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On the EVM computation of arbitrary clipped
multi-carrier signals
Igal Kotzer* and Simon Litsyn

Abstract

A common figure of merit in multi-carrier systems is the error vector magnitude (EVM). A method for EVM
computation of a multi-carrier signal without any underlying model (e.g., the Gaussianity assumption) was
proposed in a previous work of the authors. However, it addressed only the case of identical constellations and
power loadings in all tones. In practice, however, the constellation and power loading may vary among the tones
(e.g., boosted pilots, waterfilling and zero guard bands). Here the earlier approach is generalized in such a way that
it is able to accommodate for an accurate analytical EVM computation in the cases of power loading and different
constellations for different tones. Moreover, the derivation is valid for a general magnitude clipping function, so
that any realistic clipper can be plugged in.

1 Introduction
The use of multi-carrier (MC) communication schemes
(e.g., OFDM, DMT, etc.) is very common nowadays due to
its ability to cope well with channel interference while
keeping the receiver complexity low, the ease of spectral
mask shaping and high spectral efficiency. However, one
of MC scheme’s greatest drawbacks is the high peak-to-
average power ratio (PAPR) caused by various degrees of
coherent summation in the signal generation using IFFT
[1]. Thus, systems utilizing MC communications must
work with a large back-off in the high-power amplifier
(HPA), which reduces both the efficiency of the HPA and
the average power transmitted, or risk clipping. Based on
the understanding that clipping is a nonlinear operation
causing both in-band and out-of-band spectral noise and
thus is an undesirable operation, methods for reducing the
PAPR were devised. For a survey see [1-4]. Most of the
power reduction methods are either statistical in nature–
that is they do not guarantee PAPR limits, or iterative–in
which required PAPR limits are easier to meet at the
expense of computational complexity. Hence, while it is
understood that the amount of clipping should be mini-
mized, due to practical system limitations clipping cannot
be entirely eliminated, but rather be set on a compromise
level. Therefore, evaluating the performance of MC sys-
tems with clipping becomes relevant.

Two prominent criteria for evaluating the perfor-
mance of a MC system are its capacity [5-7], and the
system’s error probability [8,9]. However, in engineering
practice, the most popular measure is the error vector
magnitude (EVM). The EVM is a figure of merit for in-
band distortion, which does not only quantifies the dis-
tortion but in some cases can attribute impairments to
various system components [10]. Due to its popularity
and troubleshooting capabilities, the EVM has become a
mandatory part of a few communication standards, e.g.
[[11], Tables 165, 172].
In [12] the authors express the EVM of an OFDM signal

impaired by clipping without relying on the Gaussianity
assumption and show that the EVM can be expressed with
an arbitrary precision as a power series of the number of
tones with constellation-dependent coefficients. It is also
shown that for some specific constellations the EVM can
be calculated via easy to use expressions without the need
for a power series expansion. However, these computa-
tions fit the case of MC signals with an identical constella-
tion for all tones and no power loading. Yet, real world
signal utilize both different constellations for different
tones and power loading. Some of the tones are zeroed
due to spectral mask considerations, while some tones are
boosted (e.g., pilot tones) to allow better channel tracking.
A waterfilling solution in high SNR MIMO OFDM or in
DMT also requires adjusting power and thus constellation
to each tone individually. In this paper we address the
issue of various constellations and power loading in the* Correspondence: igalk@eng.tau.ac.il
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MC signal as well as the effect of an arbitrary magnitude
clipping response by giving an analytical expression in the
form of a power series for computing the EVM of the gen-
eralized case.
Analysis of clipped signals usually relies on the Gaus-

sianity assumption [5]. However, this assumption is not
always valid, especially for a mix of BPSK and QAM
constellations. Hence, in order to evaluate the perfor-
mance of such systems one must resort to numerical
evaluations. This work allows to accurately compute the
EVM of clipped signals for any constellation mixture
and clipping function without the need to redo the
numerical evaluation for each desired scenario.
The paper is organized as follows. In Section 2 the

system model used in this work is introduced. Theorem
3.1 in Section 3 presents the main result of this work.
In Section 4 we present simulation results and compare
them to the theoretical results about EVM derived in
this work.

