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Abstract

The tilt test is a valuable clinical tool for vasovagal syncope (VWS) diagnostic, and its early prediction from simple
ECG and blood pressure-based parameters has widely been studied in the literature. However, no practical system
is currently used in the clinical setting for the early prediction of the tilt test outcome. The objectives of this study
were (1) to benchmark the early prediction performance of all the previously proposed parameters, when
nonlinearly combined; (2) to try to improve this performance with the inclusion of additional information and
processing techniques. We analyzed a database of 727 consecutive cases of tilt test. Previously proposed features
were measured from heart rate and systolic/diastolic pressure tachograms, in several representative signal
segments. We aimed to improve the prediction performance: first, using new nonlinear features (detrended
fluctuation analysis and sample entropy); second, using a multivariable nonlinear classifier (support vector machine);
and finally, including additional physiological signals (stroke volume). The predictive performance of the nonlinearly
combined previously proposed features was limited [area under receiver operating characteristic curve (ROC) 0.57
+ 0.12], especially at the beginning of the test, which is the most clinically relevant period. The improvement with
additional available physiological information was limited too. We conclude that the use of a system for tilt test
outcome prediction with current knowledge and processing should be considered with caution, and that further
effort has to be devoted to understand the mechanisms of WS,
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1. Introduction

Syncope is a temporary loss of consciousness and pos-
ture, described as fainting, usually related to temporary
insufficient blood flow to the brain, which has high
medical, social, and economic relevance. Only in the
United States, around one million patients are annually
evaluated for this disorder, accounting for 3-5% emer-
gency department visits and 1-6% of hospital admis-
sions. Up to 20% of adults have suffered a sudden fall at
least once in their life. Vasovagal syncope (VVS)
accounts for about 40% of syncope episodes, and it
represents the most usual cause of consciousness loss
[1]. VVS is a neurally mediated reflex syncope, consist-
ing of a sudden drop in blood pressure with an asso-
ciated fall of heart rate (HR); as a result of a peripheral
vasodilatation and increase of vagal modulation, all
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these phenomena being regulated by the autonomous
nervous system [2].

VVS management may be complicated because it is
based on the exclusion of other causes, often leading to
significant unnecessary diagnostic testing [1]. The tilt
table test (TTT) has become a standard for the induc-
tion of syncope under controlled conditions in patients
with suspected VVS. The long duration of the TTT, up
to 1 h in some protocols, has a high economic impact.
In addition, the patient may feel very uncomfortable
when the presyncopal or syncopal symptoms are repro-
duced. These problems have motivated the search for
methods allowing the early prediction of the TTT
[3-16]. The aim of these methods has often been to
obtain a simple measurement, taken from an easily
available cardiac signal (such as HR or pressure tacho-
gram) at the beginning of the test, which would be used
as a predictive criterion for the final result. Despite all
this literature, no system has been implemented to date
allowing the early prediction of the TTT outcome in the
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clinical setting. Moreover, some recent studies have even
questioned the actual predictive value of some of the
formerly proposed parameters [17].

Therefore, the aim of this study was twofold. First, we
evaluated the predictive performance of the proposed
parameters in the literature when jointly and nonlinearly
combined. For this purpose, a nonlinear support vector
machine (SVM) classifier was employed in a database
consisting of 727 consecutive TTT. Second, we explored
how to improve the performance of the (possibly non-
linear) combination of features with the inclusion of
additional information, namely: (a) by analyzing several
relevant time periods of the test; (b) by introducing new
nonlinear indexes [detrended fluctuation analysis (DFA)
and sample entropy (SampEn)], which had been pre-
viously shown to be valuable in other ECG analysis pro-
blems; (c) by introducing new monitored signals
currently available in some TTT equipments, specifi-
cally, the impedance signal (stroke volume-SV)
tachogram.

