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Abstract

The purpose of this article is to present a comparative study of sparse greedy algorithms that were separately
introduced in speech and audio research communities. It is particularly shown that the Matching Pursuit (MP)
family of algorithms (MP, OMP, and OOMP) are equivalent to multi-stage gain-shape vector quantization algorithms
previously designed for speech signals coding. These algorithms are comparatively evaluated and their merits in
terms of trade-off between complexity and performances are discussed. This article is completed by the
introduction of the novel methods that take their inspiration from this unified view and recent study in audio
sparse decomposition.
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1 Introduction
Sparse signal decomposition and models are used in a
large number of signal processing applications, such as,
speech and audio compression, denoising, source
separation, or automatic indexing. Many approaches aim
at decomposing the signal on a set of constituent ele-
ments (that are termed atoms, basis or simply dictionary
elements), to obtain an exact representation of the sig-
nal, or in most cases an approximative but parsimonious
representation. For a given observation vector x of
dimension N and a dictionary F of dimension N × L,
the objective of such decompositions is to find a vector
g of dimension L which satisfies F g = x. In most cases,
we have L ≫ N which a priori leads to an infinite num-
ber of solutions. In many applications, we are however
interested in finding an approximate solution which
would lead to a vector g with the smallest number K of
non-zero components. The representation is either exact
(when g is solution of F g = x) or approximate (when g
is solution of F g ≈ x). It is furthermore termed as
sparse representation when K ≪ N.
The sparsest representation is then obtained by find-

ing gÎ ℝL that minimizes ||x − Fg||22 under the

constraint ||g||0 ≤ K or, using the dual formulation, by
finding gÎ ℝL that minimizes ||g||0 under the constraint
||x − Fg||22 ≤ ε.
An extensive literature exists on these iterative decom-

positions since this problem has received a strong inter-
est from several research communities. In the domain of
audio (music) and image compression, a number of
greedy algorithms are based on the founding paper of
Mallat and Zhang [1], where the Matching Pursuit (MP)
algorithm is presented. Indeed, this article has inspired
several authors who proposed various extensions of the
basic MP algorithm including: the Orthogonal Matching
Pursuit (OMP) algorithm [2], the Optimized Orthogonal
Matching Pursuit (OOMP) algorithm [3], or more
recently the Gradient Pursuit (GP) [4], the Complemen-
tary Matching Pursuit (CMP), and the Orthogonal Com-
plementary Matching Pursuit (OCMP) algorithms [5,6].
Concurrently, this decomposition problem is also heavily
studied by statisticians, even though the problem is
often formulated in a slightly different manner by repla-
cing the L0 norm used in the constraint by a L1 norm
(see for example, the Basis Pursuit (BP) algorithm of
Chen et al. [7]). Similarly, an abundant literature exists
in this domain in particular linked to the two classical
algorithms Least Angle Regression (LARS) [8] and the
Least Absolute Selection and Shrinkage Operator [9].
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However, sparse decompositions also received a strong
interest from the speech coding community in the eigh-
ties although a different terminology was used.
The primary aim of this article is to provide a com-

parative study of the greedy “MP” algorithms. The intro-
duced formalism allows to highlight the main
differences between some of the most popular algo-
rithms. It is particularly shown in this article that the
MP-based algorithms (MP, OMP, and OOMP) are
equivalent to previously known multi-stage gain-shape
vector quantization approaches [10]. We also provide a
detailed comparison between these algorithms in terms
of complexity and performance. In the light of this
study, we then introduce a new family of algorithms
based on the cyclic minimization concept [11] and the
recent Cyclic Matching Pursuit (CyMP) [12]. It is shown
that these new proposals outperform previous algo-
rithms such as OOMP and OCMP.
This article is organized as follows. In Section 2, we

introduce the main notations used in this article. In Sec-
tion 3, a brief historical view of speech coding is pro-
posed as an introduction to the presentation of classical
algorithms. It is shown that the basic iterative algorithm
used in speech coding is equivalent to the MP algo-
rithm. The advantage of using an orthogonalization
technique for the dictionary F is further discussed and it
is shown that it is equivalent to a QR factorization of
the dictionary. In Section 4, we extend the previous ana-
lysis to recent algorithms (conjugate gradient, CMP) and
highlight their strong analogy with the previous algo-
rithms. The comparative evaluation is provided in Sec-
tion 5 on synthetic signals of small dimension (N = 40),
typical for code excited linear predictive (CELP) coders.
Section 6 is then dedicated to the presentation of the
two novel algorithms called herein CyRMGS and
CyOOCMP. Finally, we suggest some conclusions and
perspectives in Section 7.

2 Notations
In this article, we adopt the following notations. All vec-
tors x are column vectors where xi is the ith component.
A matrix F Î ℝN × L is composed of L column vectors
such as F = [f1 ··· fL] or alternatively of NL elements

denoted f jk, where k (resp. j) specifies the row (resp. col-

umn) index. An intermediate vector x obtained at the
kth iteration of an algorithm is denoted as xk. The scalar
product of the two real valued vectors is expressed by
<x, y>= xty. The Lp norm is written as ||·||p and by con-
vention ||·|| corresponds to the Euclidean norm (L2).
Finally, the orthogonal projection of x on y is the vector
ay that satisfies <x - ay, y >= 0, which brings a =<x,
y>/||y||2.

3 Overview of classical algorithms
3.1 CELP speech coding
Most modern speech codecs are based on the principle
of CELP coding [13]. They exploit a simple source/filter
model of speech production, where the source corre-
sponds to the vibration of the vocal cords or/and to a
noise produced at a constriction of the vocal tract, and
the filter corresponds to the vocal/nasal tracts. Based on
the quasi-stationary property of speech, the filter coeffi-
cients are estimated by linear prediction and regularly
updated (20 ms corresponds to a typical value). Since
the beginning of the seventies and the “LPC-10” codec
[14], numerous approaches were proposed to effectively
represent the source.
In the multi-pulse excitation model proposed in [15],

the source was represented as e(n) =
∑K

k=1 gkδ(n − nk),
where δ(n) is the Kronecker symbol. The position nk
and gain gk of each pulse were obtained by minimizing
||x − x̂||2, where x is the observation vector and x̂ is
obtained by predictive filtering (filter H(z)) of the excita-
tion signal e(n). Note that this minimization was per-
formed iteratively, that is for one pulse at a time. This
idea was further developed by other authors [16,17] and
generalized by [18] using vector quantization (a field of
intensive research in the late seventies [19]). The basic
idea consisted in proposing a potential candidate for the
excitation, i.e. one (or several) vector(s) was(were) cho-
sen in a pre-defined dictionary with appropriate gain(s)
(see Figure 1).
The dictionary of excitation signals may have a form