2 System model
The system model discussed in this work is depicted in
Figure 1. The vector a = [a0, a1,..., aN-1]

T denotes the N
data symbols vector in the form of constellation points,
e.g., a Î {+1, -1}N for BPSK. The vector x = [x0, x1,...,
xN-1]

T denotes the time domain discrete time signal and
is obtained by applying the inverse discrete Fourier
transform on a:

xn =
1√
N

N−1∑
k=0

ake
i2πkn
N , 0 ≤ n ≤ N − 1. (1)

The vector y denotes the vector x after clipping opera-
tion. Two clipping functions we will specifically address
are the SSPA clipper [13]:

yn =
xn[

1 +
(

|xn|
c

)2p]1/2p , (2)

and the soft clipper (which is a special case of the
SSPA clipper for p ≫ 1):

yn =
{
xn |xn| < c
cei�xn |xn| ≥ c

, (3)

where c is the clipping level. The noise vector w
denotes an AWGN with variance σ 2

w and is independent
of a. x̂ is the noisy clipped discrete time domain signal

and â is the data symbols vector reconstructed from the
clipped and noisy signal. For this system we define the
EVM as

EVM �

√
E{|â − a|2}
N · E{|ak|2} .

(4)

Assuming the constellation energy E{|ak|2} is known
and the noise variance is known, we need to calculate
the error power E{|â − a|2} to be able to evaluate the
EVM. By virtue of Parseval’s theorem, we have

N−1∑
n=0

|xn|2 =
N−1∑
k=0

|ak|2. (5)

Hence, it immediately follows that

E{|â − a|2} = E{|x̂ − x|2} =
N−1∑
n=0

E{|yn − xn|2} +Nσ 2
w . (6)

The EVM contribution due to clipping can thus be
calculated by computing the quantity E{|yn − xn|2} for
every 0 ≤ n ≤ N - 1. Obviously, for scenaria with large
channel noise we can allow more signal distortion due
to clipping as long as it is negligible relative to the chan-
nel noise.

3 EVM computation
In this section we present the main result. Let f(|xn|) = f
(r) be the energy of the clipped portion of the sample
xn, and let us decompose the symbols vector a of length
N into three groups:

• NB groups of BPSK symbols. The symbols of each
group, of size Nr, are drawn from a constellation
with energy Er = b2r for 1 ≤ r ≤ NB.
• NQ groups of QAM symbols. The symbols of each
group, of size Ns, are drawn from a constellation of
size Ms, with constellation coefficients νs,lm (which
are the series expansion coefficients of a function of
the constellation -see Appendix A for details.) and
energy Es = q2s for 1 ≤ s ≤ NQ. For example, for
QPSK of the form akR, ak I ∈ (±1/

√
2) we have νs,11

= -1/4, νs,22 = -1/64, and for 16QAM of the form
ak I ∈ (±1,±3)/

√
10, ak I ∈ (±1,±3)/

√
10 we have

νs,11 = -1/4 and νs,22 = -17/1600.
• NZ zero tones.

Clearly NB + NQ + NZ = N. Then, the following quan-
tities are defined:

μ1 =

⎡⎣ NQ∑
s=1

q2s Nsνs,11

N
−

NB∑
r=1

b2r Nr

4N

⎤⎦ (7)

IFFT FFT

Clipping Function

y
â

x
a

w
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Figure 1 Baseband discrete time AWGN channel model.
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and

μ2 =

⎡⎣ NQ∑
s=1

q4s Nsνs,22

N2
−

NB∑
r=1

b4r Nr

32N2

⎤⎦ . (8)

In addition, let μ̃1 = Nμ1 and μ̃2 = N2μ2.
Theorem 3.1. The term

∑N−1
n=0 E{|yn − xn|2}in (6) can

be calculated as follows:

N−1∑
n=0

E{|yn − xn|2} = N2
∞∑
q=0

mq(c)Nq, (9)

where mq(c) depend on the clipping level, the constella-
tions, power loading and symbol length. In particular, m0