The scheme of this article is as follows. In Section 2,
we present the basic background on VVS mechanisms,
the most relevant TTT protocols, and the methods in
the literature for early prediction. In Section 3, we intro-
duce the different aspects to be considered for improv-
ing the predictive performance. Section 4 contains the
description of our database and the results of the experi-
ments. Section 5 has the discussion and the conclusions
on the limitations of the TTT early prediction of out-
come from the parameters in the literature.

2. Background

Intrinsic autonomous reflexes mediate the response of
the cardiovascular system to stress and yield internal
compensatory reactions to guarantee the blood supply
to the vital organs. The mechanism of VVS has not fully
been elucidated. External stimuli, such as strong emo-
tions, hot places, or sustained standing, induce blood
redistribution and a decreased cardiac output. As a con-
sequence, a sympathetic surge occurs, leading to the
activation of afferent vagal mechanoreceptors in the left
ventricle, and to a paradoxic vagal reflex that promotes
inappropriate vasodilatation and bradycardia ending in a
syncopal event [18-20]. Although other additional or
alternative mechanisms have been proposed [21,22], this
ventricular theory is the most widely accepted.

The TTT is used to reproduce the clinical event in
patients with suspected VVS. The patient is initially
lying on a table in supine position that is tilted to a 60°
angle after 5-10 min. Several ECG leads and a noninva-
sive BP signal, usually from finger plethysmography, are
recorded throughout the test. In patients prone to VVS,
the initial response consisting of vasoconstriction and
reflex tachycardia elicits the vasovagal response and

Page 2 of 7

reproduces the clinical syncope after a variable lapse of
time. If no changes are observed after 20-25 min, a
stressor drug, usually nitroglycerine or isoproterenol, is
administered and the orthostatic challenge is maintained
for 15-20 additional minutes. The test finishes whenever
the monitoring period is over and no symptoms have
been observed (negative response), or when a syncopal
(or pre-syncopal) event takes place with decreased arter-
ial pressure (AP), HR, or both (positive response).
Changes in HR or in AP with no symptoms are not
valid positive responses. The spontaneous syncope and
the TTT-induced syncope are considered as equivalent,
as they usually have the same previous symptoms and a
similar hemodinamic pattern [23,24].

A number of methods have been proposed, which
mostly analyze the HR and the AP signals, for early pre-
diction of TTT outcome. In general, the increase of HR
during the first minutes of the test has been suggested
as a predictive parameter for positive TTT result [6].
Also, AP in patients with positive TTT has shown a
trend toward significantly lower values at systolic
phases, and larger systolic-diastolic differences [11]; and
brain blood supply did not fluctuate during the TTT in
patients with VS in some studies, though more recent
ones showed changes when measured by Transcranial
Doppler Ultrasounds. Some other potential risk factors
for syncopal recurrence are the number and frequency
of preceding syncope episodes, as well as nausea, dizzi-
ness, and diaphoresis (profusely sweating), as they were
pointed out as predictive on the positive result of the
TTT [25]. Finally, age, sex, bradychardia, and hypoten-
sion during the test were not found to influence the
outcome prediction.

Many studies have proposed specific TTT outcome
prediction procedures. In [3], a set of time and fre-
quency parameters from the ECG was presented using
24 Holter recordings and compared to the TTT result.
The study included 50 consecutive patients with positive
TTT and 23 control cases. The pNN50 (percentage in
number of the differences in beat periods larger than 50
ms) was first identified as the best decision statistic
(82.6% specificity, 51.8% sensitivity), and then spectral
analysis parameters were shown to have low predictive
power. Subsequently, in [4], the response of HR during
TTT was analyzed under the hypothesis that the under-
lying mechanism to the vaso-depressor response is
because of an increment in the sympathetic tone as a
response to the orthostatic stress. The study included 28
patients (11 negative; 17 positive, from them 10 with
isoproterenol). Database was previously filtered of
patients with given conditions. Classical statistic analysis
on HR and AP parameters yielded 100% specificity and
41% sensitivity. During the rest period, no significant
differences were found, whereas during the tilt period,
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cardiac variability decreased significantly in those
patients with negative test patients, and the average RR
intervals decreased in both groups compared to rest.

