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Bounds for 2-D angle-of-arrival estimation with
separate and joint processing
Laurence Mailaender

Abstract

Cramer-Rao bounds for one- and two-dimensional angle-of-arrival estimation are reviewed for generalized 3-D
array geometries. Assuming an elevated sensor array is used to locate sources on a ground plane, we give a simple
procedure for drawing x-y location confidence ellipses from the Cramer-Rao covariance matrix. We modify the
ordinary bounds for the case of “separate” 1-D estimates and numerically compare this with the full, joint bound.
We prove that “separate” processing is optimal for a Uniform Cross Array with a single source, and that it is not
optimal for the L-shaped array. A trade-off emerges between location accuracy and array height: for distant
sources, increased height generally reduces error. When more than one source is present, significant gains are
obtained from joint processing. We also show useful gains for distant sources by adding out-of-plane sensors in an
“L + z“ configuration with joint processing. These comparisons can aid system designers in deciding between
separate and joint processing approaches.

1. Introduction
Transmitting sources may be located by estimating the
angles-of-arrival at a receiving array if the “direct path”
is present, i.e., the straight line path between source and
destination. Angle-of-arrival (AOA) estimation may be
efficiently performed by well-known approaches such as
MUSIC and ESPRIT [1], and the performance of these
algorithms has been shown to approach the Cramer-Rao
lower bound (CRLB) at moderate SNR [2]. The CRLB is
well-studied for one-dimensional (1-D) angle estimation,
and 1-D bounds have been derived under various
assumptions about the source signals, e.g., the Condi-
tional Model Assumption (CMA) [2,3] and the Uncon-
ditional Model Assumption (UMA) [4,5]. Yet many real-
world applications require a two-dimensional (2-D)
AOA estimation (e.g., azimuth and elevation) because
the sources and receive array may not lie in a single
plane.
2-D AOA estimation may be computationally com-

plex, and several authors have proposed sensor geome-
tries which allow the 2-D problem to be broken into
multiple 1-D problems. In [6], the “L-shaped” array
(LSA) and “two L-shaped” array (2LSA) are used with
the Propagator Method to avoid complexity associated

with “pair matching.” In [7], algorithms using the LSA
are discussed, and the notion of separate 1-D processing
of each linear sub-array in elevation-elevation coordi-
nates is presented. Two 1-D searches may be made
using parallel uniform arrays [8]. The 2LSA is used with
separate processing in each of three axes in [9].
These works motivate us to consider the 2-D CRLB

with joint and separate processing. The 2-D CRLB can
be found in the literature under both CMA [10,11] and
UMA [12]. However, little attention has been paid to
the CRLB for “separate” processing. The 2-D CRLB can
also be used as a tool to optimize antenna array geome-
try [13].
In this article, we assume that source location is per-

formed by 2-D AOA estimation followed by trigono-
metric projection to the ground plane. To keep the
approach simple, we assume the Earth’s surface is a
plane; in principle, topographic maps could also be
incorporated. In a typical implementation, a single array
at known height is used to locate the sources. Using the
classic “change of variables” approach, the CRLB for 2-
D AOA is converted to the CRLB for (x,y) position. We
review the procedure for drawing 2-D error ellipses cor-
responding to any desired confidence level (e.g., contain-
ing a 95% of all erroneous positions) for estimators that
achieve this CRLB. Next, we show how the existing 2-D
AOA CRLBs may be modified from the optimal “joint”Correspondence: lm@lgsinnovations.com
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bound into (generally suboptimal) “separate” bounds to
handle lower complexity 1-D searches. We develop the
2-D CRLB under two coordinate systems: azimuth-ele-
vation (for joint processing) and elevation-elevation (for
separate processing). In addition, some basic facts about
the “separability” of the CRLB are proved for simple
sensor configurations, and the 2-D bound is proved to
be non-increasing in the number of sensors.
The remainder of the article is organized as follows. In