(c)and m1(c) can be calculated as follows:

m0(c) = −
∫ ∞

0
rf (r) exp

(
r2

4μ1

)(
1

2μ̃1
+

μ̃2

μ̃3
1

)
dr, (10)

m1(c) = −
∫ ∞

0
rf (r) exp

(
r2

4μ1

)(
μ̃2

2μ̃4
1
r2 +

μ̃2

32μ̃5
1

r4
)
dr. (11)

Proof. See Appendix A. □

4 Simulation results and discussion
4.1 The Gaussian approximation
A common method for analyzing the EVM of an OFDM
signal uses the central limit theorem (CLT). By invoking
the CLT xn are assumed to be distributed complex nor-
mally, i.e. xn ∼ CN (0, σ 2), and thus |xn| ~ Rayleigh(s).
Hence, the EVM can be computed in a straightforward
method:

N−1∑
n=0

E{|yn − xn|2} = N
∫ ∞

0
f (r)

r
σ 2

exp
{
− r2

2σ 2

}
dr,(12)

where f(r) = f(|xn|)is the clipping function in polar
coordinates. In this work, when the results are com-
pared to the Gaussian approximation it is assumed that
s2 = 1.

4.2 Simulation results
In the following examples two cases of magnitude clip-
ping functions are considered. The SSPA clipper, for
which

f (|xn|) = f (r) =

[
r

(1 + (r/c)2p)
1/2p

− r

]2
,

and the soft clipper, for which f (|xn|) = f (r) = (r − c)2+,
where the operation()+ denotes taking only the positive
part. The soft clipper is a special case of the SSPA clipper
for p ® ∞, which can be practically achieved with p >
100. In the following simulations p = 200 was chosen.

Figure 2a demonstrates the EVM versus clipping level for
the mixture of 64 BPSK modulated tones, 320 16QAM
modulated tones and 128 zero tones, all randomly spread
across the symbol. That is, NB = 1, Nr = 1 = 64, NQ = 1,
Ns = 1 = 320, ν1,11 = -1/4 and ν1,22 = -17/1600. In this
figure all constellation energies are normalized to unity
(i.e. br = qs = 1). Figure 2b demonstrates the EVM versus
clipping level for the mixture of 128 BPSK modulated
tones with constellation energy boosted by 3 dB, 128
QPSK modulated tones and 256 16QAM modulated
tones (the two latter constellations are with unity constel-
lation energy). Namely, for Figure 2b, the simulation
parameters are NB = 1, Nr = 1 = 128, br =

√
2, and NQ = 2

with Ns = 1 = 128, ν1,11 = -1/4, ν1,22 = -1/64, q1 = 1 and
Ns = 2 = 256, ν2,11 = -1/4, ν2,22 = -17/1600, q2 = 1.
It can be clearly seen that as the mixture becomes

more diverse in tone constellations and power loading,
the mixed signal’s EVM diverges from the Gaussian
model. Additionally, as can be expected, the less linear
the clipping function, the higher the EVM is. It can be
also seen that the analytical computation coincides per-
fectly with the simulation.

5 Summary
In this paper we present a method for computing the
EVM of a MC signal with power loading and various
constellations on various tones that is impaired by clip-
ping. This computation does not rely on any underlying
model for the signal (such as the Gaussianity assump-
tion), making it accurate for any mixture of tone con-
stellations and power loading. A comparison between
the simulated and theoretical EVM results shows a per-
fect match between the two. The main result of this
work can be also used with any arbitrary magnitude
clipping function for achieving more realistic results for
practical uses.

Appendix A Proof of the EVM computation
equation
We define the energy of the clipped portion of the sig-
nal as f (xn) = f (xnR , xn I) = |yn − xn|2. Any clipping func-
tion can be represented as a superposition of its effect
on the signal’s magnitude (AM/AM) and its effect on
the signal’s phase (AM/PM). The AM/AM function can
be further represented in terms of |xn|. Thus, f can be

defined as f (
√
xn2R + xn2I ) = f (r), where r =

√
xn2R + xn2I is

the polar coordinates representation. We wish to calcu-
late E{f (xnR + xn I)} any 0 ≤ n ≤ N -1. We start by repre-
senting f (xR , xI) by its inverse Fourier transform:

f (xR , xI) =
1
2π

∫∫ ∞

−∞
f̂ (ω1,ω2)ei(ω1xR +ω2xI)dω1dω2, (13)
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where f̂ (ω1,ω2) is the Fourier transform of f (xR , xI):

f̂ (ω1,ω2) =
1
2π

∫ ∫ ∞

−∞
f (xR , xI)e−i(ω1xR +ω2xI)dxR dxI

=
∫ ∞

0
rf (r)

