attempts to dequeue. We
solve this problem by making the operations atomic.

The 3D graphics SoC
To take the trade-off between simulation time and accu-
racy into account, the 3D graphics SoC mixes two types of

TLM accuracy, namely time-approximate accuracy and
bus cycle accuracy (BCA). Time-approximate accuracy of
TLM evaluates time information accurately but does not
simulate the cycle count actually. BCA is triggered by a
cycle event and takes more time than the time-approxi-
mate model. The computation of the GE and RE [29] uses
time-approximate accuracy. This saves simulation time
and provides accurate enough cycle information to hard-
ware designers for architecture analysis. Each IP connected
to the AHB uses BCA, simulated by Platform Architect
from Synopsys, Inc [15]. For instance, the authors gather
the time information of the geometry module (GM) opera-
tion to understand the effects of the complexity of the 3D
graphics operation. However, they analyze the latency of
GM master wrapper to determine the impact of the bus
architecture, shown in Figure 14.
The GE comprises two main functional modules: a

GM and a tile divider module (TDM). The input data of

Figure 9 The block diagram of full development hardware for 3D graphics test benches.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 10 of 18

Q.Cmd==Idle /
wait(SetBusReq_event)

/
consume event notify()

Idle Q.Cmd=mRead || Q.Cmd==mWrite /
SetBusReq_event.notify()

consume_event.notify()

Request

Master

~canSendReqTrf()/
wait(SetBusReq_event)

/ setWriteData(Q.data)
consume_event.notify()

Write canSendReqTrf()/sendReqTrf()

Q.Cmd==mWrite /
setType(AMBA::tlmWriteAtAddress)

Read
Ack

Address
Master

/ Q.data = getReadData();
Q.Cmd= mRead_ack;
Send_packet(Q);

Read Q.Cmd=mRead /
setType(AMBA::tlmReadAtAddress)

Figure 10 AHB Master Wrapper FSM in the SystemC interface.

Idle

tR i W it D t T fE tFi d ()

SlaveWrite

getReceiveWriteDataTrfEventFinder()
/

/
Q.data = getWriteData(); Slave

Write
Write
Data

wait(sRead ack event) / d d f ()

Q.Cmd= sWrite;
Q.address = getAddress();
Send_packet(Q);

Slave
R dRead

wait(sRead_ack_event) /
setReadData(Q.data);
sendReadDataTrf();

getSendReadDataTrfEvent()
//

Q.data = NULL;
Q.Cmd= sRead;
Q address = getAddress(); ReadRead

Data
Q.address = getAddress();
Send_packet(Q);

Figure 11 AHB Slave Wrapper FSM in the SystemC interface.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 11 of 18

AHB
BUS

SC
Receiver

Master read

Slave read

SC Receiver and
QEMU R/W is held by

is waiting for SC Receiver

AHB BUS is held by

Is waiting for AHB BUS

AHB
BUS

SC
Receiver

Master write

Slave read

Receiver is held by

is waiting for SC Receiver

AHB BUS is held by

is waiting for AHB BUS

QEMU
R/W

Figure 12 SystemC-based platform architecture on AHB bus System.

Figure 13 Two types of deadlock between QEMU and SystemC. (a) The upper part is caused by master read. (b) The lower part is caused
by master write.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 12 of 18

the GE is from the 3D vertex buffer and output data is
sent to the 2D vertex buffer in main memory. The GE
provides a slave wrapper, a GM master wrapper, a tile
divider (TD) master wrapper, and an interrupt signal in
its interface. The processor configures geometry opera-
tion registers (the CT) via the slave wrapper of the GE.
The GM master wrapper provides data for the internal
GM read from the 3D vertex buffer. The TD master
wrapper is dedicated to handle the 2D vertex buffer.
When the GE finishes its assigned task, it notifies the
QEMU through an interrupt signal.
The GM is responsible for the transformation and light-