Sect. 2, we review the definitions of the general array
response vectors under different 2-D coordinate sys-
tems, and give a procedure for drawing error ellipses
corresponding to the CRLB error covariance matrix. In
Sect. 3, we review results from the literature on 1-D and
2-D CRLBs, compute the bounds for both coordinate
systems, and define the LSA and the “L + z“ array used
later in this article. In Sect. 4, we show how to modify
the 2-D CRLB for “separate” angle processing, and we
give some proofs regarding the separability and monoto-
nicity of the CRLB. Section 5 contains our numerical
results, where separate and joint processing is compared,
with 1 or more sources present. Section 6 contains a
summary and our conclusions.
Regarding notation, vectors will appear as a, matrices

as A, and the Hermitian-transpose as AH. The “all 1’s”
column vector of length K is denoted 1k. The notation
A⊙B indicates the Schur-Hadamard element-by-element
multiplication of same-sized objects, the notation A⊗B
denotes a Kronecker product.

2. Geometrical models
a. Coordinate systems
Figure 1 shows an (x,y,z) coordinate axis, with the signal
direction of arrival defined in both azimuth-elevation
("az-el”), (θ, �), and elevation-elevation ("el-el”), (a, b)
coordinates. As noted in [7], the el-el system allows two
“separate” 1-D angle of arrival measurements from two
Uniform Linear Arrays to be combined. Hence the el-el

format potentially allows an algorithmic complexity
reduction by solving separate 1-D problems.
The array response for the nth element in a general

array is most simply written in el-el form,

an (α,β , γ ) = exp
(

−j
2π

λ

(
xn cos (α) + yn cos (β) + zn cos (γ )

))
(2:1)

where xn, yn, zn define the element position (in
meters) relative to the array axes, a, b, g are the eleva-
tion angles relative to the three axes, and l is the sig-
nal’s wavelength in meters/cycle. This expression has an
intuitively pleasing symmetry: nature should not care
which axis is labeled as x, etc. Only two angles are
needed to determine the direction of arrival, so we can
define the third elevation angle from the other two, or,

γ = acos
(√

1 - cos2 (α) − cos2 (β)
)

where acos (x)

denotes the inverse cosine. Inserting into (2.1) gives the
general array response in el-el coordinates,

an (α,β) = exp
(

−j
2π

λ

(
xn cos (α) + yn cos (β) + zn

(
1 − cos2 (α) − cos2 (β)

)1/2))(2:2)
We will consider el-el measurements to be inconsis-

tent (meaning no valid direction of arrival can be found)
if 1 < cos2 (a) + cos2 (b). For consistent angles, we may
transform el-el to az-el by noting that:

γ = ϕ

cos (α) = sin (γ ) cos (θ)

cos (β) = sin (γ ) sin (θ)

(2:3)

Direct substitution leads to the general array response
in az-el form [2],

an (θ ,ϕ) = exp
(

−j
2π

λ

(
xn sin (ϕ) cos (θ) + yn sin (ϕ) sin (θ) + zn cos (ϕ)

))
(2:4)

Note that the az-el system has no possibility of incon-
sistency, but for the special cases of � = {0,π} the angle
θ cannot be estimated (hence, the 2-D CRLB does not
exist). Equations 2.2 and 2.4 will be used to create array
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Figure 1 Coordinate axes.
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response vectors for 2-D and 3-D array geometries in
following sections. Writing array element coordinates as
vectors px, py, pz, the array response vector from the
mth source is written a(θm, �m) or a(am, bm)
Angle estimates are mapped to (x,y) position estimates

via either,

[
x
y

]
= Fe

([
α

β

])
=

[
z cos (α)

(
1 − cos2 (α) − cos2 (β)

)−1/2

z cos (β)
(
1 − cos2 (α) − cos2 (β)

)−1/2

]
(2:5)

or,[
x
y

]
= Fa

([
θ

ϕ

])
=
[
z cos (θ) tan (ϕ)

z sin (θ) tan (ϕ)