1
2π

∫ 2π

0
e−ir(ω1 cos(θ)+ω2 sin(θ))dθ dr

(14)

=
∫ ∞

0
rf (r)J0

(
r
√

ω2
1 + ω2

2

)
dr, (15)

where J0 is the Bessel function of the first kind and
zeroth order. Furthermore, xn can be written explicitly
as a sum of its real and imaginary parts as follows:

xnR =
1√
N

N−1∑
k=0

{
akR cos

(
2πkn
N

)
− akI sin

(
2πkn
N

)}
,

xnI =
1√
N

N−1∑
k=0

{
akR sin

(
2πkn
N

)
+ akI cos

(
2πkn
N

)}
.

(16)

Thus, we can substitute (16) into(13) and rewrite
f (xR , xI) as

f (xnR , xn I) =
1
2π

∫ ∫ ∞

−∞
f̂ (ω1,ω2) exp

{
i√
N

[
ω1

N−1∑
k=0

(
akR cos

(
2πkn
N

)
− akI sin

(
2πkn
N

))

+ ω2

N−1∑
k=0

(
akR sin

(
2πkn
N

)
+ akI cos

(
2πkn
N

))]}
dω1dω2

=
1
2π

∫ ∫ ∞

−∞
f̂ (ω1,ω2) exp

{
i√
N

N−1∑
k=0

[
akR

[
ω1 cos

(
2πkn
N

)
+ ω2 sin

(
2πkn
N

)]
+ akI

[
−ω1 sin

(
2πkn
N

)
+ ω2 cos

(
2πkn
N

)]]}
dω1dω2.

(17)

Denoting

φk(α,β) = E
(
ei(αakR +βakI

)
, (18)

and using the fact that ak are independent, we can
write:

E{f (xnR , xnI)} =
1
2π

∫ ∫
(ω1,ω2)∈R2

f̂ (ω1,ω2)

·
N−1∏
k=0

φk

{
ω1 cos( 2πkn

N ) + ω2 sin(2πkn
N )√

N
,
−ω1 sin(2πkn

N ) + ω2 cos( 2πkn
N )√

N

}
dω1dω2.

(19)

Therefore, according to(15)

E{f (xnR
, xnI)} =

1
2π

∫ ∞

0
rf (r)

∫ ∫
(ω1,ω2)∈R2

J0(r
√

ω2
1 + ω2

2)

·
N−1∏
k=0

φk

{
ω1 cos( 2πkn

N ) + ω2 sin(2πkn
N )√

N
,
−ω1 sin(2πkn

N ) + ω2 cos( 2πkn
N )√

N

}
dω1dω2 dr.

(20)

We now proceed to calculate the term
∏N−1

k=0 φk of
(20) by expanding to a power series the term∑N−1

k=0 lnφk and then taking the exponent of the series.
Unlike [12], if ak are not identically distributed then jk

must be computed for every k, or alternatively for every
type of constellation and then combined together. We
rewrite the arguments of jk as follows:

E{f (xnR
, xnI)} =

1
2π

∫ ∞

0
rf (r)

∫ ∫
(ω1,ω2)∈R2

J0(r
√

ω2
1 + ω2

2)
N−1∏
k=0

· φk

{
�
(

ζω−kn

√
N

)
,	
(

ζω−kn

√
N

)}
dω1dω2dr,

(21)

where ζ = ω1 + iω2, ζ̄ is the complex conjugate of ζ

and ω = exp(2πi/N). Denoting z = ζω−kn√
N

we can write jk

as follows:

φk(z) = φk(�z,	z) = E exp {i(�z · akR + 	z · akI)} (22)
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Figure 2 Simulated and theoretical EVM versus clipping level
for two magnitude clipping functions. (a) Mixture of BPSK,
16QAM and zero tones. (b) Mixture of 3dB Boosted BPSK, QPSK and
16QAM tones.
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as in(18). We expand In jk as a power series:

lnφk(z) = lnφk

(
ζω−kn

√
N

)
=
∑
l,m≥0

ν
(k)
lm zlz̄m, (23)

where we choose the representation
φk(z) = φk(z, z̄) = E exp {i(( z+z̄2 )akR + ( z−z̄

2i )akI)}. We
further assume that the data symbols vector a contains
p ≤ N distinct groups of Nι,1 ≤ ι ≤ p symbols, where
each group is drawn from the set of BPSK, QAM or
zero constellation points with an average constellation
energy of Eι,1 ≤ ι ≤ p. That is, groups of symbols are
distinguished by the constellation type and by the aver-
age constellation energy. Hence, we have

N−1∑
k=0

lnφk

(
ζω−kn

√
N

)
=

N1−1∑
k=0

lnφ1

(
ζω−kn

√
N

)
+
N2−1∑
k=0

lnφ2

(
ζω−kn

√
N

)
+· · ·+

Np−1∑
k=0

lnφp

(
ζω−kn

√
N

)
. (24)

Now we proceed to compute In jk for each type of
constellation:

• ak = 0: This option is usually used to generate
guard bands [11]. For this option jk = 1, and hence
in jk = 0.
• BPSK (ak = ±b = b · {±1}): First, it is noted that ak
are drawn from a BPSK constellation with energy

Ebpsk = b2. Next, we compute in lnφk

(
ζω−kn√

N

)
for a

group of 1 ≤ Nbpsk ≤ N bins. Now, using the fact
that ak are equi-probable we have

φk(z) =
1
2
ei

z+z̄
2 b +

1
2
e−i

z+z̄
2 b = cos

(
b
z + z̄
2

)
= cos

(
b�
{

ζω−kn

√
N

})
. (25)

By Maclauren’s series expansion we have

ln(cos(θ)) =
∞∑
j=1

ν2j

(2j)!
θ2j, (26)

where ν2 = -1, ν4 = -2, ν6 = -16, etc. Now,

Nbpsk−1∑
k=0

ln
(
cos
(
b�
{

ζω−kn

√
N

}))

=
Nbpsk−1∑

k=0

∞∑
j=1

ν2j

(2j)!

(
b�
[

1√
N

ζω−kn
])2j

=
∞∑
j=1

ν2j

(2j)!

(
1

2
√
N

)2j Nbpsk−1∑
k=0

b2j(ζω−kn + ζ̄ωkn)
2j

=
∞∑
j=1

ν2j

(2j)!

(
b

2
√
N

)2j Nbpsk−1∑
k=0

⎡⎣ 2j∑
m=0

(
2j
m

)
(ζ̄ωkn)

2j−m
(ζω−kn)

m

⎤⎦
=

∞∑
j=1

ν2j

(2j)!

(
b

2
√
N

)2j j∑
s=−j

(
2j
j + s

)
ζ j+sζ̄ j−s

Nbpsk−1∑
k=0

ω−2kns.

(27)

Using

Nbpsk−1∑
k=0

ω−2kns =
{
Nbpsk N|2ns (2ns is a multiple of N)
0 otherwise ,

(28)

(27) becomes

Nbpsk−1∑
k=0

ln cos{· · · } =
∞∑
j=1

ν2j

(2j)!

(
b

2
√
N

)2j j∑
s=−j

(
2j
j + s

)
ζ j+sζ̄ j−s

Nbpsk−1∑
k=0

ω−2kns

=
∞∑
j=1

ν2j

(2j)!

(
b

2
√
N

)2j

Nbpsk

j∑
s=−j

(
2j
j + s

)
ζ j+sζ̄ j−s,

(29)

where N|2ns, -j ≤ s ≤ j and n Î [0, ..., N -1]. Next we
compute the first two terms of (29), that is for j = 1,2,
as it is assumed these terms yield sufficient accuracy.
The cases of n = 0, N4 ,

N
2 ,

3N
4 require special attention.