of an identity matrix (in which nonzero elements corre-
spond to pulse positions), it may also contain Gaussian
sequences or ternary signals (in order to reduce compu-
tational cost of filtering operation). Ternary signals are
also used in ACELP coders [20], but it must be stressed
that the ACELP model uses only one common gain for
all the pulses. Thus, it is not relevant to the sparse
approximation methods, which demand a separate gain
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Figure 1 Principle of CELP speech coding where j is the index
(or indices) of the selected vector(s) from the dictionary of the
excitation signals, g is the gain (or gains) and H(z) the linear
predictive filter.
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for each vector selected from the dictionary. However,
in any CELP coder, there is an excitation signal diction-
ary and a filtered dictionary, obtained by passing the
excitation vectors (columns of a matrix representing the
excitation signal dictionary) through the linear predictive
filter H(z). The filtered dictionary F = {f1,..., fL} is
updated every 10-30 ms. The dictionary vectors and
gains are chosen to minimize the norm of the error vec-
tor. The CELP coding scheme can then be seen as an
operation of the multi-stage shape-gain vector quantiza-
tion on a regularly updated (filtered) dictionary.
Let F be this filtered dictionary (not shown in Figure

1). It is then possible to summarize the CELP main
principle as follows: given a dictionary F composed of L
vectors fj, j = 1, ···, L of dimension N and a vector x of
dimension N, we aim at extracting from the dictionary a
matrix A composed of K vectors amongst L and at find-
ing a vector g of dimension K which minimizes

||x− − Ag
−
||2 = ||x− −

K∑
k=1

gkf−
j(k)||2 = ||x− − x̂−||2.

This is exactly the same problem as the one presented
in introduction.a This problem, which is identical to
multi-stage gain-shape vector quantization [10], is illu-
strated in Figure 2.
Typical values for the different parameters greatly vary

depending on the application. For example, in speech
coding [20] (and especially for low bit rate) a highly
redundant dictionary (L ≫ N) is used and coupled with
high sparsity (K very small).b In music signals coding, it
is common to consider much larger dictionaries and to
select a much larger number of dictionary elements (or
atoms). For example, in the scheme proposed in [21],
based on an union of MDCTs, the observed vector x
represents several seconds of the music signal sampled
at 44.1 kHz and typical values could be N >105, L >106,
and K ≈ 103.

3.2 Standard iterative algorithm
If the indices j(1) ··· j(K) are known (e.g., the matrix A),
then the solution is easily obtained following a least

square minimization strategy [22]. Let x̂ be the best
approximate of x, e.g. the orthogonal projection of x on
the subspace spanned by the column vectors of A verify-
ing:

< x − Ag, f j(k) >= 0 for k = 1 · · · K
The solution is then given by

g = (AtA)−1Atx (1)

when A is composed of K linearly independent vectors
which guarantees the invertibility of the Gram matrix
AtA.
The main problem is then to obtain the best set of

indices j(1) ··· j(K), or in other words to find the set of
indices that minimizes ||x − x̂||2 or that maximizes

||x̂||2 = x̂t x̂ = gtAtAg = xtA(AtA)−1Atx (2)

since we have ||x − x̂||2 = ||x||2 − ||x̂||2 if g is chosen
according to Equation 1.
This best set of indices can be obtained by an exhaus-

tive search in the dictionary F (e.g., the optimal solution
exists) but in practice the complexity burdens impose to
follow a greedy strategy.
The main principle is then to select one vector (dic-

tionary element or atom) at a time, iteratively. This leads
to the so-called Standard Iterative algorithm [16,23]. At
the kth iteration, the contribution of the k - 1 vectors
(atoms) previously selected is subtracted from x

ek = x −
k−1∑
i=1

gif
j(i),

and a new index j(k) and a new gain gk verifying

j(k) = argmax
j

< f j, ek>2

< f j, f j >
and gk

< f j(k), ek >

< f j(k), f j(k) >

are determined.
Let

a j =<fj, fj >= ||fj||2 be the vector (atom) energy,

β
j
1 =< f

−
j, x− > be the crosscorrelation between fj and

x then β
j
k =< f j, ek > the crosscorrelation between fj

and the error (or residual) ek at step k,

rjk =< f
−
j, f

−
j(k)

> the updated crosscorrelation.

By noticing that

β
j
k+1 =< f j, ek − gkf

j(k)
>= βk − gkr

j
k

one obtains the Standard Iterative algorithm, but
called herein as the MP (cf. Appendix). Indeed, although

�
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L

Figure 2 General scheme of the minimization problem.
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it is not mentioned in [1], this standard iterative scheme
is strictly equivalent to the MP algorithm.
To reduce the sub-optimality of this algorithm, two

common methodologies can be followed. The first
approach is to recompute all gains at the end of the
minimization procedure (this method will constitute the
reference MP method chosen for the comparative eva-
luation section). A second approach consists in recom-
puting the gains at each step by applying Equation 1
knowing j(1) ··· j(k), i.e., matrix A. Initially proposed in
[16] for multi-pulse excitation, it is equivalent to an
orthogonal projection of x on the subspace spanned by
fj(1) ··· fj(k), and therefore, equivalent to the OMP later
proposed in [2].

3.3 Locally optimal algorithms
3.3.1 Principle
A third direction to reduce the sub-optimality of the
standard algorithm aims at directly finding the subspace
which minimizes the error norm. At step k, the sub-
space of dimension k - 1 previously determined and
spanned by fj (1) ··· fj (k-1) is extended by the vector fj (k),
which maximizes the projection norm of xon all possible
subspaces of dimension k spanned by fj(1) ··· fj (k-1) fj. As
illustrated in Figure 3, the solution obtained by this
algorithm may be better than the other solution
obtained by the previous OMP algorithm.
This algorithm produces a set of locally optimal

indices, since at each step, the best vector is added to
the existing subspace (but obviously, it is not globally
optimal due to its greedy process). An efficient mean to
implement this algorithm consists in orthogonalizing
the dictionary F at each step k relatively to the k - 1
chosen vectors.
This idea was already suggested in [17], and then later

developed in [24,25] for multi-pulse excitation, and

formalized in a more general framework in [26,23]. This
framework is recalled below and it is shown as to how it
encompasses the later proposed OOMP algorithm [3].
3.3.2 Gram-Schmidt decomposition and QR factorization
Orthogonalizing a vector fj with respect to vector q
(supposed herein of unit norm) consists in subtracting
from fj its contribution in the direction of q. This can be
written:

f j
orth

= f j− < f j, q > q = f j − qqtf j = (I − qqt)f j.