The analysis in [6] focused on the early prediction of
the negative TTT, searching for the reduction of the
test duration, and analyzing the increment in HR before
and after the orthostatic stress. This possible mechanism
was explained therein according to an excessive sympa-
thetic reaction, causing an opposite reaction to the
initiated by an abnormal activation of mechanoreceptors
activation, and also causing the activation of the afferent
vagal fibers. On 110 patients (no drugs, substudy 1) and
109 patients different from the previous ones (isoproter-
enol, substudy 2), the results of HR yielded 100% speci-
ficity and 88.8% sensitivity in patients in substudy 1
with HR increased under 18 bpm during the first 6 min.
After these results, another research group [10] pro-
posed the same methodology for a new protocol using a
80° table slope during 30 min and without inducing
drug (in 115 patients; 29 positive test result, from them
16 had syncope during the first 15 min). In this data-
base, the HR yielded 76% sensitivity and 62% specificity.
Later [12], a retrospective analysis showed that an incre-
ment equal or lower than 18 bpm sustained during 20 s
during the first 6 min of the TTT predicts a negative
result (110 patients, after excluding syncopes during the
first 10 min and low quality in HR signal). Results
reached 65% specificity and 75% sensitivity.

The use of AP for TTT outcome prediction was intro-
duced in [11], combined with HR. In 178 patients,
changes were more significant during the first 5 min in
HR, systolic AP (SAP), and differential AP for patients
with positive test outcome (diastolic AP-DAP-did not
change significantly), providing a set of results ranges
for different analysis: 68-55% specificity, and 53-72%
sensitivity. For a prediction of a positive TTT outcome,
a database of 318 patients with unexplained syncope
was studied in [13], by measuring AP before and after
tilt. A reduction of AP during the initial 15 min after
tilt was observed for positive cases (58% sensitivity, 93%
specificity). One of the most exhaustive studies in the
literature in terms of number of patients [15] used a
database of 1,155 (759 positive, 396 negative). HR and
AP were continuously monitored during TTT, as well as
during the preceding 180 s before tilt. Signals were pro-
cessed and combined developing an incremental risk
model. The weights assigned for the different signals
were more relevant for the AP contribution compared
to the HR in terms of syncope prediction, yielding 95%
sensitivity and 93% specificity. However, 51% of predic-
tions took place during the last minute before syncope;
this being a strong limitation for early prediction pur-
poses. The use of transthoracic impedance (TI) was
introduced in [16], comparing a set of parameters
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during rest by using a SVM nonlinear classifier (128
patients, 65 with positive), which yielded 94% sensitivity
and 79% specificity. As other studies, this one did not
consider TTT with drug intervention.

Other studies have analyzed the VVS in terms of the
previously mentioned signals [5,7-9,14], but did not
focus on early prediction. Nevertheless, some recent stu-
dies have pointed out the difficulties that are found
when the early prediction results are to be replicated in
different patient databases. In [17], authors conclude
that the early increase in HR during the first 10 min of
the TTT has limited prediction power.

3. Methods and proposed improvements

To study the nonlinear combination of the parameters
in the literature, we propose to use the SVM classifier.
The learning procedure using SVM was proposed by
Vapnik [26], as a method for building separating hyper-
planes with maximum margin in possibly nonlinearly
separable data, by using Mercer’s kernels. These pattern
recognition techniques have shown excellent perfor-
mance in numerous practical applications, especially in
terms of generalization capabilities, such as handwritten
character recognition, three-dimensional object recogni-
tion, or remote sensing [27]. We used the standard v-
SVM classifier, with a Gaussian Mercer kernel, for clas-
sification purposes. In this formulation, the free para-
meters v € (0,1) (parameter controlling the number of
support vectors), and o (kernel width) have to be fixed
by some additional criterion, such as cross validation. A
detailed presentation of these techniques can be found
in [28].