ing, culling, and clipping of 3D graphics geometry opera-
tions. The TDM is implemented using a tile-based
concept [30] so as to reduce the number of memory
accesses. The TDM creates tile list data in the 2D vertex
buffer for the RE. Output data is passed to the tile divider
module, which builds a tiled triangle list for the RE. The
GM has three pipeline stages, each about 16 cycles in
length. A first-in-first-out (FIFO) buffer is needed between
the GM and the TDM because of their different speeds. If
the FIFO buffer becomes full, then the GM will stall.
The RE consists of three functional modules: the tri-

angle setup, the rasterizer, and the per-fragment opera-
tions modules, shown in Figure 15. It also adopts a tile-
based approach so as to reduce the memory bandwidth.
We used a tile size of 32 × 32 pixels, which generally
yields the best trade-off between the amount of on-chip
memory and the amount of external data traffic. The RE
handles three types of data: the 2D vertex buffer, the
frame buffer, and the Z/Stencil buffer. The QEMU con-
figures the RE’s RT through its slave wrapper. The RE
reads data from the 2D vertex buffer and outputs the
results to the frame buffer and the Z/Stencil buffer. The

frame buffer stores pixel values, and the Z/Stencil buffer
stores the Z/Stencil values. The implementation is
designed by the Synopsys EDA tool, shown in Figure 12.

Experiment results
The authors validated their proposed framework in two
methods, both for feasibility and reproducibility. The
first method is to develop the different applications
using the proposed environment, and the other is to
reproduce the software development environment at
several places. At first, they applied the proposed envir-
onment to the different applications, a 3D graphics
application and a JPEG decoder, using the general com-
munication. There did not have any modification on the
SCI and the QEMU interface for these applications.
Then, the authors examine two experiments using the

application-specific communication. At first, they suc-
cessfully reproduced the software development environ-
ment at seven locations and five countries around the
world. The second experiment is to validate the feasibil-
ity of 3D graphics application and the authors execute
six test benches with OpenGL ES API.

General communication
Table 5 shows the simulation result of the proposed fra-
mework when developing software in Singapore and
Taiwan laboratories separately, while the hardware
design is held in a Taiwanese laboratory. The first row
represents the locations of developing software. The
QEMU will transfers a single command package in each
transmission. Each package contains only three words,
namely the command type, address, and data. The sec-
ond to fifth rows of the table report the simulation
results of the GM, and the next four rows are the results

FIFO Tile Divider
Module

Geometry Module

Slave
Wrapper

GM Master
Wrapper

TD Master
Wrapper

FSM

ContextTable Vertex Data
Read/WriteWrite

FIFO Full & Stall

Read/Write

Active WrapperStart Ready

Run

Memory, Register, Storage

IP module

Function block

IRQ

Geometry Engine

Figure 14 Block diagram of geometry engine [29].

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 13 of 18

of the RE. It is obvious that the GM is idle most of the
time. The hardware/software co-simulation result is
highly dependent on the speed of the network, and it is
difficult to perform design space exploration over the
network. Performing the experiments locally is 8× to
13× faster than doing it over the Internet. The ninth
and tenth rows show the number of receive and send
packages in the SCI. The screen size is 640 × 480, and
the RE needs to access the frame and Z buffer. There-
fore, the number of RE operations far exceed that of GE
operations.
The general communication between the QEMU and

3D graphics SoC is transparent to the software/hardware

designers and similar to that between the FPGA and the
Versatile PB. Our lab tried to verify the functionality of
the new physical development baseboard, Socle Leopard
6 SoC Design Platform [20]. The hardware designer
implemented inverse discrete cosine transform (IDCT)
[31], a part of JPEG decoder [32], at RTL and download
it into its FPGA. Then the software designer wrote an
IDCT device driver to transfer data to/from the FPGA.
The software designer adopted the proposed develop-
ment environment to build the SystemC and RTL co-
simulation platform shown in Figure 16 as DUT part of
Figure 4. The verification method is to compare the
results extracted from IDCT at RTL to the golden

Rasterizer

Slave Wrapper RM Master Wrapper

DMA
Triangle List

DMA
Pixel & Z Buffer

Triangle Data

Frame Buffer

Bank 1
Bank 0

Context Table

Per-Fragment Operation

Z/Stencil
Buffer

Scan
Conversion

Z calc.