More precisely, if k - 1 successive orthogonalizations
are performed relatively to the k - 1 vectors q1 · · · qk-1

which form an orthonormal basis, one obtains for step
k:

f j
orth(k)

= f j
orth(k−1)

− < f j
orth(k−1)

, qk−1 > qk−1

= [I − qk−1(qk−1)t]f j
orth(k−1)

Then, maximizing the projection norm of x on the

subspace spanned by f j(1)
1

f j(2)
orth(2)

· · · f j(k−1)
orth(k−1)

f j
orth(k) is

done by choosing the vector maximizing (β j
k)

2/
α
j
k with

α
j
k =< f j

orth(k)
, f j

orth(k)
>

and

β
j
k =< f j

orth(k)
, x − x̂k−1

>=< f j
orth(k)

, x >

In fact, this algorithm, presented as a Gram-Schmidt
decomposition with a partial QR factorization of the
matrix f, is equivalent to the OOMP algorithm [3]. This
is referred herein as the OOMP algorithm (see
Appendix).

The QR factorization can be shown as follows. If rjk is
the component of fj on the unit norm vector qk, one
obtains:

f j
orth(k + 1)

= f j
orth(k + 1)

− rjkq
k = f j −

k∑
i=1

rjiq
i

f j = rj1q
1 + · · · + rjkq

k + f j
orth(k + 1)

rjk =< f j, qk >=< f j
orth(k)

+
k−1∑
i=1

rjiq
i, qk >

rjk =< f j
orth(k)

, qk >

For the sake of clarity and without loss of generality,
let us suppose that the kth selected vector corresponds
to the kth column of matrix F (note that this can always
be obtained by column wise permutation), then, the fol-
lowing relation exists between the original (F) and the

Figure 3 Comparison of the OMP and the locally optimal
algorithm: let x, f1, f2 lie on the same plane, but f3 stem out of
this plane. At the first step both algorithms choose f1 (min angle
with x) and calculate the error vector e2. At the second step the
OMP algorithm chooses f3 because ∡(e2, f3) <∡(e2, f2). The locally
optimal algorithm makes the optimal choice f2 since e2 and f2orth
are collinear.
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orthogonalized (Forth(k+1)) dictionaries

F = [q1 · · · qkf k+1
orth(k + 1)

· · · f L
orth(k + 1)

] ×
⎡
⎢⎢⎢⎢⎢⎢⎣

r11 r
2
1 · · · · · · · · · rL1

0r22r
3
2 · · · · · · rL2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . rkk · · · rLk
0 · · · · · ·0IL−k

⎤
⎥⎥⎥⎥⎥⎥⎦
.

where the orthogonalized dictionary Forth(k+1) is given
by

Forth(k + 1) = [0 · · ·0f k+1
orth(k + 1)

· · · f L
orth(k + 1)

]

due to the orthogonalization step of vector f j(k)
orth(k) by

qk.
This readily corresponds to the Gram-Schmidt

decomposition of the first k columns of the matrix F
extended by the remaining L - k vectors (referred as the
modified Gram-Schmidt (MGS) algorithm by [22]).
3.3.3 Recursive MGS algorithm
A significant reduction of complexity is possible by noti-
cing that it is not necessary to explicitly compute the
orthogonalized dictionary. Indeed, thanks to orthogonal-

ity properties, it is sufficient to update the energies α
j
k

and cross-correlations β
j
k
as follows:

α
j
k = ||f j

orth(k)
||2

= ||f j
orth(k - 1)

||2 − 2rjk−1 < f j
orth(k - 1)

, qk−1 >

+ (rjk−1)
2||qk−1||2

= α
j
k−1 − (rjk−1)

2

β
j
k =< f j

orth(k)
, x >=< f j

orth(k - 1)
, x > −rjk−1 < qk−1, x >

β
j
k = β

j
k−1 − rjk−1

β
j(k−1)
k−1√
α
j(k−1)
k−1

.

A recursive update of the energies and crosscorrela-

tions is possible as soon as the crosscorrelation rjk is
known at each step. The crosscorrelations can also be
obtained recursively with

rjk =
[< f j, f j(k) > −∑k−1

i=1 rj(k)i < f j, qi >]√
α
j(k)
k

=
[< f j, f j(k) > −∑k−1

i=1 rj(k)i rji]√
α
j(k)
k

The gains ḡ1 · · · ḡK can be directly obtained. Indeed, it
can be seen that the scalar

< qk−1, x >= β
j(k−1)
k−1 /

√
α
j(k−1)
k−1

corresponds to the com-

ponent of x (or gain) on the (k - 1)th vector of the cur-
rent orthonormal basis, that is, the gain ḡk−1. The gains
which correspond to the non-orthogonalized vectors can
simply be obtained as:

[
q1 · · · qK

]
⎡
⎢⎣
ḡ1
...
ḡK

⎤
⎥⎦ =

[
f j(1) · · · f j(K)

]
⎡
⎢⎣
g1
...
gK

⎤
⎥⎦

=
[
q1 · · · qK

]
R

⎡
⎢⎣
g1
...
gK

⎤
⎥⎦

with

R =

⎡
⎢⎢⎢⎢⎣

rj(1)1 rj(2)1 · · · rj(K)1

0 rj(2)2 · · · rj(K)2
...

. . .
. . .

...

0 · · · 0 rj(K)K

⎤
⎥⎥⎥⎥⎦

which is an already computed matrix since it corre-
sponds to a subset of the matrix R of size K × L
obtained by QR factorization of matrix F. This algorithm
will be further referenced herein as RMGS and was ori-
ginally published in [23].