However, as the impact of the slightly different analyti-
cal expression for the above four cases relative to all
other n is negligible for practical values of N (e.g., N ≥
128) these cases will be neglected and treated equally as
the rest of the BPSK tones.

-j = 1: If n ≠ 0, N/2 then the term∑j
s=−j

(
2j
j + s

)
ζ j+sζ̄ j−s in (29) contains only the term

s = 0, so

1∑
s=−1

(
2

1 + 0

)
ζ 1+0ζ̄ 1−0 = 2|ζ |2. (30)

-j = 2: If n ≠ 0, N/4, N/2,3N/4 then the only possible
term in the sum is s = 0, thus the sum is

2∑
s=−2

(
4

2 + s

)
ζ 2+sζ̄ 2−s = 6|ζ |4. (31)

Going back to (29)and substituting the above expres-
sions, we find the following:

Nbpsk−1∑
k=0

ln cos{· · · } = Nbpsk

[
ν2

2!
b2

22N
2|ζ |2 + ν4

4!
b4

24N2
6|ζ |4 + · · ·

]

= Nbpsk

[
−b2|ζ |2

4N
− b4|ζ |4

32N2
− · · ·

]
.

(32)

• M-QAM: The QAM constellation points are
drawn from the set

ak ∈ q

[
(±1,±3, . . . ,±(

√
M − 1)) + i · (±1,±3, . . . ,±(

√
M − 1))

]
√(

2
3(M

2 − 1)
) , (33)
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i.e. the QAM constellation is symmetric and the con-
stellation energy is EQAM = q2. Symmetric QAM con-
stellations satisfy ν00 = 0, ν20 = ν02 = 0, and ν11 <0. In
addition, in all the symmetric cases νlm = 0 if l+ m is
odd. We proceed by computing the expansion of

lnφk

(
ζω−kn√

N

)
for a group of 1 ≤ NQAM ≤ N bins.

For the sake of simplicity, the expansion coefficients
νlm here are for the unity energy constellation, hence
the expansion coefficients of in j are ql+m νlm. For
example, for QPSK of the form akR, ak I ∈ (±1/

√
2) we

have ν11 = -1/4, ν22 = -1/64, and for 16QAM of the
form akR, ak I ∈ (±1,±3)/

√
10 we have ν11 = -1/4 and

ν22 = -17/1600.
Then, similar to the BPSK case, we have

NQAM−1∑
k=0

lnφk

(
ζω−kn

√
N

)
=
∑
l,m≥0

νlm
ql+m

N
l+m
2

ζ lζ̄m
NQAM−1∑

k=0

ω−kn(l−m)

= NQAM

∑
l,m:N|n(l−m)

νlm
ql+m

N
l+m
2

ζ lζ̄m

= NQAM

[
q2ν11|ζ |2

N
+

q4

N2
{ν22|ζ |4 + ν31ζ

3ζ̄ + ν13ζ ζ̄ 3} + · · ·
]
.

(34)

We next decompose the symbols vector a of length N
into three groups:

• NB groups of BPSK symbols. The symbols of each
group, of size Nr, are drawn from a constellation of
energy Er = b2r for 1 ≤ r ≤ NB.
• NQ groups of QAM symbols. The symbols of each
group, of size Ns, are drawn from a constellation of
size Ms (that is, the coefficients νlm are constellation
dependent and are denoted as νs,lm)and energy
Es = q2s for 1 ≤ s ≤ NQ.
• NZ zero tones.

Obviously, NB + NQ + NZ = N.
Following(24),the expansions of In jk of all groups are

summed:

N−1∑
k=0

lnφk

(
ζω−kn

√
N

)
=

NB∑
r=1

(
−b2r Nr|ζ |2

4N
− b4r Nr|ζ |4

32N2
− · · ·

)

+
NQ∑
s=1

(
q2s Nsνs,11|ζ |2

N
+
q4s Ns

N2
{νs,22|ζ |4 + νs,31ζ

3ζ̄ + νs,13ζ ζ̄ 3} + · · ·
)

