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Abstract

Multi-dimensional model order selection (MOS) techniques achieve an improved accuracy, reliability, and
robustness, since they consider all dimensions jointly during the estimation of parameters. Additionally, from
fundamental identifiability results of multi-dimensional decompositions, it is known that the number of main
components can be larger when compared to matrix-based decompositions. In this article, we show how to use
tensor calculus to extend matrix-based MOS schemes and we also present our proposed multi-dimensional model
order selection scheme based on the closed-form PARAFAC algorithm, which is only applicable to multi-
dimensional data. In general, as shown by means of simulations, the Probability of correct Detection (PoD) of our
proposed multi-dimensional MOS schemes is much better than the PoD of matrix-based schemes.

Introduction
In the literature, matrix array signal processing techni-
ques are extensively used in a variety of applications
including radar, mobile communications, sonar, and
seismology. To estimate geometrical/physical parameters
such as direction of arrival, direction of departure, time
of direction of arrival, and Doppler frequency, the first
step is to estimate the model order, i.e., the number of
signal components.
By taking into account only one dimension, the pro-

blem is seen from just one perspective, i.e., one projec-
tion. Consequently, parameters cannot be estimated
properly for certain scenarios. To handle that, multi-
dimensional array signal processing, which considers
several dimensions, is studied. These dimensions can
correspond to time, frequency, or polarization, but also
spatial dimensions such as one- or two-dimensional
arrays at the transmitter and the receiver. With multi-
dimensional array signal processing, it is possible to esti-
mate parameters using all the dimensions jointly, even if
they are not resolvable for each dimension separately.
Moreover, by considering all dimensions jointly, the
accuracy, reliability, and robustness can be improved.
Another important advantage of using multi-dimen-
sional data, also known as tensors, is the identifiability,
since with tensors the typical rank can be much higher
than using matrices. Here, we focus particularly on the

development of techniques for the estimation of the
model order.
The estimation of the model order, also known as the

number of principal components, has been investigated
in several science fields, and usually model order selec-
tion schemes are proposed only for specific scenarios in
the literature. Therefore, as a first important contribu-
tion, we have proposed in [1,2] the one-dimensional
model order selection scheme called Modified Exponen-
tial Fitting Test (M-EFT), which outperforms all the
other schemes for scenarios involving white Gaussian
noise. Additionally, we have proposed in [1,2] improved
versions of the Akaike’s Information Criterion (AIC)
and Minimum Description Length (MDL).
As reviewed in this article, the multi-dimensional

structure of the data can be taken into account to
improve further the estimation of the model order. As
an example of such improvement, we show our pro-
posed R-dimensional Exponential Fitting Test (R-D
EFT) for multi-dimensional applications, where the
noise is additive white Gaussian. The R-D EFT success-
fully outperforms the M-EFT confirming that even the
technique with the best performance can be improved
by taking into account the multi-dimensional structure
of the data [1,3,4]. In addition, we also extend our
modified versions of AIC and MDL to their respective
multi-dimensional versions R-D AIC and R-D MDL. For
scenarios with colored noise, we present our proposed
multi-dimensional model order selection technique
called closed-form PARAFAC-based model order
selection (CFP-MOS) scheme [3,5].
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The remainder of this article is organized as follows.
After reviewing the notation in second section, the data
model is presented in third section. Then the R-dimen-
sional exponential fitting test (R-D EFT) and closed-
form PARAFAC-based model order selection (CFP-
MOS) scheme are reviewed in fourth section. The simu-
lation results in fifth section confirm the improved per-
formance of R-D EFT and CFP-MOS. Conclusions are
drawn finally.

Tensor and matrix notation
In order to facilitate the distinction between scalars,
matrices, and tensors, the following notation is used:
Scalars are denoted as italic letters (a, b, ..., A, B, ..., a,
b, ...), column vectors as lower-case bold-face letters (a,
b, ...), matrices as bold-face capitals (A, B, ...), and ten-
sors are written as bold-face calligraphic letters
(A,B, . . .). Lower-order parts are consistently named:
the (i, j)-element of the matrix A is denoted as ai,j and
the (i, j, k)-element of a third order tensor X as xi,j,k.
The n-mode vectors of a tensor are obtained by varying
the nth index within its range (1, 2, ..., In) and keeping
all the other indices fixed. We use the superscripts T,
H, -1, +, and * for transposition, Hermitian transposi-
tion, matrix inversion, the Moore-Penrose pseudo
inverse of matrices, and complex conjugation, respec-
tively. Moreover the Khatri-Rao product (columnwise
Kronecker product) is denoted by A ◊ B.
The tensor operations we use are consistent with [6]:

The r-mode product of a tensor A ∈ CI1×I2×···×IR and a
matrix U ∈ CJr×Iralong the rth mode is denoted as
A ×r U ∈ CI1×I2···×Jr ···×IR. It is obtained by multiplying all
r-mode vectors of A from the left-hand side by the
matrix U. A certain r-mode vector of a tensor is
obtained by fixing the rth index and by varying all the
other indices.
The higher-order SVD (HOSVD) of a tensor

A ∈ CI1×I2×···×IR is given by

A = S×1U1×2U2 · · · ×RUR, (1)

where S ∈ CI1×I2×···×IR is the core-tensor which satis-
fies the all-orthogonality conditions [6] and Ur ∈ CIr×Ir, r
= 1, 2, ..., R are the unitary matrices of r-mode singular
vectors.
Finally, the r-mode unfolding of a tensor A is symbo-

lized by [A](r) ∈ CIr×(I1I2 ...Ir−1Ir+1...IR), i.e., it represents the
matrix of r-mode vectors of the tensor A. The order of
the columns is chosen in accordance with [6].