As previously detailed, most of the preceding study in
the literature on TTT outcome prediction used straight-
forward time- and frequency-domain features of HR and
AP. Alternative features can be given by nonlinear
indices, which have widely been used in cardiac signals
(such as HR) [29,30]. According to the time scales of
the signals in the TTT, we propose here to use the low-
scale index ¢ in DFA and the SampEn for further char-
acterizing the available signals during TTT monitoring.

The DFA method has been used for giving a quantifi-
cation of fractal correlation in physiological time series
with nonstationary properties [31]. This index gives a
statistically quantification of the affinity of a signal with
respect to itself, and the mathematical presentation of
the method is detailed elsewhere [32,33]. Due to the
time-window used for defining the tachogram segments
to be analyzed during TTT, only the short-term index
o, makes sense to be used in our case. On the other
hand, indexes for calculating the entropy in time signals
have widely been used in many fields of medicine, such
as in HR for cardiac-risk stratification, in the estimation
of electroencephalographic organization, and in the
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evaluation of changes in the cardiac rhythm, among
others [30,34]. SampEn index (denoted in our study by
s) is a statistical index that quantifies nonlinear regular-
ity, and allows us to establish a criterion for order and
complexity quantification in a signal. The mathematical
formulation can be found in [31,35], as well as the
method and criteria followed in this study described in
[30], for setting m (the dimension of the phase space)
and r (the scaling or normalization parameter).

In addition to the HR and the arterial pressure, we
proposed the use of the variable SV tachogram, defined
as the amount of blood (ml), driven by the left ventricle
within a beat into aorta. Hence, this new variable is
added to the hemodynamical characterization given by
indirect measurements, and complements the electrical
information in HR and AP tachogram signals. Although
the SV itself had never been used in this context, a
related one (TI) was used in [16]. The analysis devel-
oped in this study includes the complete TTT, a larger
sample base, and the use of the tachogram, instead of
the continuous signal.

4. Experiments

Our database included 727 consecutive TTT, during the
period from 1998 to 2007 in Hospital Universitario Vir-
gen de la Arrixaca de Murcia (Spain), with their clinical
information. Signals registered using the Task Force
Monitor®, then imported and structured, and later on
processed, using an ad hoc developed software (Synkopa,
see Figure 1) on MatLab®. This code converts raw data
from the Task Force Monitor into an structured data-
base, and represents various signals, such as HR, SAP,
DAP, and SV.

Before any signal processing or model application, sig-
nals were pre-processed.

First, signals with invalid information were removed;
second, unwanted elements (such as noise and ectopic
beats) were also removed, by trained researchers using
semisupervised tools. Invalid signal information was
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Figure 1 Tool developed for visual and mathematical analyses.
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considered when (i) significant part of the signal was
missing in the segments of interest; (ii) signals had high
level of noise; (iii) patients had implanted pacemaker;
(iv) patients suffered from cardiac conditions affecting
normal physiological response in signals of interests (i.e.,
arrhythmia or tachycardia). Resulting HR signals at this
point were considered as gold standard, and they were
subsequently extended to the rest of the components
SAP, DAP, and SV. Second, signals were segmented
attending to prior knowledge regarding the expected
response of TTT, as shown in Figure 1.

4.1. Time domain methods

Lippman [4] and Madrid [3] proposed prediction meth-
ods using statistical analysis of cardiac signals, where the
protocols analyzed did [4] and did not [3] envisage the
creation of a reference variable (baseline). Both authors
studied RR interval and HR fluctuations, and both based
their methods on the differences or variability between
successive NN [36] as (a) rMSSD being the square root of
mean square of successive NN (in ms); (b) pNN50 being
the percentage of total pairs of adjacent NN differing
more than 50 ms. Other authors [6,10-13] focused on
simple measurements of HR and AP (SAP, DAP, and dif-
ferential AP), such as average, maximum, or minimum
for a certain segments definition.