]
(2:6)

b. Location error ellipses
In a location system, the sources’ (x,y) coordinates are of
ultimate interest, however, we assume the AOA is esti-
mated first, so the system designers can take advantage
of modern angle estimation techniques (e.g., MUSIC,
ESPRIT, etc.). The estimated angles are then converted
to (x,y) estimates, which have a different CRLB. In this
section, we show how to draw an error ellipse in the (x,
y) plane, containing an area with a specified probability
level, corresponding to an (x,y) estimator that achieves
the CRLB.
For positive-definite matrix, A, the equation xT Ax =

1 defines an ellipse where the length of each axis from
the origin is the inverse square-root of the eigenvalues

of A [14]. Let C = E
{(

θ − θ̂
)(

θ − θ̂
)H}

� J−1 be the

positive-definite error covariance matrix for an estimator
that achieves the CRLB. This covariance matrix defines
the error “concentration ellipse” with the smallest possi-
ble volume (or area, in the 2-D case) [15]. Consider the
equation,

c−2θT C−1θ = 1

c−2θT VD−1VHθ = 1
(2:7)

where V, D contain the eigenvectors and eigenvalues

of C. Note (2.7) has solutions θ = c λ
1/2
i vi, i = 1, 2 cor-

responding to the major and minor axes. The values

λ
1/2
i

are the error standard deviations on the orthogonal

axes, and constant “c“ scales the axis lengths proportion-
ally. We want to scale the ellipse so that it contains
some fraction of the total probability, referred to as a
“confidence factor” (CF). As shown in [16], the desired
scaling is,

c =
√

−2 ln (1 − CF) (2:8)

For example, we can draw an ellipse containing 95%
of all estimates, by setting c = 2.448.
Note that each point on the error ellipse must satisfy

c2 = (Δx)2/l1 + (Δy)2/l2, hence we can determine the
points on the ellipse (2.7) by stepping through values Δx
= 0 through c li1/2 along one axis, and solving for Δy =
((c2 - (Δx)2/l1)l2)1/2. This creates one quadrant of the
ellipse; the rest is produced by symmetry. Finally, the
ellipse is centered at the true position, (θ1, θ2).

3. Review of CRLB
a. General principles
The CRLB [2,15,16] gives the lower limit on estimation
error among all unbiased estimators. The bound is a
useful performance metric, as many practical algorithms
have been found to closely approach it at reasonable
SNR values [2]. Moreover, the CRLB is a flexible tool
that allows modeling many kinds of estimation pro-
blems. Most problems involve so-called nuisance vari-
ables in addition to the variables of direct interest.
When deriving the bound, nuisance parameters that are
known are treated as constants, while those that are
unknown must be included in the parameter vector, θ.
The Fisher matrix is given by

J (θ) = E

{(
d
dθ

	(θ)

)(
d
dθ

	(θ)

)H
}

(3:1)

where Λ(θ) denotes the log-likelihood of the received
vector given the parameters θ, and the expectation is
over the received signal conditioned on θ. The inverse
of the Fisher matrix bounds the achievable error covar-
iance, C ≥ J-1 and the diagonal elements of J-1 bound
the estimation error of the individual variables.
If a new parameter vector is related to the old one via

a change of variables, w = F (θ), then [15],

J−1 (w) = Ḟ
T
J−1 (θ) Ḟ,

(
Ḟ
)
i,j =

dwj

dθi
(3:2)

gives the new CRLB.