Data model
To validate the general applicability of our proposed
schemes, we adopt the PARAFAC data model below

x0(m1,m2, . . . ,mR+1) =
d∑

n=1

f (1)n (m1) · f (2)n (m2) . . . f (R+1)n (mR+1), (2)

where f (r)n (mr)is the mrth element of the nth factor of
the rth mode for mr = 1, ..., Mr and r = 1, 2, ..., R, R +1.
The MR+1 can be alternatively represented by N, which
stands for the number of snapshots.
By defining the vectors

f (r)n =
[
f (r)n (1)f (r)n (2) . . . f (r)n (Mr)

]T
and using the outer

product operator ∘, another possible representation of
(2) is given by

X 0 =
d∑

n=1

f (1)n ◦ f (2)n ◦ · · · ◦ f (R+1)n , (3)

where X 0 ∈ CM1×M2···×MR×MR+1 is composed of the sum
of d rank one tensors. Therefore, the tensor rank of X 0

coincides with the model order d.
For applications, where the multi-dimensional data

obeys a PARAFAC decomposition, it is important to
estimate the factors of the tensor X 0, which are defined

as F(r) =
[
f (r)1 , . . . , f (r)d

]
∈ CMr×d, and we assume that the

rank of each F(r) is equal to min(Mr, d). This definition
of the factor matrices allows us to rewrite (3) according
to the notation proposed in [7]

X 0 = IR+1,d×1F
(1)×2F

(2) · · · ×R+1F
(R+1), (4)

where ×r is the r-mode product defined in Section 2,
and the tensor IR+1,drepresents the R-dimensional iden-
tity tensor of size d × d... × d, whose elements are equal
to one when the indices i1 = i2 ... = iR+1 and zero
otherwise.
In practice, the data is contaminated by noise, which

we represent by the following data model

X = IR+1,d×1F
(1)×2F

(2) · · · ×R+1F
(R+1) +N , (5)

where N ∈ CM1×M2···×MR+1 is the additive noise tensor,
whose elements are i.i.d. zero-mean circularly symmetric
complex Gaussian (ZMCSCG) random variables.
Thereby, the tensor rank is different from d and usually
it assumes extremely large values as shown in [8]. Hence,
the problem we are solving can therefore be stated in the
following fashion: given a noisy measurement tensor X ,
we desire to estimate the model order d. Note that
according to Comon [8], the typical rank of X is much
bigger than any of the dimensions Mr for r = 1, ..., R + 1.
The objective of the PARAFAC decomposition is to

compute the estimated factors F̂
(r) such that

X ≈ IR+1,d×1F̂
(1)×2F̂

(2) · · · ×RF̂
(R+1)

. (6)
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Since F̂
(r) ∈ CMr×d one requirement to apply the PAR-

AFAC decomposition is to estimate d.
We evaluate the performance of the model order

selection scheme in the presence of colored noise,
which is given by replacing the white Gaussian white
noise tensor N by the colored Gaussian noise tensor

N (c) in (5). Note that the data model used in this article
is simply a linear superposition of rank-one components
superimposed by additive noise.
Particularly, for multi-dimensional data, the colored

noise with a Kronecker structure is present in several
applications. For example, in EEG applications [9], the
noise is correlated in both space and time dimensions,
and it has been shown that a model of the noise com-
bining these two correlation matrices using the Kro-
necker product can fit noise measurements. Moreover,
for MIMO systems the noise covariance matrix is often
assumed to be the Kronecker product of the temporal
and spatial correlation matrices [10].
The multi-dimensional colored noise, which is

assumed to have a Kronecker correlation structure, can
be written as[

N (c)
]
(R+1)

= [N ](R+1) · (L1 ⊗ L2 ⊗ · · · ⊗ LR)T, (7)

where ⊗ represents the Kronecker product. We can
also rewrite (7) using the n-mode products in the fol-
lowing fashion

N (c) = N×1L1×2L2 · · ·×RLR, (8)

where N ∈ CM1×M2···×MR×MR+1 is a tensor with uncor-
related ZMCSCG elements with variance σ 2

n , and
Li ∈ CMi×Mi is the correlation factor of the ith dimension
of the colored noise tensor. The noise covariance matrix
in the ith mode is defined as

E
{[

N (c)
]
(i)

·
[
N (c)

]H
(i)

}
= α · W i = α · Li · LHi , (9)

where a is a normalization constant, such that
tr(Li · LHi ) = Mi. The equivalence between (7), (8), and
(9) is shown in [11].
To simplify the notation, let us define M =

∏R
r=1 Mr.

For the r-mode unfolding we compute the sample cov-
ariance matrix as

R̂
(r)
xx =

Mr

M
[X ](r) · [X ]H(r) ∈ CMrxMr . (10)

The eigenvalues of these r-mode sample covariance
matrices play a major role in the model order estimation
step. Let us denote the ith eigenvalue of the sample cov-

ariance matrix of the r-mode unfolding as λ
(r)
i
. Notice

that R̂
(r)
xx

possesses Mr eigenvalues, which we order in

such a way that λ
(r)
1 ≥ λ

(r)
2 ≥ · · · λ(r)

Mr
. The eigenvalues

may be computed from the HOSVD of the measure-
ment tensor

X = S×1U1×2U2 · · · ×R+1UR+1 (11)

as

diag
(
λ
(r)
1 ,λ(r)

2 , . . . ,λ(r)
Mr

)
=
Mr

M
[S](r) · [S]H(r). (12)

Note that the eigenvalues λ
(r)
i

are related to the

r-mode singular values σ
(r)
i

of X through

λ
(r)
i =

Mr

M

(
σ
(r)
i

)2
. The r-mode singular values σ

(r)
i

can

also be computed via the SVD of the r-mode unfolding
X as follows

[X ](r) = Ur · �r · VH
r , (13)

where Ur ∈ CMr×Mr and
V r ∈ C

M
Mr

×
M
Mr

are unitary

matrices, and
�r ∈ C

Mr×
M
Mr

is a diagonal matrix, which

contains the singular values σ
(r)
i

on the main diagonal.