Color Shading

Texture
coordinate

calc.

FSM Controller

Triangle
Setup

Module

Bank 1

Z/
St

en
ci

l

Te
xt

ur
e

M
ap

Fo
g

Sc
is

so
r

A
lp

ha

B
le

nd
in

g

Lo
gi

c-
O

P

Memory, Register, Storage

IP module

Function block

Bank 0

Wrapper block

IRQ

Figure 15 Block diagram of rendering engine [29].

Table 5 The general communication between the QEMU and 3D graphics SoC using SystemC for test bench Box
(measured unit: Cycle)

General Communication Application-specific Communication Speedup

GM Operation Time 7,000 7,120 0.98

GM Data Idle 16,925,520 2,050 8256.35

GM Wrapper Active 18,584,060 4,440 4185.60

GM Wrapper Time 18,700,440 6,110 3060.63

RE Operation Time 2,253,390 132,330 17.03

RE Data Idle 649,543,730 2,129,280 305.05

RE Wrapper Active 653,808,750 1,815,960 360.03

RE Wrapper Time 653,876,830 1,984,060 329.57

Total simulation time 148 s 5 s 29.60

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 14 of 18

results generated from the IDCT software module.
These designers did not have any knowledge and modi-
fication of the QEMU interface and the SCI.
However, the method cannot provide useful cycle

information to the hardware designers. The variable
evaluation results among the wrappers and execution
time is useless for design space exploration. The other
problem is the longer simulation time. To resolve this
problem, this article proposes another communication,
the application-specific communication, in the next
section.

Application-specific communication
Figure 6 shows the data flow of the 3D graphics test
benches. These test benches generate the 3D vertex data
and configure to the GE/RE using the device driver at
step 5. After that, GE and RE have numerous R/W
operations to different blocks, such as 3D vertex buffer,
2D vertex buffer, Z buffer, and 32’bit frame buffer, in
main memory. These memory blocks are reserved for
3D graphics SoC, so no other else will access these
blocks. The authors modify the SCI and QEMU inter-
face to keep these operation within SystemC side. This
modification will not affect the hardware and software
design. This communication depends on the data flow
of the target application, so it is called as the applica-
tion-specific communication. Figure 17 shows the differ-
ence in the data flow between the general and the
application-specific communication. For instance, when
the GE writes data into synchronous dynamic random

access memory (SDRAM) with general communication,
the flow is as follows:

1. The GE writes data on the AHB bus;
2. The SCI receives data, and then forwards them via
TCP/IP;
3. The QEMU interface writes data into the specified
address;
4. The SDRAM receives the data.

The test bench Box owns 36 vertexes and each vertex
occupies 10 words. It means the SCI interface sends 360
read requests to the QEMU at least while the RE at the
bottom of Figure 17 reads 3D vertex data from 3D ver-
tex buffer at the top of Figure 17 using the general com-
munication. However, if the interface designers pack 3D
vertex as a package and store them into the SCI as 3D
vertex buffer, the only one transmission is needed. In
the case of the application-specific communication, the
SCI receives data from the GE and stores them into
internal buffers. The hardware and software designers
can use the application-specific communication without
modifying their implementation.
The GE and RE consider the SCI not only as a test

bench generator, but also as a memory module compris-
ing of the 2D vertex buffer, the Z-buffer, and the frame
buffer. When the RE triggers an interrupt signal to the
SCI after completing a frame, the SCI moves all the data
in the frame buffer to the QEMU interface. The QEMU
interface notifies the device driver using interrupt

Behavior Model (QEMU)

TLM (SystemC)

TC
P/

IP

GERE

2

1

SC
Interface

ARM9 DMA

VICSDRAM QEMU
Interface

etc.