4 Other recent algorithms
4.1 GP algorithm
This algorithm is presented in detail in [4]. Therefore,
the aim of this section is to provide an alternate view
and to show that the GP algorithm is similar to the
standard iterative algorithm for the search of index j(k)
at step k, and then corresponds to a direct application
of the conjugate gradient method [22] to obtain the gain
gk and error ek. To that aim, we will first recall some
basic properties of the conjugate gradient algorithm. We
will highlight how the GP algorithm is based on the
conjugate gradient method and finally show that this
algorithm is exactly equivalent to the OMP algorithm.c

4.1.1 Conjugate gradient
The conjugate gradient is a classical method for solving
problems that are expressed by Ag= x, where A is a N ×
N symmetric, positive-definite square matrix. It is an
iterative method that provides the solution g* = A-1x in
N iterations by searching the vector g which minimizes

Φ(g) =
1
2
gtAg − xtg. (3)

Let ek-1 = x- Agk-1 be the error at step k and note that
ek-1 is in the opposite direction of the gradient F(g) in
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gk-1. The basic gradient method consists in finding at
each step the positive constant ck which minimizes F(gk-
1 + cke

k-1). In order to obtain the optimal solution in N
iterations, the Conjugate Gradient algorithm consists of
minimizing F(g), using all successive directions q1 · · ·
qN. The search for the directions qk is based on the A-
conjugate principle.d

It is shown in [22] that the best direction qk at step k
is the closest one to the gradient ek-1 that verifies the
conjugate constraint (that is, ek-1 from which its contri-
bution on qk-1 using the scalar product <u, Av > is sub-
tracted):

qk = ek−1 −
< ek−1,Aqk−1 >

< qk−1,Aqk−1 >
qk−1. (4)

The results can be extended to any N × L matrix A,
noting that the two systems Ag= x and AtAg= Atxhave
the same solution in g. However, for the sake of clarity,
we will distinguish in the following the error ek = x- Agk

and the error ẽk = Atx − AtAgk.

4.1.2 Conjugate gradient for parsimonious representations
Let us recall that the main problem tackled in this arti-
cle consists in finding a vector g with K non-zero com-
ponents that minimizes ||x- Fg||2 knowing x and F. The
vector g that minimizes the following cost function

1
2

||x − Fg||2 =
1
2

||x||2 − (Ftx)tg +
1
2
gFtFg

verifies Ftx= FtFg. The solution can then be obtained,
thanks to the conjugate gradient algorithm (see Equa-
tion 3). Below, we further describe the essential steps of
the algorithm presented in [4].
Let Ak = [fj(1) · · · fj(k)] be the dictionary at step k. For k

= 1, once the index j(1) is selected (e.g. A1 is fixed), we
look for the scalar

g1 = argmin
g

1
2

||x − A1g||2 = argmin
g

Φ(g)

where

Φ(g) = −((A1)tx)tg +
1
2
g(A1)tA1g

The gradient writes

∇Φ(g) = −[(A1)tx − (A1)tA1g] = −ẽ0(g)

The first direction is then chosen as q1 = ẽ0(0).
For k = 2, knowing A2, we look for the bi-dimensional

vector g

g2 = argmin
g

Φ(g) = argmin
g

[−((A2)tx)tg +
1
2
gt(A2)tA2g]

The gradient now writes

∇Φ(g) = −[(A2)tx − (A2)tA2g] = −ẽ1(g)

As described in the previous section, we now choose
the direction q2 which is the closest one to the gradient
ẽ1(g1), which satisfies the conjugation constraint (e.g., ẽ1

from which its contribution on q1 using the scalar pro-
duct < u, (A2)tA2v > is subtracted):

q2 = ẽ1
< ẽ1, (A2)tA2q1 >

< q1, (A2)tA2q1 >
q1.

At step k, Equation 4 does not hold directly since in
this case the vector g is of increasing dimension which
does not directly guarantee the orthogonality of the vec-
tors q1 · · · qk. We then must write:

qk = ẽk−1 −
k−1∑
i=1

< ẽk−1(Ak)
t
Akqi >

< qi, (Ak)tAkqi >
qi. (5)

This is referenced as GP in this article. At first, it is
the standard iterative algorithm (described in Section
3.2), and then it is a conjugate gradient algorithm pre-
sented in the previous section, where the matrix A was
replaced by the Ak and where the vector qk was modi-
fied according to Equation 5. Therefore, this algorithm
is equivalent to the OMP algorithm.

4.2 CMP algorithms
The CMP algorithm and its orthogonalized version
(OCMP) [5,6] are rather straightforward variants of the
standard algorithms. They exploit the following prop-
erty: if the vector g (again of dimension L in this sec-
tion) is the minimal norm solution of the
underdetermined system Fg = x, then it is also a solu-
tion of the equation system

Ft(FFt)−1Fg = Ft(FFt)−1x

if in F there are N linearly independent vectors. Then,
a new family of algorithms can be obtained by simply
applying one of the previous algorithms to this new sys-
tem of equations Fg= y with F = Ft(FFt)-1F and y= Ft

(FFt)-1x. All these algorithms necessitate the computa-

tion of aj = <jj, jj >, b j = <jj, y> and rjk =< φj,φj(k) >.

It is easily shown that if

C = [c1 · · · cL] = (FFt)−1F

then, one obtains a j =<cj, fj >, b j =<cj, xj > and

rjk =< cj, f j(k) >.

The CMP algorithm shares the same update equations
(and therefore same complexity) as the standard
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iterative algorithm except for the initial calculation of
the matrix C which requires the inversion of a sym-
metric matrix of size N × N. Thus, in this article the
simulation results for the OOCMP will be obtained with
the RMGS algorithm with the modified formulas for a j,

b j, and rjk as shown above. The OCMP algorithm,

requiring the computation of the L × L matrix F = Ft

(FFt)-1F is not retained for the comparative evaluation
since it is of greater computational load and lower sig-
nal-to-noise (SNR) than OOCMP.

4.3 Methods based on the minimization of the L1 norm
It must be underlined that an exhaustive comparison of
L1 norm minimization methods is beyond the scope of
this article and the BP algorithm is selected here as a
representative example.
Because of the NP complexity of the problem,

min||x − Fg||22, ||g||0 = K

it is often preferred to minimize the L1 norm instead
of the L0 norm. Generally, the algorithms used to solve
the modified problem are not greedy and special mea-
sures should be taken to obtain a gain vector having
exactly K nonzero components (i.e., ||g||0 = K). Some
algorithms, however, allow to control the degree of spar-
sity of the final solution–namely the LARS algorithms
[8]. In these methods, the codebook vectors fj(k) are con-
secutively appended to the base. In the kth iteration, the
vector fj(k) having the minimum angle with the current
error ek-1 is selected. The algorithm may be stopped if K
different vectors are in the base. This greedy formula-
tion does not lead to the optimal solution and better
results may be obtained using, e.g., linear programming
techniques. However, it is not straightforward in such
approaches to control the degree of sparsity ||g||0. For
example, the solution of the problem [9,27]

min{λ||g||1 + ||x − Fg||22} (6)

will exhibit a different degree of sparsity depending on
the value of the parameter l. In practice, it is then
necessary to run several simulations with different para-
meter values to find a solution with exactly K non-zero
components. This further increases the computational
cost of the already complex L1 norm approaches. The
L1 norm minimization may be iteratively re-weighted to
obtain better results. Despite the increase of complexity,
this approach is very promising [28].