Multi-dimensional model order selection schemes
In this section, the multi-dimensional model order
selection schemes are proposed based on the global
eigenvalues, the R-D subspace, or tensor-based data
model. First, we show the proposed definition of the
global eigenvalues together with the presentation of the
proposed R-D EFT. Then, we summarize our multi-
dimensional extension of AIC and MDL. Besides the
global eigenvalues-based schemes, we also propose a
tensor data-based multi-dimensional model order selec-
tion scheme. Followed by the closed-form PARAFAC-
based model order selection scheme is proposed for
white and also colored noise scenarios. For data sampled
on a grid and an array with centro-symmetric symme-
tries, we show how to improve the performance of
model order selection schemes for such data by incor-
porating forward-backward averaging (FBA).

R-D exponential fitting test (R-D EFT)
The global eigenvalues are based on the r-mode eigen-

values represented by λ
(r)
i

for r = 1, ..., R and for i = 1,

..., Mr. To obtain the r-mode eigenvalues, there are two
ways. The first way shown in (10) is possible via the
EVD of each r-mode sample covariance matrix, and the
second way in (12) is given via an HOSVD.
According to Grouffaud et al. [12] and Quinlan et al.

[13], the noise eigenvalues that exhibit a Wishart profile
can have their profile approximated by an exponential
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curve. Therefore, by applying the exponential approxi-
mation for every r-mode, we obtain that

E{λ(r)
i } = E{λ(r)

1 } · q(αr ,βr)i−1, (14)

where αr = min
{
Mr,

M
Mr

}
, βr = max

{
Mr,

M
Mr

}
, i =

1,2, ..., Mr and r = 1, 2, ..., R + 1. The rate of the expo-
nential profile q(ar, br) is defined as

q(α,β) = exp

⎧⎨
⎩−

√√√√ 30
α2 + 2

−
√

900

(α2 + 2)2
− 720α

β(α4 + α2 − 2)

⎫⎬
⎭ , (15)

where a = min (M, N) and b = max (M, N). Note that
(15) of the M-EFT is an extension of the EFT expression
in [12,13].
In order to be even more precise in the computation

of q, the following polynomial can be solved

(C − 1) · qα+1 + (C + 1) · qα − (C + 1) · q + 1 − C = 0. (16)

Although from (16) a + 1 solutions are possible, we
select only the q that belongs to the interval (0, 1). For
M ≤ N (15) is equal to the q of the EFT [12,13], which
means that the PoD of the EFT and the PoD of the M-
EFT are the same for M <N. Consequently, the M-EFT
automatically inherits from the EFT the property that it
outperforms the other matrix-based MOS techniques in
the literature for M ≤ N in the presence of white Gaus-
sian noise as shown in [2].
For the sake of simplicity, let us first assume that M1

= M2 = ... = MR. Then we can define global eigenvalues
as being [1]

λ
(G)
i = λ

(1)
i · λ(2)

i . . . · λ
(R+1)
i . (17)

Therefore, based on (14), it is straightforward that the
noise global eigenvalues also follow an exponential pro-
file, since

E
{
λ
(G)
i

}
= E

{
λ
(G)
1

}
· (q(α1,β1) · . . . · q(αR,βR)

)i−1,(18)

where i = 1, ..., MR+1.
In Figure 1, we show an example of the exponential pro-

file property that is assumed for the noise eigenvalues.
This exponential profile approximates the distribution of
the noise eigenvalues and the distribution of the global
noise eigenvalues. The exemplified data in Figure 1 have
the model order equal to one, since the first eigenvalue
does not fit the exponential profile. To estimate the model
order, the noise eigenvalue profile gets predicted based on
the exponential profile assumption starting from the smal-
lest noise eigenvalue. When a significant gap is detected
compared to this predicted exponential profile, the model
order, i.e., the smallest signal eigenvalue, is found.

The product across modes increases the gap between
the predicted and the actual eigenvalues as shown in
Figure 1. We compare the gap between the actual eigen-
values and the predicted eigenvalues in the rth mode to
the gap between the actual global eigenvalues and the
predicted global eigenvalues. Here, we consider that X 0

is a rank one tensor, and noise is added according to (5)
Then, in this case, d = 1. For the first gap, we have

λ
(r)
i − λ̂

(r)
i = 2.4 × 102, while for the second one, we

have λ
(G)
1 − λ̂

(G)
1 = 2.4 × 1012. Therefore, the break in

the profile is easier to detect via global eigenvalues than
using only one mode eigenvalues
Since all tensor dimensions may be not necessarily equal

to each other, without loss of generality, let us consider
the case in which M1 ≥ M2 ≥ ... ≥ MR+1. In Figures 2, 3,
and 4, we have sets of eigenvalues obtained from each
r-mode of a tensor with sizes M1 = 13, M2 = 11, M3 = 8
and M4 = 3. The index i indicates the position of the
eigenvalues in each rth eigenvalues set.
We start by estimating d̂ with a certain eigenvalue-

based model order selection method considering the
first unfolding only, which in the example in Figure 2
has a size M1= 13. If d̂ < M2, we could have taken
advantage of the second mode as well. Therefore, we

compute the global eigenvalues λ
(G)
i

as in (17) for 1 ≤ i

≤ M2, thus discarding the M1 - M2 last eigenvalues of
the first mode. We can obtain a new estimate d̂. As illu-
strated in Figure 3, we utilize only the first M2 highest
eigenvalues of the first and of the second modes to esti-
mate the model order. If d̂ < M3 we could continue in
the same fashion, by computing the global eigenvalues
considering the first three modes. In the example in Fig-
ure 4, since the model order is equal to 6, which is
greater than M4, the sequential definition algorithm of