We implemented all these proposed indices (see Table
1), and we extended them to a wider statistical descrip-
tion of the preceding parameters, given by (a) mean,
being the average HR of a given signal segment; (b) std,
being the standard deviation of the HR segment; (c)
MRR, the mean NN intervals (ms); (d) STRR, the stan-
dard deviation of NN intervals (ms); (e) SDRR, the
mean of standard deviation of NN intervals (ms); (f)
NN50, number of NN pairs that differ by more than 50
ms; (g) NN10, number of NN pairs that differ by more
than 10 ms; (h) pNN10, percentage of total pairs of
adjacent NN that differ more than 10 ms; (i) NNxx,
number of NN pairs that differ by more than xx ms,
were xx was between 1 and 100 ms; (j) pNNxx, percen-
tage of total pairs of adjacent NN that differ more than
XX mS.

4.2. Frequency domain methods

Studies in literature based on spectral analysis did not
improved early prediction of TTT outcome [7,8],
although these studies provided significant contributions
in terms of knowledge of the systems and mechanisms
involved in syncope [15]. Power spectrum has been eval-
uated with parametric (auto-regressive [8,5]) and non-
parametric methods (Fast Fourier Transform [7] and
Wavelet [14]), yielding equivalent results. Hence, spec-
tral indices were not included in the set of analyzed
indices.
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Table 1 Parameters proposed by authors applied on developed data base

Rest Tilt test

Positive response Negative response P-value Positive response Negative response P-value
Madrid 0.011 £ 0.03 0.005 + 0.02 0.022 0.002 + 0.006 0.0014 + 0.0037 0.16
Lippman 293 +£ 193 248 + 140 0.027 196 + 109 194 + 9.7 0.84
Mallat 674+ 113 483 + 107 043 820+ 133 798 + 146 0.14
Sumiyoshi 673+ 113 683 + 10.7 043 86.8 + 13 83 + 14 0.047
Movahed 674+ 113 683 + 10.7 043 858 + 152 84.0 £ 170 033
Bellard 674+ 113 683 + 10.7 043 758 £ 134 744 £ 143 0.38
Pitzalis 1064 + 176 109.2 £ 167 0.15 36 £56 3759 0.85
Virag na. na. na. na. na. na.

4.3. Receiver operating characteristics

The area under ROC is used as the benchmarking para-
meter, indicating the higher ratio, the better method
performance. ROC curve represents the resulting sensi-
tivity/specificity (SEN/SPE) pairs, corresponding to the
progressive decision threshold evolution of for all the
possible values [37,38].

Attending to complete TTT (including the stressor
agent), and the area under ROC curve, no major finding
was obtained either using the methods presented in the
literature or with the new ones proposed in this study,
when considered in isolation, as shown in Table 1.

4.4. Results on nonlinear SVM

Classical classification methods require the establishment
of a set of training and validation samples. After a thor-
ough analysis of possible training and validation sets, we
decided to use 40% of the samples for training, 40% for
validation, and 20% for test. To ensure the statistical
independence of data and made several iterations, ran-
dom order selection of the samples was incorporated
before separation in training, validation, and test. To
facilitate the learning process, balancing algorithms were
implemented. The balancing strategy discarded the
excess samples of any of the qualifying groups before
submitting the sample number to the training process.
The absence of this balance had resulted in a technical
malfunction of the SVM, causing depletion of the sup-
port vectors of any of these classes. Validation and test
did not incorporate the process of balancing classes.

All the tests were made by setting the range of the
SVM free parameters, as shown in Figure 2, and maxi-
mizing the area under the ROC curve. The resolution of
these search ranges has been adjusted to the needs on a
case-by-case basis, printing in a higher-resolution the
analysis with significant results once further details were
required. Results were also plotted and inspected
visually, one-by-one (see example in Figure 2), to detect
the optimal regions and to set free parameters ranges.
In all the cases, when a potential high-performance
region was found, it was rechecked with higher

resolutions to evaluate if the finding could respond to
occasional actual circumstances (local minima).

After the individual models in the previous literature
were analyzed, all the authors’ variables and indexes
were also analyzed. In this case, prior to SVM analysis,
highly correlated variables were removed.