5 Comparative evaluation
5.1 Simulations
We propose in this section a comparative evaluation of
all greedy algorithms listed in Table 1.

For the sake of coherence, other algorithms based on
L1 minimization (such as the solution of the problem
(6)) are not included in this comparative evaluation,
since they are not strictly greedy (in terms of constantly
growing L0). They will be compared with the other non-
greedy algorithms (see Section 6).
We recall that the three algorithms, MGS, RMGS, and

OOMP are equivalent except on computation load. We
therefore only use for the performance evaluation the
least complex algorithm RMGS. Similarly, for the OMP
and GP, we will only use the least complex OMP algo-
rithm. For MP, the three previously described variants
(standard, with orthogonal projection and optimized
with iterative dictionary orthogonalization) are evalu-
ated. For CMP, only two variants are tested, i.e., the
standard one and the OOCMP (RMGS-based imple-
mentation). The LARS algorithm is implemented in its
simplest, stepwise form [8]. Gains are recalculated after
the computation of the indices of the codebook vectors.
To highlight specific trends and to obtain reproducible

results, the evaluation is conducted on synthetic data.
Synthetic signals are widely used for comparison and
testing of sparse approximation algorithms. Dictionaries
usually consist of Gaussian vectors [6,29,30], and in
some cases with a constraint of uniform distribution on
the unit sphere [4]. This more or less uniform distribu-
tion of the vectors on the unit sphere is not necessarily
adequate in particular for speech and audio signals
where strong correlations exist. Therefore, we have also
tested the sparse approximation algorithms on corre-
lated data to simulate conditions which are characteris-
tic to speech and audio applications.
The dictionary F is then composed of L = 128 vectors

of dimension N = 40. The experiments will consider
two types of dictionaries: a dictionary with uncorrelated
elements (realization of a white noise process) and a
dictionary with correlated elements [realizations of a
second order AutoRegressive (AR) random process].
These correlated elements are obtained; thanks to the
filter H(z):

H(z) =
1

1 − 2ρ cos(ϕ)z−1 + ρ2z−2

with r = 0.9 and � = π/4.

Table 1 Tested algorithms and corresponding acronyms

Standard iterative algorithm ≡ matching pursuit MP

OMP or GP OMP

Locally optimal algorithms (MGS, RMGS or OOMP) RMGS

Complementary matching pursuit CMP

Optimized orthogonal CMP OOCMP

Least angle regression LARS
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The observation vector x is also a realization of one of
the two processes mentioned above. For all algorithms,
the gains are systematically recomputed at the end of
the iterative process (e.g., when all indices are obtained).
The results are provided as SNR ratio for different
values of K. For each value of K and for each algorithm,
M = 1000 random draws of F and x are performed. The
SNR is computed by

SNR =

∑M
i=1 ||x(i)||2∑M

i=1 ||x(i) − x̂(i)||2 .

As in [4], the different algorithms are also evaluated
on their capability to retrieve the exact elements that
were used to generate the signal ("exact recovery
performance”).
Finally, overall complexity figures are given for all

algorithms.

5.2 Results
5.2.1 Signal-to-noise ratio
The results in terms of SNR (in dB) are given in Figure
4 both for the case of a dictionary of uncorrelated (left)
and correlated elements (right). Note that in both cases,
the observation vector x is also a realization of the cor-
responding random process, but it is not a linear combi-
nation of the dictionary vectors.
Figure 5 illustrates the performances of the different

algorithms in the case where the observation vector x is
also a realization of the selected random process but
this time it is a linear combination of P = 10 dictionary
vectors. Note that at each try, the indices of these P vec-
tors and the coefficients of the linear combination are
randomly chosen.
5.2.2 Exact recovery performance
Finally, Figure 6 gives the success rate as a function of
K, that is, the relative number of times that all the

correct vectors involved in the linear combination are
retrieved (which will be called exact recovery).
It can be noticed that the success rate never reaches 1.

This is not surprising since in some cases the coeffi-
cients of the linear combination may be very small (due
to the random draw of these coefficients in these experi-
ments) which makes the detection very challenging.
5.2.3 Complexity
The aim of the section is to provide overall complexity
figures for the raw algorithms studied in this article,
that is, without including the complexity reduction tech-
niques based on structured dictionaries.
These figures, given in Table 2 are obtained by only

counting the multiplication/additions operations linked
to the scalar product computation and by only retaining
the dominant termse (more detailed complexity figures
are provided for some algorithms in Appendix).
The results are also displayed in Figure 7 for all algo-

rithms and different values of K. In this figure, the com-
plexity figures of OOMP (or MGS) and GP are also
provided and it can be seen, as expected, that their com-
plexity is much higher than RMGS and OMP, while
they share exactly the same SNR performances.

5.3 Discussion
As exemplified in the results provided above, the tested
algorithms exhibit significant differences in terms of
complexity and performances. However, they are some-
times based on different trade-off between these two
characteristics. The MP algorithm is clearly the less
complex algorithm but it does not always lead to the
poorest performances. At the cost of slight increasing
complexity due to the gain update at each step, the
OMP algorithm shows a clear gain in terms of perfor-
mance. The three algorithms (OOMP, MGS, and
RMGS) allow to reach higher performances (compared
to OMP) in nearly all cases, but these algorithms are
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not at all equivalent in terms of complexity. Indeed, due
to the fact that the updated dictionary does not need to
be explicitly computed in RMGS, this method has nearly
the same complexity as the standard iterative (or MP)
algorithm including for high values of K.
The complementary algorithms are clearly more com-

plex. It can be noticed that the CMP algorithm has a
complexity curve (see Figure 7) that is shifted upwards
compared with the MP’s curve, leading to a dramatic
(relative) increase for small values of K. This is due to
the fact that in this algorithm an initial processing is
needed (it is necessary to determine the matrix C - see
Section 4.2). However, for all applications where numer-
ous observations are processed from a single dictionary,
this initial processing is only needed once which makes
this approach quite attractive. Indeed, these algorithms
obtain significantly improved results in terms of SNR
and in particular OOCMP outperforms RMGS in all but

one case. In fact, as depicted in Figure 4, RMGS still
obtained better results when the signals were correlated
and also in the case where K << N which are desired
properties in many applications.
The algorithms CMP and OOCMP are particularly