0.5 1 1.5 2 2.5 3 3.5 4 4.5
100

105

1010

1015

Eigenvalue index i

λ i

λ(G)

λ^(G)

λ(r)

λ^(r)

Figure 1 Comparison between the global eigenvalues profile
and the R-mode eigenvalues profile for a scenario with array
size M1 = 4, M2 = 4, M3 = 4, M4 = 4, M5 = 4, d = 1 and SNR =
0 dB.
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the global eigenvalues stops using the three first modes.
Clearly, the full potential of the proposed method can
be achieved when all modes are used to compute the
global eigenvalues. This happens when d̂ < MR+1, so that

λ
(G)
i

can be computed for 1 ≤ i ≤ MR+1.

Note that using the global eigenvalues, the assump-
tions of M-EFT, that the noise eigenvalues can be
approximated by an exponential profile, and the
assumptions of AIC and MDL, that the noise eigenva-
lues are constant, still hold. Moreover, the maximum
model order is equal to max

r
Mr, for r = 1, ..., R.

The R-D EFT is an extended version of the M-EFT

operating on the λ
(G)
i

. Therefore,

1) It exploits the fact that the noise global eigenva-
lues still exhibit an exponential profile;
2) The increase of the threshold between the actual
signal global eigenvalue and the predicted noise glo-
bal eigenvalue leads to a significant improvements in
the performance;
3) It is applicable to arrays of arbitrary size and
dimension through the sequential definition of the
global eigenvalues as long as the data is arranged on
a multi-dimensional grid.

To derive the proposed multi-dimensional extension
of the M-EFT algorithm, namely the R-D EFT, we start
by looking at an R-dimensional noise-only case. For the
R-D EFT, it is our intention to predict the noise global
eigenvalues defined in (18). Each r-mode eigenvalue can
be estimated via

λ̂
(r)
M−P = (P + 1) ·

1 − q
(
P + 1,

M
Mr

)

1 − q
(
P + 1,

M
Mr

)P+1

(
σ̂ (r)

)2
(19)

(
σ̂ (r)

)2
=
1
P

P−1∑
i=0

λ
(r)
M−i. (20)

Equations (19) and (20) are the same expressions as in
the case of the M-EFT in [2], however, in contrast to
the M-EFT, here they are applied to each r-mode
eigenvalue.
Let us apply the definition of the global eigenvalues

according to (17)

λ̂
(G)
i = λ̂

(1)
i · λ̂

(2)
i . . . λ̂

(R)
i , (21)

where in (18) the approximation by an exponential
profile is assumed. Therefore,

λ̂
(G)
i = λ̂

(G)
α(G) ·

(
q
(
P + 1,

M

M1

)
· . . . · q

(
P + 1,

M

MR

))i−1

, (22)

where a(G) is the minimum ar for all the r-modes
considered in the sequential definition of the global

eigenvalue. In (22), λ̂
(G)
i

is a function of only the last

global eigenvalue λ̂
(G)
α(G), which is the smallest global

eigenvalue and is assumed a noise eigenvalue, and of

the rates q
(
P + 1,

M
Mr

)
for all the r-modes considered

in the sequential definition. Instead of using directly

(22), we use λ̂
(r)
M−P

according to (19) for all the r-modes

considered in the sequential definition. Therefore, the
previous eigenvalues that were already estimated as
noise eigenvalues are taken into account in the predic-
tion step.
Similarly to the M-EFT, using the predicted global

eigenvalue expression (21) considering white
Gaussian noise samples, we compute the global

threshold coefficients η
(G)
P

via the hypotheses for the
tensor case

HP+1 : λ
(G)
M−P is a noise EV,

λ
(G)
M−P − λ̂

(G)
M−P

λ̂
(G)
M−P

≤ η
(G)
P

H̄P+1 : λ
(G)
M−P is a signal EV,

λ
(G)
M−P − λ̂

(G)
M−P

λ̂
(G)
M−P

> η
(G)
P .

(23)

Once all η
(G)
P

are found for a certain higher order

array of sizes M1, M2, ..., MR, and for a certain Pfa, then

Figure 2 Sequential definition of the global eigenvalues-1st
eigenvalue set.

Figure 3 Sequential definition of the global eigenvalues-1st
and 2nd eigenvalue sets.

Figure 4 Sequential definition of the global eigenvalues-1st,
2nd, and 3rd eigenvalue sets.
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the model order can be estimated by applying the
following cost function

d̂ = α(G) − min(P) where

P ∈ P , if
λ
(G)
M−P − λ̂

(G)
M−P

λ̂
(G)
M−P

> η
(G)
P ,

where a(G) is the total number of sequentially defined
global eigenvalues.