=

⎡⎣ NQ∑
s=1

q2s Nsνs,11

N
−

NB∑
r=1

b2r Nr

4N

⎤⎦ |ζ |2 +
⎡⎣ NQ∑

s=1

q4s Nsνs,22

N2
−

NB∑
r=1

b4r Nr

32N2

⎤⎦ |ζ |4

+
NQ∑
s=1

q4s Ns

N2
[νs,31ζ 3ζ̄ + νs,13ζ ζ̄ 3] + · · ·

(35)

Denoting μ1 =
[∑NQ

s=1
q2sNsνs ,11

N −∑NB
r=1

b2r Nr

4N

]
and

μ2 =
[∑NQ

s=1
q4sNsνs,22

N2 −∑NB
r=1

b4r Nr

32N2

]
we have

N−1∏
k=0

φk(N−1/2ζω−kn) = exp

⎧⎨⎩μ1|ζ 2| + μ2|ζ 4| +
NQ∑
s=1

q4s Ns

N2
[νs,31ζ 3ζ̄ + νs,13ζ ζ̄ 3] + · · ·

⎫⎬⎭
= exp{μ1|ζ |2} exp

⎧⎨⎩μ2|ζ |4 +
NQ∑
s=1

q4s Ns

N2
[νs,31ζ 3ζ̄ + νs,13ζ ζ̄ 3] + · · ·

⎫⎬⎭ .

(36)

Now, using ex = 1+ x + ... we have

N−1∏
k=0

φk(N−1/2ζω−kn) = exp{μ1|ζ |2}·
⎡⎣1 + μ2|ζ |4 +

NQ∑
s=1

q4s Ns

N2
[νs,31ζ 3ζ̄ + νs,13ζ ζ̄ 3] + · · ·

⎤⎦ . (37)

Following (20), we multiply (37) by 1
2π

J0(r|ζ |) and
integrate over ℝ2. First, we pass to polar coordinates u,θ
(i.e. ζ = u exp (iθ)), and observe that all the terms ζ lζ̄m

with l ≠ m vanish (since the integral of cos ((l-m)θ) is
zero). Therefore, we are left with∫ ∞

0
J0(ru) exp{μ1u2}{u + μ2u5 + · · · }du. (38)

Using [14,(6.631)] we arrive at
∫ ∞

0
J0(ru) exp{μ1u

2}[u + μ2u
5]du = − 1

2μ1
1F1

(
1, 1,

r2

4μ1

)
− μ2

μ3
1
1F1

(
3, 1,

r2

4μ1

)
. (39)

Using the identities 1F1(1, 1, z) = ez and

1F1(3, 1, z) = ez(1 + 2z + z2/2) and summing up N times
(20), we get

N−1∑
n=0

E{f (xnR xn1)} = N
∫ ∞

0
rf (r) exp

(
r2

4μ1

){
− 1
2μ1

− μ2

μ3
1

(1 +
r2

2μ1
+

r4

32μ2
1

) − · · ·
}
dr. (40)

Denoting μ̃1 = Nμ1 and μ̃2 = N2μ2, (40) can be
rewritten as

N−1∑
n=0

E{f (xnR xnI)} =N2
{[

−
∫ ∞

0
rf (r) exp

(
r2

4μ1

)(
1

2μ̃1
+

μ̃2

μ̃3
1

)
dr
]

+ N
[
−
∫ ∞

0
rf (r) exp

(
r2

4μ1

)(
μ̃2

2μ̃4
1

r2 +
μ̃2

32μ̃5
1

r4
)
dr
]
+ · · ·

}
,

(41)

and following (9) we have

m0(c) = −
∫ ∞

0
rf (r) exp

(
r2

4μ1

)(
1

2μ̃1
+

μ̃2

μ̃3
1

)
dr (42)

and

m1(c) = −
∫ ∞

0
rf (r) exp

(
r2

4μ1

)(
μ̃2

2μ̃4
1
r2 +

μ̃2

32μ̃5
1

r4
)
dr. (43)

Abbreviations
CLT: central limit theorem; EVM: error vector magnitude; HPA: high-power
amplifier; MC: multi-carrier; PAPR: peak-to-average power ratio.
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