34

General communication
Application-specific

communication

TC
P/

IP

GERE

2

1

SC
Interface

ARM9 DMA

VICSDRAM QEMU
Interface

etc.

Z buffer

Frame buffer

3D Vertex

2D Vertex

Frame buffer
(32b)

Z buffer

3D Vertex

2D Vertex

Frame buffer
(16b)

Frame buffer
(32b)

Z buffer

3D Vertex

2D Vertex

Frame buffer
(16b)

Behavior Model (QEMU)

TLM (SystemC)
Figure 16 SystemC and RTL co-simulation platform of JPEG decoder.

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 15 of 18

function call on the QEMU platform. The 3D graphics
device driver truncates the data from 32- to 16-bits to
display them on the QEMU. This processing contains
two massive data transmissions: the 3D vertex buffer
from the QEMU interface to the SCI, and the frame buf-
fer from the SCI to the QEMU interface. Performance is
significantly improved. Table 6 shows the comparison
between the general and the application-specific commu-
nication. The GM data idle time is reduced by over
8,256×, and the total simulation time increased by 29×.
Notably, the hardware simulation cycle time is the same
no matter where the software test benches are executed
in. Because the GM waits for the TD to complete its
operation, the time for the GM operation using the gen-
eral communication is less than that using the applica-
tion-specific communication.

To validate the reproducibility and feasibility of our
framework, the authors encapsulated the entire software
development environment as a VirtualBox [33] image
file, and asked several volunteers at different countries s
around the world, such as Singapore, Romania, Austra-
lia, England, and USA, to run these experiments. The
development environment consists of software develop-
ment and hardware development platform shown in the
top of Figure 4a and also owns the four 3D graphics test
benches listed in Table 3, with each test bench showing
three different frames. The volunteers’ environments act
as TCP clients, and DUT in Taiwan acts as a TCP ser-
ver. We provide not only the VirtualBox image also
instruction document on the Internet to the volunteers
to execute the instructions step by step. Table 7 shows
the results of the geographic differences measured by

IDCT at RTLIDCT at RTL

S t C I t fS t C I t fSystemC InterfaceSystemC Interface
Figure 17 The difference of the data flow among general communication and application-specific communication.

Table 6 Comparison of general and application-specific communication (in cycles) for Box testbench on an entirely
local setup

Location of Software Design Triangle Box Cube Teapot

LAN 9/5/5 9/5/5 14/11/11 30/27/26

Taiwan 10/5/5 11/6/5 15/15/15 55/52/48

Singapore 20/11/15 20/15/15 20/20/20 41/40/36

Romania 150/151/151 140/141/145 136/136/132 174/164/165

Australia 20/15/15 16/10/10 25/25/25 50/44/43

London 16/10/10 15/11/10 21/20/20 46/46/44

North Carolina, USA 30/30/25 30/30/30 36/35/31 62/54/60

Eugene, OR, USA 15/10/10 15/10/10 20/15/15 41/34/35

San Diego, CA, USA 15/15/10 15/10/10 15/15/20 43/35/35

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 16 of 18

second. The third row, ‘Taiwan,’ means that the soft-
ware design and the hardware design are on different
network segments in Taiwan, while ‘LAN’ refers to an
entirely local area network setup. The first three test
benches own small number of vertexes, so they send the
similar number of packages. The latency and stability of
the Internet cause the deviation of simulation time.
Our lab have already developed the OpenGL ES 1.x

working with our 3D graphics SoC on Versatile PB [28].
The authors migrated these 3D graphics test benches
from Versatile PB to our proposed Internet-based plat-
form and adjusted the QEMU interface and the SCI to
comply with the data flow of these test benches. The
results of the six 3D graphics test benches are shown in
Table 4. The “Object” field shows the number of objects
for each frame, and the “Vertex” field gives the number
of the first object that represents the complexity of
these testbenches. Finally, the “Time” field presents the
simulation time in second using the application-specific
communication.