R-D AIC and R-D MDL
In AIC and MDL, it is assumed that the noise eigenva-
lues are all equal. Therefore, once this assumption is
valid for all r-mode eigenvalues, it is straightforward
that it is also valid for our global eigenvalue definition.
Moreover, since we have shown in [2] that 1-D AIC and
1-D MDL are more general and superior in terms of
performance than AIC and MDL, respectively, we
extend 1-D AIC and 1-D MDL to the multi-dimensional
form using the global eigenvalues. Note that the PoD of
1-D AIC and 1-D MDL is only greater than the PoD of

AIC and MDL for cases where M
Mr

> Mr, which cannot

be fulfilled for one-dimensional data.
The corresponding R-dimensional versions of 1-D AIC

and 1-D MDL are obtained by first replacing the eigenva-

lues R̂xx by the global eigenvalues λ
(G)
i

defined in (17). Addi-

tionally, to compute the number of free parameters for the
1-D AIC and 1-D MDL methods and their R-D extensions,
we propose to set the parameter N = max

r
Mr and a(G) is

the total number of sequentially defined global eigenvalues
similarly as we propose in [1]. Therefore, the optimization
problem for the R-D AIC and R-D MDL is given by

d̂ = argmin
P

J(G)(P) where

J(G)(P) = −N(α(G) − P) log

(
g(G)(P)

a(G)(P)

)
+ p(P,N,α(G)),

(24)

where d̂ represents an estimate of the model order d,
and g(G)(P) and a(G)(P) are the geometric and arithmetic
means of the P smallest global eigenvalues, respectively.
The penalty functions p(P, N a(G)) for R-D AIC and R-
D MDL are given in Table 1.
Note that the R-dimensional extension described in

this section can be applied to any model order selection

scheme that is based on the profile of eigenvalues, i.e.,
also to the 1-D MDL and the 1-D AIC methods.

Closed-form PARAFAC-based model order selection
(CFP-MOS) scheme
In this section, we present the Closed-form PARAFAC-
based model order selection (CFP-MOS) technique pro-
posed in [5]. The major motivation of CFP-MOS is the
fact that R-D AIC, R-D MDL, and R-D EFT are applic-
able only in the presence of white Gaussian noise.
Therefore, it is very appealing to apply CFP-MOS, since
it has a performance close to R-D EFT in the presence
of white Gaussian noise, and at the same time it is also
applicable in the presence of colored Gaussian noise.
According to Roemer and Haardt [14], the estimation

of the factors F(r) via the PARAFAC decomposition is
transformed into a set of simultaneous diagonalization
problems based on the relation between the truncated
HOSVD [6]-based low-rank approximation of X

X ≈ S[s]×1U
[s]
1 · · · ×R+1U

[s]
R+1

≈ S[s] R+1×
r=1

rU
[S]
r ,

(25)

and the PARAFAC decomposition of X

X ≈ IR+1,d×1F̂
(1) · · · ×R+1F̂

(R+1)

≈ IR+1,d
R+1×
r=1

r F̂
(r)
,

(26)

where S [s] ∈ Cp1×p2×···×pR+1, U[s]
r ∈ CMr×pr, pr = min

(Mr, d), and F̂
(r)

= U[s]
r · Tr for a nonsingular transforma-

tion matrix Tr Î ℂd × d for all modes r ∈ R where
R = {r|Mr ≥ d, r = 1, . . . R + 1} denotes the set of
non-degenerate modes. As shown in (25) and in (26),

the operator
R+1×
r=1

r denotes a compact representation of R

r-mode products between a tensor and R + 1 matrices.
The closed-form PARAFAC (CFP) [14] decomposition

constructs two simultaneous diagonalization problems
for every tuple (k,ℓ), such that k, � ∈ R, and k < ℓ.
In order to reference each simultaneous matrix diagona-
lization (SMD) problem, we define the enumerator
function e(k, ℓ, i) that assigns the triple (k, ℓ, i) to a
sequence of consecutive integer numbers in the range 1,
2, ..., T. Here i = 1, 2 refers to the two simultaneous
matrix diagonalizations (SMD) for our specific k and ℓ.
Consequently, SMD (e (k, ℓ, 1), P) represents the first
SMD for a given k and ℓ, which is associated to the

simultaneous diagonalization of the matrices Srhsk,�,(n) by

T k. Initially, we consider that the candidate value of
the model order P = d, which is the model order. Simi-
larly, SMD (e (k, ℓ, 2), P) corresponds to the second
SMD for a given k and ℓ referring to the simultaneous

Table 1 Penalty functions for R-D information theoretic
criteria

Approach Penalty function p(P, N, a(G))

R-D AIC P · (2 · a(G) - P)

R-D MDL
1
2

· P · (2 · α(G) − P) · log(N)
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diagonalizations of Slhsk,�,(n) by Tℓ. S
rhs
k,�,(n) and Slhsk,�,(n) are

defined in [14]. Note that each SMD(e(k, ℓ, i), P) yields
an estimate of all factors F(r) [14,15], where r = 1, ..., R.
Consequently, for each factor F(r) there are T estimates.
For instance, consider a 4-D tensor, where the third

mode is degenerate, i.e., M3 <d. Then, the set R + 1 is
given by {1, 2, 4}, and the possible (k, ℓ)-tuples are (1,2),
(1,4), and (2,4). Consequently, the six possible SMDs are
enumerated via e(k, ℓ, i) as follows: e(1, 2, 1) = 1, e(1, 2,
2) = 2, e(1, 4, 1) = 3, e(1, 4, 2) = 4, e(2, 4, 1) = 5, and e
(2, 4, 2) = 6. In general, the total number of SMD pro-
blems T is equal to #(R − 1) · [#(R)].
There are different heuristics to select the best esti-

mates of each factor F(r) as shown in [14]. We define
the function to compute the residuals (RESID) of the
simultaneous matrix diagonalizations (SMD) as RESID
(SMD(·)). For instance, we apply it to e(k, ℓ, 1)

RESID(SMD( e(k, �, 1),P)) =
Nmax∑
n=1

∥∥∥off (T−1
k · Srhsk,�,(n) · Tk

)∥∥∥2
F
, (27)

and for e(k, ℓ,2)

RESID(SMD(e (k, �, 2),P)) =
Nmax∑
n=1

∥∥∥off (T−1
� · Slhsk,�,(n) · T�

)∥∥∥2
F
, (28)

where Nmax =
R∏
r=1

Mr · N/(Mk · M�).