b. Bounds for AOA
Assume a system with N sensors, M sources, and K data
snapshots. Initially, consider the sources to lie in the
plane of the array (1-D angle estimation). The signal
vector received at the array for the kth snapshot is,

r (k) = A (θ1) s (k) + n (k) (3:3)

with r Î CNx1, array response matrix A Î CNxM,
source vector s Î CMx1, and where noise vector n Î
CNx1 is assumed to be proper, complex Gaussian with
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covariance σ 2
n IN. Different CRLBs can be derived

depending on assumptions regarding the transmitted
signals. As shown in [2], three assumptions about the
transmitted signals s(k) are commonly used: s(k) is con-
sidered unknown and deterministic (CMA, or “determi-
nistic” bound); s(k) is considered a sample of a complex
Gaussian noise process of unknown covariance (UMA,
or “stochastic” bound); or finally s(k) can be considered
known (most optimistic bound). It seems unlikely that
the signal being located would be completely known,
hence we will consider only the deterministic and sto-
chastic bounds (exceptions are cooperative transmitters
acting as beacons, or transmitters using standardized
waveforms having certain features that are known a
priori).
Under 1-D, deterministic assumptions, the

unknown parameter vector is
θ �

[
θ1, . . . , θM, Re {s (1)}T , Im {s (1)}T , . . . , Re {s (K)}T , Im {s (K)}T]T

consisting of M + 2MK real parameters. The M × M
upper-left corner of the inverse of the Fisher matrix
[2-4] corresponding to the parameters of direct interest
(dropping the A(θ) notation for convenience) is,

J−1
d,1 =

σ 2
n

2K

(
Re
{
DH

(
I − A

(
AHA

)−1
AH
)
D � PT

} )−1
. (3:4)

Here,

A (θ) = [a (θ1) , . . . , a (θM)]

D (θ) =
[

d
dθ1

a (θ1) , . . . ,
d

dθM
a (θM)

]
P = E

{
s sH

} (3:5)

The subscript “d,1” indicates this is a deterministic, 1-
D bound. Under 1-D stochastic assumptions, the
unknown parameter vector is
θ �

[
θ1, . . . , θM, Re

{
R1,1

}
, . . . , Re

{
RN,N

}
, Re

{
R1,2

}
Im

{
R1,2

}
, · · · , Im {

RN,N−1
}]T

consisting of M + N2 unknowns (accounting for Hermi-
tian symmetry), where Ri,j is the i,jth element of the sig-
nal covariance matrix. The M × M upper-left corner of
the inverse of the Fisher matrix [2,4,5] corresponding to
the parameters of direct interest is,

J−1
s,1 =

σ 2
n

2K

(
Re
{
DH

(
I − A

(
AHA

)−1
AH

)
D � (

PAHR−1APT)} )−1

R = APAH + σ 2
n I

(3:6)

where the subscript “s,1” denotes a 1-D stochastic
bound. The matrices A, D, P are as in (3.5). The thermal
noise variance may also be considered an ‘unknown” but
the bounds (3.4), (3.6) remain unchanged [2].
Next consider a 2-D signal model where it is under-

stood that (θ1, θ2) may correspond to either (an, bn), or
(θn, �n) for all n users,

r (k) = A (θ1, θ2) s (k) + n (k) (3:7)

At first, it may appear that the new unknowns can
simply be appended to the θ vector and the previous
formulas used. However, the matrix multiplication with
the ⊙ term in (3.4), (3.6) will no longer be dimension-
ally correct, so a new formula is needed. Deriving com-
pact expressions for these formulas turns out to be
extremely difficult; however, all the needed results are
available in the literature. Under 2-D deterministic
assumptions, the unknown parameter vector is
θ �

[
θ1,1, . . . , θ1,M,θ2,1, . . . θ2,M, Re {s (1)}T , Im {s (1)}T , . . . , Re {s (K)}T , Im {s (K)}T]T

consisting of 2M + 2MK real parameters. The 2M × 2M
upper-left corner of the inverse of the Fisher matrix
[10,11] corresponding to the parameters of direct inter-
est is,a