Conclusion
This article proposed an Internet-based hardware/soft-
ware co-design framework. The authors have success-
fully applied this framework to develop a 3D graphics
system-on-a-chip hardware, and the full software stack
necessary to use this hardware. Our integrated frame-
work achieved the following goals: (1) it provides a full
system simulation that includes the hardware as well as
the software system; (2) it permits a very early start of
concurrent hardware and software development; (3) it

reproduces various test benches of 3D graphics develop-
ment by means of the SCTracer; (4) it reproduces the
software environment at different places around the
world; (5) it adopts application-specific communication
to avoid the effect of network transactions achieving a
29.6× increase in speed when compared to general com-
munication; and (6) it seamlessly migrates the different
abstraction levels, TLM/RTL/FPGA. An important prop-
erty of this framework is that someone in a different
part of the development process can execute and repro-
duce the functionality of another part of the design that
was implemented in a geographically remote location.
Furthermore, such sharing can be done in a controlled
and secure manner. The authors believe that this will
significantly increase the productivity of the design
teams as a whole.

Abbreviations
AHB: AMBA High-performance Bus; API: application programming interface;
BCA: bus cycle accuracy; CT: context table; DUT: design-under-test; DUT:
design-under-test; EDA: electronic design automation; ESL: electronic system-
level; FPGA: field programmable gate array; FSM: finite state machine; FIFO:
first-in-first-out; GE: geometry engine; GM: geometry module; GPSs: global
positioning systems; GCC: GNU Compiler Collection; IP: intellectual property;
IRQ: interrupt request; ISR: interrupt service routine; IDCT: inverse discrete
cosine transform; OS: operating system; PDAs: personal digital assistants; PB:
platform baseboard; RT: register table; RTL: register transfer level; RE:
rendering engine; SSL: secure sockets layer; SDRAM: synchronous dynamic
random access memory; SCI: SystemC interface; SLDLs: system-level design
languages; SoC: system-on-a-chip; 3D, three-dimensional; TD: tile divider;
TDM: tile divider module; TLM: transaction-level modeling; TCP/IP:
transmission control protocol/internet protocol; VM: virtual machine; VPN:
virtual private network.

Acknowledgements
The authors would like to thank Himax Technologies Inc. for partially
sponsoring our research and thank Professor Chung-Ho Chen of NCKU and
his research team for helping the set up of the initial QEMU-SystemC
environment. We are also indebted to the volunteers from around the
world, including HueySiang Kam in Australia, Mariam Sood in England, Ioana
Hagiescu in Romania, Bipasa, CheeWai Lee, and Ding Yang in USA, Wen
Chiou in Taiwan, for testing and reproducing our work. This work was
partially supported by National Science Council (NSC) of Taiwan, R.O.C.
under contrasts NSC 99-2220-E-110-008 and NSC98-2917-I-110-101.

Author details
1Department of Computer Science and Engineering, National Sun Yat-Sen
University, Kaohsiung, Taiwan 2Department of Information Management,
Shih Chien University, Taiwan 3Department of Computer Science, National
University of Singapore, Singapore 117417

Competing interests
The authors declare that they have no competing interests.