Since each residual is a positive real-valued number,
we can order the SMDs by the magnitude of the corre-
sponding residual. For the sake of simplicity, we repre-
sent the ordered sequence of SMDs to e(k, ℓ, i) by a
single index e(t) for t = 1, 2, ..., T, such that RESID(SMD
(e(t), P)) ≤ RESID(SMD(e(t+1), P)). Since in practice d is
not known, P denotes a candidate value for d̂, which is
our estimate of the model order d. Our task is to select
P from the interval d̂min ≤ P ≤ d̂max, where d̂min is a
lower bound and d̂max is an upper bound for our candi-
date values. For instance, d̂min equal to 1 is used, and

d̂max is chosen such that no dimension is degenerate
[14], i.e. d ≤ Mr for r = 1, ..., R. We define RESID(SMD
(e(t), P)) as being the tth lowest residual of the SMD
considering the number of components per factor equal
to P. Based on the definition of RESID(SMD(e(t),P)), one
first direct way to estimate the model order d can be
performed using the following properties
1) If there is no noise and P <d, then RESID(SMD(e(t),

P)) > RESID(SMD(e(t), d)), since the matrices generated
are composed of mixed components as shown in [16].
2) If noise is present and P >d, then RESID(SMD(e(t),

P)) > RESID(SMD(e(t), d)), since the matrices generated
with the noise components are not diagonalizable com-
muting matrices. Therefore, the simultaneous diagonali-
zations are not valid anymore.

Based on these properties, a first model order
selection scheme can be proposed

d̂ = argmin
P

RESID(SMD(e(1),P)). (29)

However, the model order selection scheme in (29)
yields a Probability of correct Detection (PoD) inferior
to the some MOS techniques found in the literature.
Therefore, to improve the PoD of (29), we propose to
exploit the redundant information provided only by the
closed-form PARAFAC (CFP) [14].

Let F̂
(r)
e(t),P

denote the ordered sequence of estimates for

F(r) assuming that the model order is P. In order to
combine factors estimated in different diagonalizations
processes, the permutation and scaling ambiguities
should be solved. For this task, we apply the amplitude
approach according to Weis et al. [15]. For the correct
model order and in the absence of noise, the subspaces

of F(r)e(t),P
should not depend on t. Consequently, a mea-

sure for the reliability of the estimate is given by com-

paring the angle between the vectors f̂
(r)
v,e(t),P

for different

t, where f̂
(r)
v,e(t),P

corresponds to the estimate of the vth

column of F(r)e(t),P
. Hence, this gives rise to an expression

to estimate the model order using CFP-MOS

d̂ = argmin
P

RMSE(P) where

RMSE(P) = 	(P) ·
√√√√Tlim∑

t=2

R∑
r=1

P∑
v=1

�
(
f̂
(r)
v,e(t),P, f̂

(r)
v,e(1),P

)
,
(30)

where the operator ∢ gives the angle between two vec-
tors and Tlim represents the total number of simultaneous
matrix diagonalizations taken into account. Tlim, a design
parameter of the CFP-MOS algorithm, can be chosen
between 2 and T. Similar to the Threshold Core Consis-
tency Analysis (T-CORCONDIA) in [4], the CFP-MOS
requires weights Δ(P), otherwise the Probabilities of cor-
rect Dectection (PoD) for different values of d have a sig-
nificant gap from each other. Therefore, to have a fair
estimation for all candidates P, we introduce the weights
Δ(P), which are calibrated in a scenario with white Gaus-
sian noise, where the number of sources d varies. For the
calibration of weights, we use the probability of correct
detection (PoD) of the R-D EFT [1,4] as a reference, since
the R-D EFT achieves the best PoD in the literature even
in the low SNR regime. Consequently, we propose the fol-
lowing expression to obtain the calibrated weights Δvar

�var = argmin
�

Jvar(�) where

Jvar(�) =
dmax∑

P=dmin

∣∣E {
PoDCFP - MOS

SNR (	(P))
} − E{PoDR - D EFT

SNR (P)}∣∣ (31)
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where E{PoDR - D EFT
SNR (P)} returns the averaged prob-

ability of correct detection over a certain predefined
SNR range using the R-D EFT for a given scenario
assuming P as the model order, dmax is defined as
being the maximum candidate value of P, and Δvar is
the vector with the threshold coefficients for each
value of P. Note that the elements of the vector of
weights Δ vary according to a certain defined range
and interval and that the averaged PoD of the CFP-
MOS is compared to the averaged PoD of the R-D
EFT. When the cost function is minimized, then we
have the desired Δvar.
Up to this point, the CFP-MOS is applicable to sce-

narios without any specific structure in the factor

matrices. If the vectors f (r)v,e(t),P
have a Vandermonde

structure, we can propose another expression. Again let

F̂
(r)
e(t),P

be the estimate for the rth factor matrix obtained

from SMD(e(t), P). Using the Vandermonde structure of

each factor we can estimate the scalars μ
(r)
v,e(t),P

corre-

sponding to the vth column of F̂
(r)
e(t),P

As already pro-

posed previously, for the correct model order and in the
absence of noise, the estimated spatial frequencies
should not depend on t. Consequently, a measure for
the reliability of the estimate is given by comparing the
estimates for different t. Hence, this gives rise to the
new cost function

d̂ = argmin
P

RMSE(P) where

RMSE(P) = 	(P) ·
√√√√Tlim∑

t=2

R∑
r=1

P∑
v=1

(
μ̂
(r)
v,e(t),P − μ̂

(r)
v,e(1),P

)
.
(32)

Similar to the cost function in (30), to have a fair
estimation for all candidates P, we introduce the weights
Δ(P), which are calculated in a similar fashion as for
T-CORCONDIA Var in [4] by considering data con-
taminated by white Gaussian noise.