effective when the observation vector x is a linear combi-
nation of dictionary elements, and especially, when the
dictionary elements are correlated. These algorithms can,
almost surely, find the exact combination of vectors (con-
trary to the other algorithms). This can be explained by
the fact that the crosscorrelation properties of the normal-
ized dictionary vectors (angles between vectors) are not
the same for F and F. This is illustrated in Figure 8, where
the histograms of the cosines of the angles between the
dictionary elements are provided for different values of the
parameter r of the AR(2) random process. Indeed, the
angle between the elements of the dictionary F are all
close to π/2, or in other words they are, for a vast majority,
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nearly orthogonal whatever the value of r be. This prop-
erty is even stronger when the F matrix is obtained with
realizations of white noise (r = 0).
This is a particularly interesting property. In fact,

when the vector x is a linear combination of P vectors
of the dictionary F, then the vector y is a linear combi-
nation of P vectors of the dictionary F, and the quasi-
orthogonality of the vectors of F allows to favor the
choice of good vectors (the others being orthogonal to
y). In CMP, OCMP, and OOCMP, the first selected vec-
tors are not necessarily minimizing the norm ||Fg- x||,
which explains why these methods are poorly perform-
ing for a low number K of vectors. Note that the opera-
tion F = CtF can be interpreted as a preconditioning of
matrix F [31], as also observed in [6].
Finally, it can be observed that the GP algorithm exhi-

bits a higher complexity than OMP in its standard ver-
sion but can reach lower complexity by some
approximations (see [4]).
It should also be noted, that the simple, stepwise

implementation of the LARS algorithm yields compar-
able SNR values to the MP algorithm, at a rather high
computational load. It then seems particularly important

to use more elaborated approaches based on the L1
minimization. In the next section, we will evaluate in
particular a method based on the study of [32].

6 Toward improved performances
6.1 Improving the decomposition
Most of the algorithms described in the previous sec-
tions are based upon K steps iterative or greedy process,
in which, at step k, a new vector is appended to a sub-
space defined at step k - 1. In this way, a K-dimensional
subspace is progressively created.
Such greedy algorithms may be far from optimality

and this explains the interest for better algorithms (i.e.,
algorithms that would lead to a better subspace), even if
they are at the cost of increased computational com-
plexity. For example, in the ITU G.729 speech coder,
four vectors are selected in the four nested loops [20]. It
is not a full-search algorithm (there are 217 combina-
tions of four vectors in this coder), because the inner-
most loop is skipped in most cases. It is, however, much
more complex than the algorithms described in the pre-
vious sections. The Backward OOMP algorithm intro-
duced by Andrle et al. [33] is a less complex solution
than the nested loop approach. The main idea of this
algorithm is to find a K’ > K dimensional subspace (by
using the OOMP algorithm) and to iteratively reduce
the dimension of the subspace until the targeted dimen-
sion K is reached. The criterion used for the dimension
reduction is the norm of the orthogonal projection of
the vector x on the subspace of reduced dimension.
In some applications, the temporary increase of the

subspace dimension is not convenient or even not possi-
ble (e.g., ACELP [20]). In such cases, optimization of the
subspace of dimension K may be performed using the

Table 2 Overall complexity in number of multiplications/
additions per algorithm (approximated)

MP (K + 1)NL + K2N

OMP (K + 1)NL + K2(3N/2 + K2/12)

RMGS (K + 1)NL + K2L/2

CMP (K + 1)NL + K2N + N2(2L + N/3)

OCMP NL(2N + L) + K(KL + L2 + KN)

OOCMP 4KNL + N3/3 + 2N2L

LARS variable, depending on the number of steps

OOMP 4KNL

GP (K + 1)NL + K2(10N + K2)/4
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cyclic minimization concept [11]. Cyclic minimizers are
frequently employed to solve the following problem:

min
θ1,...,θK

V(θ1, . . . , θK)

where V is a function to be minimized and θ1,..., θK
are scalars or vectors. As presented in [11], cyclic mini-
mization consists in performing, for i = 1,..., K, the mini-
mization with respect to one variable:

θ̄i = argmin
θi

V(θ1, . . . , θi, . . . , θK)

and substituting the new value θ̄i for the previous one:
θ̄i → θi. The process can be iterated as many times as
desired.
In [12], the cyclic minimization is employed to find

the signal model consisting of complex sinusoids. In the
augmentation step, a new sinusoid is added (according
to the MP approach in frequency domain), and then in
the optimization step the parameters of the previously
found sinusoids are consecutively revised. This
approach, termed as CyMP by the authors, has been
extended to the time-frequency dictionaries (consisting
of Gabor atoms and Dirac spikes) and to OMP algo-
rithms [34].
Our idea is to combine the cyclic minimization

approach with the locally optimal greedy algorithms like
RMGS and OOCMP to improve the subspace generated
by these algorithms.
Recently some other non-greedy algorithms have been

proposed, which also tend to improve the subspace,
namely the COSAMP [35] and the Subspace Pursuit
(SP) [29]. These algorithms enable, in the same iteration,
to reject some of the basis vectors and to introduce new
candidate vectors. Greedy algorithms also exist, namely
the Stagewise Orthogonal Matching Pursuit (StOMP)
[36] and the Regularized Orthogonal Matching Pursuit
(ROMP) [30], in which, a series of vectors is selected in
the same iteration. It has been shown that the non-
greedy SP outperforms the greedy ROMP [29]. This
motivates our choice only to include the non-greedy
COSAMP and SP algorithms in our study.
The COSAMP algorithm starts with the iteration

index k = 0, the codebook F, the error vector e= x, and
the L-dimensional gain vector gk = 0. Number of non-
zero gains in the output gain vector should be equal to
K. Each iteration consists of the following steps:
- k = k + 1,
- Crosscorrelation computation: b= Fte.
- Search for the 2K indices of the largest

crosscorrelations:
Ω = supp2K (b).
- Merging of the new and previous indices: T = Ω ∪

suppK (gk-1).

- Selection of the codebook vectors corresponding to
the indices T : A = FT.
- Calculation of the corresponding gains (least

squares): gT = (AtA)-1Atx(the remaining gains are set to
zero).
- Pruning gT to obtain K nonzero gains of maximum

absolute values: gk.
- Update of the error vector: e= x- Fgk.
- Stop if ||e||2 < ε1 or ||g

k - gk-1|| <ε2 or k = kmax.
Note that, in COSAMP, 2K new indices are merged

with K old ones, while the SP algorithm merges K old
and K new indices. This constitutes the main difference
between the two algorithms. For the sake of fair com-
parison, the stopping condition has been modified and
unified for both algorithms.