J−1
d,2 =

σ 2
n

2K

(
Re
{
DH

(
I − A

(
AHA

)−1
AH
)
D � (

12 1T2 ⊗ PT)} )−1

D (θ) =
[

d
dθ1,1

a
(
θ1,1, θ2,1

)
, . . . ,

d
dθ1,M

a
(
θ1,M, θ2,M

)
,

d
dθ2,1

a
(
θ1,1, θ2,1

)
, . . . ,

d
dθ2,M

a
(
θ1,M, θ2,M

)] (3:8)

Finally, under 2-D stochastic assumptions, the
unknown parameter vector is
θ �

[
θ1,1, . . . , θ1,M, θ2,1, · · · θ2,M, Re

{
R1,1

}
, . . . , Re

{
RN,N

}
, Re

{
R1,2

}
Im

{
R1,2

}
, . . . , Im

{
RN,N−1

}]T
consisting of 2M + N2 unknowns, where Ri,j is the i,jth
element of the signal covariance matrix. The 2M × 2M
upper-left corner of the inverse of the Fisher matrix
[8,12] corresponding to the parameters of direct interest
is,

J−1
s,2 =

σ 2
n

2K

(
Re
{
DH

(
I − A

(
AHA

)−1
AH
)
D � (

12 1T2 ⊗ U
)} )−1

U = P
(
AHAP + σ 2

n I
)−1

AHAP
(3:9)

with Das in (3.8). It can be shown that U = PA HR-

1APT [4] where R is defined in (3.6) so these UMA
bounds are consistent.

c. 1-D CRLB for the uniform linear array
For the special case of a ULA with a single source, the
bounds (3.4) and (3.6) simplify as follows. Assume all
the elements are on the x-axis with spacing Δx meters,
then,

a = exp
(

−j
2π

λ
�x[0, 1, . . . ,N − 1]T cos (α)

)

d = −j
2π

λ
�x[0, 1, . . . ,N − 1]T sin (α) � a

PT = P1

(3:10)

Jd,1 =
2K P1
σ 2
n

Re
{(

−j
2π

λ
�x sin (α) aH�[0:N−1]

)(
I − 1

M
a aH

)(
−j

2π

λ
�x sin (α) �[0:N−1]a

)}

=
2K P1
σ 2
n

(
2π

λ
�x sin (α)

)2 (
aH�[0:N−1]�[0:N−1]a − 1

M

(
aH�[0:N−1]a

)2) (3:11)

where Λx ≜ diag (x). Then noting,

aH�[0:N−1]a =
N−1∑
n=0

e−jcne+jcnn =
N−1∑
n=0

n =
N (N − 1)

2

aH�[0:N−1]�[0:N−1]a =
N−1∑
n=0

e−jcne+jcnn2 =
N−1∑
n=0

n2 =
N (N − 1) (2N − 1)

6

(3:12)
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Jd,1 =
2KP1
σ 2
n

(
2π

λ
�x sin (α)

)2 1
6

(
0.5N3 + 2N2 − 2.5N

)
J−1
d,1 � 6K

SNR
(
2π�x sin (α) /λ

)2
N3

(3:13)

where c � 2π
�x

λ
sin (α) and SNR = P1/sn

2. Only the

third-order term for N is included in the approximation
(3.13) which agrees exactly with [3]. If we repeat this
with the UMA (3.6), the difference lies in the term,

PAHR−1APT = PAH (APA + σ I)−1 APT

which becomes,

P2
1a

H(P1aaH + σ 2
n I
)−1

a = P2
1a

Ha
[
P1N + σ 2

n

]−1

=
P2
1N

P1N + σ 2
n

(3:14)

where the r.h.s. of the first line acknowledges that for
the single-user case, steering vector a is an eigenvector
of R. The final expression is,

J−1
s,1 =

6Kσ 2
n(

2π
�x

λ
sin (α)

)2

N3

(
P2
1N

P1N + σ 2
n

)
(3:15)

For P1N � σ 2
n , the right-hand term in the denomina-

tor converges to P1; hence, the CMA and UMA expres-
sions are asymptotically equal (equal in the limit as
SNR goes to infinity).