Applying forward-backward averaging (FBA)

In many applications, the complex-valued data obeys
additional symmetry relations that can be exploited to
enhance resolution and accuracy. For instance, when
sampling data uniformly or on centro-symmetric grids,
the corresponding r-mode subspaces are invariant
under flipping and conjugation. Such scenarios are
known as having centro-symmetric symmetries. Also
in such scenarios, we can incorporate FBA [17] to all
model order selection schemes even with a multi-
dimensional data model. First, let us present modifica-
tions in the data model, which should be considered to
apply the FBA. Comparing the data model of (4) to the
data model to be introduced in this section, we

summarize two main differences. The first one is the
size of X 0, which has R + 1 dimensions instead of the
R dimensions as in (4). Therefore, the noiseless data
tensor is given by

X 0 = IR+1,d×1F
(1)×2F

(2) · · · ×RF
(R)×R+1F

(R+1) ∈ CM1×M2×···MR×N. (33)

This additional (R + 1)th dimension is due to the fact
that the (R + 1)th factor represents the source symbols
matrix F (R+1) = ST. The second difference is the restric-
tion of the factor matrices F(r) = for r = 1, ..., R of the
tensor X 0 in (33) to a matrix, where each vector is a

function of a certain scalar μ
(r)
i

related to the rth dimen-

sion and the ith source. In many applications, these vec-
tors have a Vandermonde structure. For the sake of
notation, the factor matrices for r = 1, ..., R are repre-

sented by A(r), and it can be written as a function of μ
(r)
i

as follows

A(r) =
[
a(r)

(
μ
(r)
1

)
, a(r)

(
μ
(r)
2

)
, ..., a(r)

(
μ
(r)
d

)]
. (34)

In [18,19] it was demonstrated that in the tensor case,
forward-backward averaging can be expressed in the fol-
lowing form

Z =
[X �R+1X ∗×1�M1 · · · ×R�MR×R+1�N

]
, (35)

where [A�nB] represents the concatenation of two
tensors A and B along the nth mode. Note that all the
other modes of A and B should have exactly the same
sizes. The matrix Πn is defined as

�n =

⎡
⎢⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
... . .

.
. .
. ...

1 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ Rn×n. (36)

In multi-dimensional model order selection schemes,
forward-backward averaging is incorporated by replacing
the data tensor X in (11) by Z. Moreover, we have to
replace N by 2 · N in the subsequent formulas since the
number of snapshots is virtually doubled.
In schemes like AIC, MDL, 1-D AIC, and 1-D MDL,

which requires the information about the number of
sensors and the number of snapshots for the computa-
tion of the free parameters, once FBA is applied, the
number of snapshots in the free parameters should be
updated from N to 2 · N.
To reduce the computational complexity, the forward-

backward averaged data matrix Z can be replaced by a
real-valued data matrix �{Z} Î ℝM × 2N which has the
same singular values as Z [20]. This transformation can
be extended to the tensor case where the forward-back-
ward averaged data tensor Z is replaced by a real-valued
data tensor ϕ{Z} ∈ RM1×···×MR×2N possessing the same
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r-mode singular values for all r = 1, 2, ..., R + 1 (see [19]
for details).

ϕ(Z) = Z×1Q
H
M1

×2Q
H
M2

×R+1Q
H
2·N , (37)

where Z is given in (35), and if p is odd, then Qp is
given as

Qp =
1√
2

·
⎡
⎣ In 0n×1 j · In
01×n

√
2 01×n

�n 0n×1 −j · �n

⎤
⎦ , (38)

and p = 2 · n + 1. On the other hand, if p is even,
then Qp is given as

Qp =
1√
2

·
[
In j · In
�n −j · �n

]
, (39)

and p = 2 · n.

Simulation results
In this section, we evaluate the performance, in terms of
the probability of correct detection (PoD), of all multi-
dimensional model order selection techniques presented
previously via Monte Carlo simulations considering dif-
ferent scenarios.
Comparing the two versions of the CORCONDIA

[4,21] and the HOSVD-based approaches, we can notice
that the computational complexity is much lower in the
R-D methods. Moreover, the HOSVD-based approaches
outperform the iterative approaches, since none of them
are close to the 100% Probability of correct Detection
(PoD). The techniques based on global eigenvalues, R-D
EFT, R-D AIC, and R-D MDL maintain a good perfor-
mance even for lower SNR scenarios, and the R-D EFT
shows the best performance if we compare all the
techniques.
In Figures 5 and 6, we observe the performance of the

classical methods and the R-D EFT, R-D AIC, and R-D
MDL for a scenario with the following dimensions M1 =
7, M2 = 7, M3 = 7, and M4 = 7. The methods described
as M-EFT, AIC, and MDL correspond to the simplified
one-dimensional cases of the R-D methods, in which we
consider only one unfolding for r = 4.
In Figures 7 and 8, we compare our proposed

approach to all mentioned techniques for the case that
white noise is present. To compare the performance of
CFP-MOS for various values of the design parameter
Tlim, we select Tlim = 2 for the legend CFP 2f and Tlim =
4 for CFP 4f. In Figure 7, the model order d is equal to
2, while in Figure 8, d = 3. In these two scenarios, the
proposed CFP-MOS has a performance very close to R-
D EFT, which has the best performance.