Received: 1 November 2010 Accepted: 19 July 2011
Published: 19 July 2011

References
1. B Bailey, GE Martin, A Piziali, ESL design and verification: a prescription for

electronic system-level methodology (Morgan Kaufmann, 2007)
2. Open SystemC Initiative (OSCI). http://www.systemc.org/home/
3. L Cai, D Gajski, Transaction Level Modeling: An Overview. in Proc of First

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, 19–24 (2003)

Table 7 Experimental results (in seconds) when
reproducing at the different places

Cube Door

Object 3 Object 1

Vertex 6 Vertex 1644

Time 14.5 Time 2.5

Multiple cube Teapot

Object 54 Object 7

Vertex 6 Vertex 3000

Time 267.2 Time 37.7

Beethoven Castle

Object 31 Object 36

Vertex 3000 Vertex 3000

Time 153.1 Time 182.5

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 17 of 18

http://www.systemc.org/home/

4. S Pasricha, N Dutt, M Ben-Romdhane, Extending the Transaction Level
Modeling Approach for Fast Communication Architecture Exploration. in
Proc of 41st Design Automation Conference, 113–118 (2004)

5. T Grötker, S Liao, G Martin, S Swan, System Design with SystemC. (Kluwer
Academic, Boston, 2002)

6. D Gajski, J Zhu, R Dömer, A Gerstlauer, S Zhao, SpecC: Specification
Language and Methodology. (Kluwer Academic, 2000)

7. R Walstrom, J Schneider, D Rover, Teaching system-level design using
SpecC and SystemC. in Microelectronic Systems Education, 2005. (MSE ‘05).
Proceedings. 2005 IEEE International Conference on, 95–96 (2005)

8. T Kogel, A Wieferink, H Meyr, A Kroll, SystemC Based Architecture
Exploration of a 3D Graphic Processor. in Proc IEEE Workshop on Signal
Processing Systems, 169–176 (2001)

9. D Crisu, S Cotofana, S Vassiliadis, A Hardware/Software Co-Simulation
Environment for Graphics Accelerator Development in ARM-Based SoCs. in
Proc 13th Annual Workshop on Circuits, Systems and Signal Processing
(ProRISC’02), 255–268 (2002)

10. B Juurlink, I Antochi, D Crisu, S Cotofana, S Vassiliadis, GRAAL: A Framework
for Low-Power 3D Graphics Accelerators. IEEE Comput Graph Appl. 28(4),
63–73 (2008)

11. M Rupp, A Burg, E Beck, Rapid prototyping for wireless designs: the five-
ones approach. Signal Processing. 83(7), 1427–1444 (2003). doi:10.1016/
S0165-1684(03)00090-2

12. R Rajagopal, S Ramamoorthy, L Wenzel, H Andrade, A Rapid Prototyping
Tool for Embedded, Real-Time Hierarchical Control Systems. EURASIP
Journal on Embedded Systems 2008. 14 (2008)

13. J Buck, S Ha, EA Lee, DG Messerschmitt, Ptolemy: A Framework for
Simulating and Prototyping Heterogenous Systems. International Journal in
Computer Simulation. 4(2), 1–34 (1994)

14. M Pelcat, J Piat, M Wipliez, S Aridhi, J-F Nezan, An Open Framework for
Rapid Prototyping of Signal Processing Applications. EURASIP Journal on
Embedded Systems 2009. 13 (2009)

15. Synopsys platform architect. http://www.synopsys.com/Systems/
ArchitectureDesign/Pages/PlatformArchitect.aspx

16. Synopsys galaxy implementation platform. http://www.synopsys.com/
Solutions/EndSolutions/GalaxyImplementation/Pages/default.aspx

17. Synopsys milkyway database. http://www.synopsys.com/solutions/
endsolutions/galaxyimplementation/pages/milkyway.aspx

18. P Belanovic, An open tool integration environment for efficient design of
embedded systems in wireless communications, PhD thesis, Technische
Universität Wien, Wien, Austria. (2006)

19. Versatile Platform Baseboard for ARM926EJ-S™[online]. http://www.arm.
com/products/tools/development-boards/versatile/index.php