d. Array definitions
The bounds and procedures developed in this article can
be used with arrays of arbitrary shape; sensor positions
for a given array are specified by the vectors px, py, pz,.
However, our numerical examples focus mainly on the
LSA, and a 3-D extension (”L + z“ array) defined in Fig-
ure 2. A Uniform Cross Array (UXA) is sometimes
assumed instead of the LSA, however, the LSA gives
better accuracy than the UXA for the same spacing and

number of elements [17]. Practical size constraints may
make the L + z array preferable to the 2LSA.
An array may be decomposed into sub-arrays for

“separate” processing. The sensor positions for the qth
sub-array are specified by pq, x, pq, y, pq, z. We will
assume that the L-shaped array is decomposed into sub-
arrays consisting of the x-axis and y-axis elements (the
central element is contained in both sub-arrays); the L +
z array is decomposed into sub-arrays containing the “x
and z“ and “y and z“ elements, respectively (all elements
on z-axis are contained in both sub-arrays). The case of
L + z separated into three ULAs will not be considered,
as the redundant measurements would need to be com-
bined in some ad hoc way.

e. Change of variables
To map the 2-D angular CRLBs to bounds on the (x,y)
positions, we use the change of variables (2.5) or (2.6) in
(3.2). For the “el-el” case we find the required deriva-
tives as,

dxi
dαi

= − z
(
sin (αi)

(
1 − cos2 (αi) − cos2 (βi)

)−1/2

+cos2 (αi) sin (αi)
(
1 − cos2 (αi) − cos2 (βi)

)−3/2
)

dxi
dβi

= − z
(
cos (αi) cos (βi) sin (βi)

(
1 − cos2 (αi) − cos2 (βi)

)−3/2
)

dyi
dαi

= − z
(
cos (βi) cos (αi) sin (αi)

(
1 − cos2 (αi) − cos2 (βi)

)−3/2
)

dyi
dβi

= − z
(
sin (βi)

(
1 − cos2 (αi) − cos2 (βi)

)−1/2

+cos2 (βi) sin (βi)
(
1 − cos2 (αi) − cos2 (βi)

)−3/2
)

(3:16)

and for the “az-el” case as,

dxi
dθi

= −z sin (θi) tan (φi)

dxi
dφi

= −z cos (θi) /cos2 (φi)

dyi
dθi

= −z cos (θi) tan (φi)

dyi
dφi

= −z sin (θi) /cos2 (φi)

(3:17)

0

Z 

0 L-1 

z 

x 

y 

z 

x 

y 

L-shaped Array (2L-1 elements) L+Z Shaped Array (2L+Z-1 elements) 

Figure 2 Array definitions.
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The values from (3.16) or (3.17) are inserted into the
matrix Ḟ. Note that for our transformations, all terms
dwi/dθj are equal to zero for i ≠ j, and the matrix Ḟ will
generally have only two non-zero entries per row or
column.
Note that the new CRLB matrix of (3.2) will contain

the (x,y) error bounds for all the sources. From this we
extract the (2 × 2) matrix for the user of interest, and
this becomes the covariance used for drawing concen-
tration ellipses described in Section 2b. The joint bound
on (x,y) will not depend on the choice of angular coor-
dinate system.

4. Separate versus joint bounds
a. Joint bounds
The joint CRLB is computed in a straightforward way,
using all the available sensors. Assume that an ordering
of the elements is defined, and that px, py, pz give the x,
y, and z coordinates (in meters) of elements 1 through
N, relative to the array axes.
For the case of el-el coordinates, the mth source has

array response vector,

a (αm,βm) = exp
(

−j
2π

λ

(
px cos (αm) + py cos (βm) + pz

(
1 − cos2 (αm) − cos2 (βm)

)1/2))(4:1)
The array response matrix is,

A (α,β) = [a (α1,β1) , · · · , a (αM,βM)] (4:2)

The derivatives with respect to the estimated para-
meters are,

dm,α =
d

dαm
a (αm,βm)