As a result, as shown in Table 2, incorporation of
SVM classifiers in the early prediction of complete TTT
for individual methods increased the predictive capacity
in the validation sample set. Moreover, after the meth-
ods provided the highest values in validation, they
showed significant reductions in the areas under the
ROC curve when applied to test sample set.

In addition, the combined TTT outcome prediction
capability of the methods in the literature, including or
not including age and sex, with or without pre-selection
of noncorrelated components, using SVM classifier, was
not able to improve the individual methods (results not
shown).
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Table 2 Area under ROC curve obtained during analysis
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Classifier Analysis performed Maximum Mean/SD

Linear Individual authors methods 0.65 0.56 + 0.06
Individual authors methods (optimal segment preselect) 0.65 061 + 003

SVM Individual authors methods 0.79 0.59 £ 0.22
Simultaneous authors methods 0.79 0.57 + 0.1
Simultaneous authors methods with PCA 0.76 0.58 + 0.1
Sample entropy 0.69 0.56 + 0.11
DFA 0.68 054 £ 0.12
Sample entropy with PCA 0.70 0.56 + 0.09
DFA with PCA 0.67 0.54 + 0.09

4.5. Nonlinear indices and additional signals

Many researchers have proposed different methods to
analyze TTT signals, although up to date, all studies are
based on heart rate variability (HRV) indexes developed
in time and frequency domains. This study incorporated
in addition to those complexity analysis using nonlinear
indexes such as DFA, and SampEn. Both methods have
widely been applied in HRV [29-31,34,39], but not yet in
TTT signals. These two methods were applied to vari-
ables and indexes (soft-outputs) proposed by authors, as
well as to optimal segments previously defined over the
most frequently analyzed signals in the literature (HR,
SBP, DPA). Finally, SV signal was also included as new
source of physiological characterization. High-correlation
variables removal, SVM machine learning algorithm, and
surface area ROC analysis were also applied.

As a result (see example in Table 2), none of the
newly proposed method or indicator developed using
nonlinear indexes provided improvements on published
methods, even when using SVM classifiers. The absence
of clusters of concurrent validation areas with values
over 0.6 in terms of area under ROC curve confirmed
the limited generalization because of the high depen-
dence of samples used in validation, preventing effec-
tively the prediction of TTT outcome.

5. Discussion and conclusions

The early prediction of the result of the TTT by analyz-
ing the HR tachogram and the SAP and DAP has widely
been addressed in the literature. In this study, we aimed
to reproduce and improve the performance of most of
the preceding methods. The predictive capacity of the
methods from the literature compared positively in the
passive TTT (without inductor agent), with the only
exception of the method proposed by Pitzalis. It was not
the case for the complete TTT, for which early predic-
tion did not provide in any of the cases values of area
under the ROC curve above 0.64. Moreover, for those
methods providing the highest values in validation, a
significant reduction in the areas under the ROC curve
was obtained in the test set.

The prediction methods proposed and developed in
this study based on sample entropy and fractal structure
over HR, SBP, DBP, and SV, individually, jointly, or by
pre-selection with principal component analysis, with or
without classification SVM, did not improve predictive
capability compared with the application of SVM classi-
fier on the preceding methods separately.

The moderate prediction capability of all the pub-
lished methods checked over a sufficient and commune
database, together with the significant but insufficient
improvements, from an early outcome prediction stand-
point, of the new methods proposed in this study, basi-
cally by the inclusion of SVM classifier. The SVM
exhibited dependence of validation and training samples
set, and it did not allow the generalization to test sam-
ple successfully. This fact might provide the coherence
between the important results published by different
authors in the literature, where no generalization pro-
cess was performed or applied in early prediction.

Based on these results, it can be concluded that the early
prediction of the TTT outcome based solely on heart sig-
nals, such as HR, BP, and SV, is not a trivial task. The use
of more sophisticated signal processing parameters and
techniques should be explored, and the informative cap-
abilities of detailed physiological models, such as lumped
parameter descriptions of cardiovascular system, should
be explored to provide new methods for this problem.
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