20. Socle Leopard 6 SoC Design Platform. http://www.socle-tech.com.tw/en/
service_62.html

21. QEMU. http://wiki.qemu.org/Index.html
22. JW Lin, CC Wang, CY Chang, CH Chen, KJ Lee, YH Chu, JC Yeh, YC Hsiao,

Full System Simulation and Verification Framework, in Information
Assurance and Security, 2009. IAS ‘09 Fifth International Conference on. 1,
165–168 (2009)

23. QEMU-SystemC, greensocs. http://www.greensocs.com/en/projects/
QEMUSystemC

24. GCC, the GNU Compiler Collection. http://gcc.gnu.org/
25. The Linux Kernel Archives. http://www.kernel.org/
26. Creating a virtual build environment. http://people.canonical.com/~ogra/

arm/qemu/kernel/
27. BusyBox. http://www.busybox.net/
28. TY Ho, LB Chen, IJ Huang, An efficient HW/SW integrated verification

methodology for 3D Graphics SoC development. in Proc of IEEE
International Symposium of Consumer Electronics(ISCE2008). (2009)

29. LB Chen, CT Yeh, HY Chen, IJ Huang, A System-Level Model of Design
Space Exploration for a Tile-Based 3D Graphics SoC Refinement, IEICE
Transactions on Fundamentals of Electronics. Communications and
Computer Sciences E92-A. 12, 3193–3202 (2009)

30. I Antochi, B Juurlink, S Vassiliadis, P Liuha, Memory Bandwidth
Requirements of Tile-Based Rendering. in Proc SAMOS 2004, LNCS 3133.
323–332 (2004)

31. WH Chen, C Smith, S Fralick, A fast computational algorithm for the
discrete cosine transform, Communications. IEEE Transactions on. 25(9),
1004–1009 (1977). doi:10.1109/TCOM.1977.1093941

32. WB Pennebaker, JL Mitchell, JPEG: Still Image Data Compression Standard.
(Springer, 1993)

33. VirtualBox - a general-purpose full virtualizer. http://www.virtualbox.org/

doi:10.1186/1687-6180-2011-25
Cite this article as: Yeh et al.: Internet-based hardware/software co-
design framework for embedded 3D graphics applications. EURASIP Journal
on Advances in Signal Processing 2011 2011:25.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Yeh et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:25
http://asp.eurasipjournals.com/content/2011/1/25

Page 18 of 18

http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.aspx
http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.aspx
http://www.synopsys.com/Solutions/EndSolutions/GalaxyImplementation/Pages/default.aspx
http://www.synopsys.com/Solutions/EndSolutions/GalaxyImplementation/Pages/default.aspx
http://www.synopsys.com/solutions/endsolutions/galaxyimplementation/pages/milkyway.aspx
http://www.synopsys.com/solutions/endsolutions/galaxyimplementation/pages/milkyway.aspx
http://www.arm.com/products/tools/development-boards/versatile/index.php
http://www.arm.com/products/tools/development-boards/versatile/index.php
http://www.socle-tech.com.tw/en/service_62.html
http://www.socle-tech.com.tw/en/service_62.html
http://wiki.qemu.org/Index.html
http://www.ncbi.nlm.nih.gov/pubmed/21776214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21776214?dopt=Abstract
http://www.greensocs.com/en/projects/QEMUSystemC
http://www.greensocs.com/en/projects/QEMUSystemC
http://gcc.gnu.org/
http://www.kernel.org/
http://people.canonical.com/~ogra/arm/qemu/kernel/
http://people.canonical.com/~ogra/arm/qemu/kernel/
http://www.busybox.net/
http://www.virtualbox.org/
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	Introduction
	Internet-based hardware/software co-design in the architecture stage
	Software development environment
	Requisition for building guest software environment
	3D Graphics Device Driver
	3D graphics test benches
	The QEMU interface

	Communication interface and 3D graphics SOC
	The SystemC interface
	Two types of deadlock
	The 3D graphics SoC

	Experiment results
	General communication
	Application-specific communication

	Conclusion
	Acknowledgements
	Author details
	Competing interests
	References