6.2 Combining algorithms
We propose in this section a new family of algorithms
which, like the CyMP, consist of an augmentation phase
and an optimization phase. In our approach, the aug-
mentation phase is performed using one of the greedy
algorithms described in previous sections, yielding the
initial K-dimensional subspace. The cyclic optimization
phase consists in substituting new vectors for the pre-
viously chosen ones, without modification of the sub-
space dimension K. The K vectors spanning the
subspace are consecutively tested by removing them
from the subspace. Each time a K - 1 -dimensional sub-
space is created. A substitution takes place, if one of the
L - K codebook vectors, appended to this K - 1 -dimen-
sional subspace, forms a better K-dimensional subspace
than the previous one. The criterion is, naturally, the
approximation error, i.e., ||x − x̂||. In this way a “wander-
ing subspace” is created: a K-dimensional subspace
evolves in the N-dimensional space, trying to approach
the vector x being modeled. Generic scheme of the pro-
posed algorithms may be described as follows:
1. The augmentation phase: Creation of a K-dimen-

sional initial subspace, using one of the locally optimal
greedy algorithms.
2. The cyclic optimization phase:

(a) Outer loop: testing of codebook vectors fj(i), i =
1,..., K, spanning the K-dimensional subspace. In the
i-th iteration vector fj(i) is temporarily removed from
the subspace.
(b) Inner loop: testing the codebook vectors fl, l =
1,..., L - except for vectors belonging to the subspace.
Substitute fl for fj(i) if the obtained new K-dimen-
sional subspace yields better approximation of the
modeled vector x. If there are no substitutions in the
inner loop, put the vector fj(i) back to the set of
spanning vectors.
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3. Stop if there are no substitutions in the outer loop
(i.e., in the whole cycle).
In the augmentation phase, any greedy algorithm may

be used, but, due to the local convergence of the cyclic
optimization algorithm, a good initial subspace yields a
better final result and reduces the computational cost.
Therefore, the OOMP (RMGS algorithm) and OOCMP
were considered and the proposed algorithms will be
referred below as CyOOMP or CyRMGS and
CyOOCMP. In the cyclic optimization phase, the imple-
mentation of the operations in both loops is always
based on the RMGS (OOMP) algorithm (no matter
which algorithm has been used in the augmentation
phase). In the outer loop the K - 1 steps of the RMGS
algorithm are performed, using already known vector
indices. In the inner loop, the Kth step of the RMGS
algorithm is made, yielding the index of the best vector
belonging to the orthogonalized codebook. Thus, in the
inner loop, it may be either one substitution (if the vec-
tor fl calculated using the RMGS algorithm is better
than the vector fj(i) temporarily removed from the sub-
space) or no substitution.
If the initial subspace is good (e.g., created by the

OOCMP algorithm), then, in most cases, there are no
substitutions at all (the outer loop operations are per-
formed only once). If the initial subspace is poor (e.g.,
randomly chosen), the outer loop operations are per-
formed many times and the algorithm becomes compu-
tationally complex. Moreover, this algorithm stops in
some suboptimal subspace (it is not equivalent to the
full search algorithm), and it is therefore, important to
start from a good initial subspace. The final subspace is,
in any case, not worse than the initial one and the algo-
rithm may be stopped at any time.
In [34], the cyclic optimization is performed at each

stage of the greedy algorithm (i.e., the augmentation

steps and cyclic optimization steps are interlaced). This
yields a more complex algorithm, but which possesses a
higher probability of finding a better subspace.
The proposed algorithms are compared with the other

non-greedy procedures: COSAMP, SP, and L1 minimiza-
tion. The last algorithm is based on minimization of (6),
using the BP procedure available in [32]. Ten trials are
performed with different values of the parameter l.
These values are logarithmically distributed within a
range depending on the demanded degree of sparsity K.
At the end of each trial, pruning is performed, to select
K codebook vectors having the maximum gains. The
gains are recomputed according to the least squares
criterion.

6.3 Results
The performance results are shown in Figure 9 in terms
of SNR (in dB) for different values of K, when the dic-
tionary elements are realizations of the white noise pro-
cess (left) or AR(2) random process (right).
It can be observed that since RMGS and OOCMP are

already quite efficient for uncorrelated signal, the gain
in performance for CyRMGS and CyOOCMP are only
significant for correlated signals. We then discuss below
only the results obtained for the correlated case. Figure
10 (left) provides the SNRs in the case where the vector
x is a linear combination of P = 10 dictionary vectors
and the success rate to retrieve the exact vectors (right).
The SNR are clearly improved for both the algorithms

compared with their initial core algorithm in all tested
cases. A typical gain of 5 dB is obtained for CyRMGS
(compared to RMGS). This cyclic substitution technique
also significantly improves the initially poor results of
OOCMP for small values of K. One can also notice that
a typical gain of 10 dB is observed for the simulations,
where x is a linear combination of P = 10 dictionary
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vectors for correlated signals (see Figure 10 (left)).
Finally, the exact recovery performances are also
improved as compared with for both the core algo-
rithms (RMGS and OOCMP).
L1 minimization (BP algorithm) performs nearly as

good as the Cyclic OOMP, but is more complex in
practice due to the necessity of running several trials
with different values for the parameter l.
SP outperforms COSAMP, but both methods yield

lower SNR as compared with the cyclic implementa-
tions. Moreover, COSAMP and SP do not guarantee
monotonic decrease of the error. Indeed, in practice,
they often reach a local minimum and yield the same
result in consecutive iterations, which stops the proce-
dure. In some other situations they may exhibit oscilla-
tory behaviors, repeating the same sequence of
solutions. In that case, the iterative procedure is only
stopped after kmax iterations which, for typical value of
kmax = 100, considerably increases the average compu-
tational load. Detection of the oscillations should
diminish the computational complexity of these two
algorithms.
Nevertheless, the main drawback of these new algo-

rithms is undoubtedly the significant increase in com-
plexity. One may indeed observe that the complexity
figures displayed in Figure 11 are of order one in magni-
tude and higher than those displayed in Figure 7.