In Figures 9 and 10, we assume the noise correlation
structure of Equation (9), where Wi of the ith factor for
Mi = 3 is given by

W i =

⎡
⎣ 1 p∗

i (p∗
i )

2

pi 1 p∗
i

p2i pi 1

⎤
⎦ , (40)

where ri is the correlation coefficient. Note that also
other types of correlation models different from (40)
can be used.
In Figures 9 and 10, the noise is colored with a very

high correlation, and the factors Li are computed
based on (9) and (40) as a function of ri. As expected
for this scenario, the R-D EFT, R-D AIC, and R-D
MDL completely fail. In case of colored noise with
high correlation, the noise power is much more
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Figure 5 Probability of correct Detection (PoD) versus SNR
considering a system with a data model of M1 = 7, M2 = 7, M3

= 7, M4 = 7, and d = 3 sources.
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Figure 6 Probability of correct Detection (PoD) versus SNR
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= 7, M4 = 7, and d = 4 sources.
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concentrated in the signal components. Therefore, the
smaller are the values of d, the worse is the PoD. The
behavior of the CFP-MOS, AIC, MDL, and EFT are
consistent with this effect. The PoD of AIC, MDL, and
EFT increases from 0.85, 0.7, and 0.7 in Figure 9 to
0.9, 0.85, and 0.85 in Figure 10. CFP-MOS 4f has a
PoD = 0.98 for SNR = 20 dB in Figure 9, while a PoD
= 0.98 for SNR = 15 dB in Figure 10.
In contrast to CFP-MOS, AIC, MDL, and EFT, the

PoD of RADOI [22] degrades from Figures 9 and 10. In
Figure 9, RADOI has a better performance than the
CFP-MOS version, while in Figure 10, CFP-MOS out-
performs RADOI. Note that the PoD for RADOI
becomes constant for SNR ≤ 3 dB, which corresponds
to a biased estimation. Therefore, for severely colored
noise scenarios, the model order selection using CFP-
MOS is more stable than the other approaches.
In Figure 11, no FBA is applied in all model order

selection techniques, while in Figure 12 FBA is applied
in all of them according to section 4. In general, an
improvement of approximately 3 dB is obtained when
FBA is applied.
In Figure 12, d = 3. Therefore, using the sequential

definition of the global eigenvalues from “R-D Exponen-
tial Fitting Test (R-D EFT)”, we can estimate the model
order considering four modes. By increasing the number
of sources to 5 in Figure 13, the sequential definition of
the global eigenvalues is computed considering the sec-
ond, third, and fourth modes, which are related to M2,
M3, and N.
By increasing the number of sources even more such

that only one mode can be applied, the curves of the R-
D EFT, R-D AIC and R-D MDL are the same as the
curves of M-EFT, 1-D AIC, and 1-D MDL, as shown in
Figure 14.
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Figure 7 Probability of correct Detection (PoD) versus SNR. In
the simulated scenario, R = 5, M1 = 5, M2 = 5, M3 = 5, M4 = 5, M5 =
5, and N = 5 presence of white noise. We fixed d = 2.
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Figure 8 Probability of correct Detection (PoD) versus SNR. In
the simulated scenario, R = 5, M1 = 5, M2 = 5, M3 = 5, M4 = 5, M5 =
5, and N = 5 presence of white noise. We fixed d = 3.
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Figure 9 Probability of correct Detection (PoD) versus SNR. In
the simulated scenario, R = 5, M1 = 5, M2 = 5, M3 = 5, M4 = 5, M5 =
5, and N = 5 presence of colored noise, where r1 = 0.9, r2 = 0.95,
r3 = 0.85, and r4 = 0.8. We fixed d = 2.
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Figure 10 Probability of correct Detection (PoD) versus SNR. In
the simulated scenario, R = 5, M1 = 5, M2 = 5, M3 = 5, M4 = 5, M5 =
5, and N = 5 presence of colored noise, where r1 = 0.9, r2 = 0.95,
r3 = 0.85, and r4 = 0.8. We fixed d = 3.
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Conclusions
In this article, we have compared different model order
selection techniques for multi-dimensional high-resolu-
tion parameter estimation schemes. We have achieved
the following results considering a multi-dimensional
data model.
1) In case of white Gaussian noise scenarios, our R-D

EFT outperforms the other techniques presented in the
literature.
2) In the presence of colored noise, the CFP-MOS is

the best technique, since it has a performance close to
the R-D EFT in case of no correlation, and a perfor-
mance more stable than RADOI, in case of severely cor-
related noise.

3) For researchers, which prefer to use information
theoretic criteria (ITC) techniques, we have also pro-
posed multi-dimensional extensions of AIC and MDL,
called R-D AIC and R-D MDL, respectively.
In Table 2, we summarize the scenarios to apply the

different techniques shown in this article. Also in Table
2, wht stands for white noise and clr stands for colored
noise. Note that the PoD of the CFP-MOS is close to
the one of the R-D EFT for white noise, which means
that it has a multi-dimensional gain. Moreover, since
the CFP-MOS is suitable for white and colored noise
applications, we consider it the best general-purpose
scheme.
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Figure 11 Probability of correct Detection (PoD) versus SNR for
an array of size M1 = 5, M2 = 7, and M3 = 9. The number of
snapshots N is set to 10 and the number of sources d = 3. No FBA
is applied.
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Figure 12 Probability of correct Detection (PoD) versus SNR for
an array of size M1 = 5, M2 = 7, and M3 = 9. The number of
snapshots N is set to 10 and the number of sources d = 3. FBA is
applied.
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Figure 13 Probability of correct Detection (PoD) versus SNR for
an array of size M1 = 5, M2 = 7, and M3 = 9. The number of
snapshots N is set to 10 and the number of sources d = 5. FBA is
applied.
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Figure 14 Probability of correct Detection (PoD) versus SNR for
an array of size M1 = 5, M2 = 7, and M3 = 9. The number of
snapshots N is set to 10 and the number of sources d = 9. FBA is
applied.
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