7 Conclusion
The common ground of all the methods discussed in
this article is the iterative procedure to greedily compute
a basis of vectors q1 · · · qK which are
- simply fj(1) · · · fj(K) in MP, OMP, CMP, and LARS

algorithms,

- orthogonal in OOMP, MGS, and RMGS (explicit
computation for the first two algorithms and only impli-
cit for RMGS),
- A-conjugate in GP algorithm.
It was shown in particular in this article that some

methods often referred as different techniques in the lit-
erature are equivalent. The merit of the different meth-
ods was studied in terms of complexity and
performances and it is clear that some approaches rea-
lize a better trade-off between these two facets. As an
example, the RMGS provides substantial gain in perfor-
mance to the standard MP algorithm with only a very
minor complexity increase. Its main interest is indeed
the use of a dictionary that is iteratively orthogonalized,
but without explicitly building that dictionary. On the
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other end, for application where complexity is not a
major issue, CMP-based algorithms represent an excel-
lent choice, and especially the newly introduced
CyOOCMP.
The cyclic algorithms are compared with the other

non-greedy procedures, i.e., COSAMP, SP, and L1 mini-
mization. The proposed cyclic complementary OOMP
successfully competes with these algorithms in solving
the sparse and non-sparse problems of small dimension
(encountered, e.g., in CELP speech coders).
Although it is not discussed in this article, it is inter-

esting to note that the efficiency of an algorithm may be
dependent on how the dictionary F is built. As noted, in
the introduction, the dictionary may have an analytic
expression (e.g., when F is an union of several trans-
forms at different scales). But F can also be built by
machine learning approaches (such as K-means [10], K-
SVD [37], or other clustering strategy [38]).
Finally, a recent and different paradigm was intro-

duced, the compressive sampling [39]. Based on solid
grounds, it clearly opens the path for different
approaches that should permit better performances with
possibly smaller dictionary sizes.

Appendix
The algorithmic description of the main algorithms dis-
cussed in the article along with the more precise com-
plexity figures is presented in this section. Note that all
implementations are directly available on line at http://
www. telecom-paristech.fr/~grichard/EURASIP_Mor-
eau2011/.

Algorithm 1 Standard Iterative algorithm (MP)
for j = 1 to L do

aj =<fj, fj >

β
j
1 =< f j, x >

end for
for k = 1 to K do

j(k) = argmaxj(β
j
k/

√
αj)2

gk = β
j(k)
k /αj(k)

for j = 1 to L (if k < K) do

rjk =< f j, f j(k) >

β
j
k+1 = β

j
k − gkr

j
k

end for
end for
Option : recompute all gains
A = [fj(1) · · · fj(K)]
g= (AtA)-1Atx
Complexity: (K + 1)NL + a(K), where a(K) ≈ K3/3 is

the cost of final gains calculation

Algorithm 2 Optimized Orthogonalized MP (OOMP)
for j = 1 to L do

α
j
1 =< f j, f j >

β
j
1 =< f j, x >

f j
orth(1)

= f j

end for
for k = 1 to K do

j(k) = argmaxj(β
j
k/

√
α
j
k)

2

qk = −f j(k)
orth(k)

/
√

α
j(k)
k

for j = 1 to L (if k <K) do

f j
orth(k + 1)

= [I − qk(qk)t]f j
orth(k)

α
j
k+1 =< f j

orth(k + 1)
, f j

orth(k + 1)
>

β
j
k+1 =< f j

orth(k + 1)
, x >

end for
end for
A = [fj(1) · · · fj(K)]
g= (AtA)-1Atx
Complexity: (K + 1)NL + 3(K - 1)NL + a(K)

Algorithm 3 Recursive modified Gram-Schmidt
for j = 1 to L do

α
j
1 =< f j, f j >

β
j
1 =< f j, x >

end for
for k = 1 to K do

j(k) = argmaxj(β
j
k/

√
α
j
k)

2

ḡk = β
j(k)
k /

√
α
j(k)
k

for j = 1 to L (if k < K) do

rjk = [< f j, f j(k) > −∑k−1
i=1 rj(k)i rji]/

√
α
j(k)
k

α
j
k+1 = α

j
k − (rjk)

2

β
j
k+1 = β

j
k − ḡkr

j
k

end for

end forgK = ḡK/
√

α
j(K)
K

for k = K - 1 to 1 do

gk = (ḡk − ∑K
i=k+1 r

j(i)
k gi)/

√
α
j(k)
k

end for
Complexity: (K + 1)NL + (K - 1)L(1 + K/2)

Algorithm 4 Gradient pursuit
for j = 1 to L do

aj =<fj, fj >

β
j
1 =< f j, x >
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end for
e0 = x
g0 = 0
for k = 1 to K do

j(k) = argmaxj(β
j
k/

√
αj)2

Ak = [fj(1) · · · fj(k)]
Bk = (Ak)tAk

ẽ = (Ak)tek−1

if k = 1 then
qk = ẽ

else
a =< ẽ, Bkqk−1 > / < qk−1, Bkqk−1 >

qk = ẽ − ∑k−1
i=1 aqk−1

end if
ck =< qk, ẽ > / < qk, Bkqk >

gk = gk-1 + ckq
k

ek = x- Akgk

for j = 1 to L (if k < K) do

β
j
k+1 =< f j, ek >

end for
end for
Complexity: (K + 1)NL +

∑K
k=1 [3Nk + 2k2 + k3] + α(K)

Endnotes
aNote though that the vector g is now of dimension K
instead of L, the indices j(1) · · · j(K) point to dictionary
vectors (columns of F ) corresponding to non-zero gains.
bK = 2 or 3, L = 512 or 1024, N = 40 for a sampling rate
of 8kHz are typical values found in speech coding
schemes. cSeveral alternatives of this algorithm are also
proposed in [4], and in particular the “approximate con-
jugate gradient pursuit” (ACGP) which exhibits a signifi-
cantly lower complexity. However, in this article all
figures and discussion will only consider the primary GP
algorithm. dTwo vectors u and v are A-conjugate, if they
are orthogonal with respect to the scalar product utAv.
eThe overall complexity figures were obtained by consid-
ering the following approximation for small i values:∑K

k=1 k
i ≈ Ki+1

/
i and by only keeping dominant terms

considering that K ≪ N. Practical simulations showed
that the approximation error with these approximative
figures was less than 10% compared to the exact figures

Abbreviations
BP: basis pursuit; CELP: code excited linear predictive; CMP: complementary
matching pursuit; CyMP: cyclic matching pursuit; GP: gradient pursuit; LARS:
least angle regression; MP: matching pursuit; OCMP: orthogonal
complementary matching pursuit; OMP: orthogonal matching pursuit;
OOMP: optimized orthogonal matching pursuit.
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