= j
2π

λ

(
px sin (αm) − 0.5pz

(
1 − cos2 (αm) − cos2 (βm)

)−1/2
sin (2α)

)
� a (αm,βm)

dm,β =
d

dβm
a (αm,βm)

= j
2π

λ

(
py sin (βm) − 0.5pz

(
1 − cos2 (αm) − cos2 (βm)

)−1/2
sin (2β)

)
� a (αm,βm)

(4:3)

The derivative matrix is,

D (α,β) =
[
d1,α , · · · ,dM,α,d1,β , · · · ,dM,β

]
(4:4)

Using (4.2), (4.4), we can compute the deterministic
bound (3.8) and the stochastic bound (3.9).
For the case of az-el coordinates, mth source has array

response vector,

a (θm,ϕm) = exp
(

−j
2π

λ

(
px sin (ϕm) cos (θm) + py sin (ϕm) sin (θm) + pz cos (ϕm)

))
(4:5)

and the derivatives are,

dm,θ =
d

dθm
a (θm,φm)

= j
2π

λ

(
px sin (φm) sin (θm) − py sin (φm) cos (θm)

)
� a (θm,φm)

dm,φ =
d

dφm
a (θm,φm)

= j
2π

λ

(
−px cos (φm) cos (θm) − py cos (φm) sin (θm) − pz sin (φm)

)
� a (θm,φm)

(4:6)

From these we find A(θ, �), D (θ, �) as before, and
compute the deterministic and stochastic bounds.

b. Separate bounds
Assume that the 2-D angle estimation is divided into
two separate steps, with each 1-D angle computed from
a subset of array elements, or sub-array. The separate
bound cannot be lower than the joint bound, as any
information about angle 2 that appears in sub-array 1 is
ignored, and vice versa. Likewise, any noise correlation
due to common elements in the sub-arrays will be
ignored. Separate processing is of interest as it may
lower the computational complexity of the angle estima-
tion algorithm (performing two, 1-D searches may be
much easier than performing a single 2-D search). Hard-
ware savings are also possible if the radio frequency (RF)
chains (i.e., amplifiers, mixers, filters, etc.) associated
with the sensors are shared among the sub-arrays, redu-
cing the overall cost, size, weight, and power of the sys-
tem. For example, M sensors will only require M/2 RF
chains if a switching mechanism is used and only one
sub-array collects data at a time. As the system spends
half the normal observation time collecting samples
from each sub-array, and the below bounds would be
modified by simply dividing the number of snapshots by
2 (our results do not include this factor of 2). The sepa-
rate bound will enable us determine the performance
cost of “separate” processing relative to the full (joint)
array processing.
To form the separate bound, first we define the ele-

ments within each sub-array. Then we find the CRLB
under conditions where one angle is being estimated,
while the other is unknown. Then, the two resulting
Fisher matrices are combined into a single, larger
2M-by-2M matrix. Let pq,x,pq,y,pq,z denote the x,y,z
coordinates of elements in the qth sub-array, q = 1,2.
Assume that the first sub-array will estimate θ1 with
θ2 as an unknown, deterministic nuisance variable,
and likewise the second sub-array estimates θ2 with
θ1 as an unknown. According to CRLB theory, we
must treat both θ1 and θ2 as unknowns to be esti-
mated, but use only the CRLB sub-matrix corre-
sponding to the variable being estimated [2,15]. Let
Jt,2(q) denote the Fisher matrix (3.8), (3.9) using only
the elements of the qth sub-array. Define the “sepa-
rate” CRLB as

J−1
t,sep =

[
W 0M
0M V

]
, W = J−1

t,2 (1) |UL , V = J−1
t,2 (2) |LR (4:7)

where t (type) may be either s (stochastic bound) or d
(deterministic bound), and “UL” and “LR” denote
extracting the upper-left and lower-right quadrants,
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respectively. Note that the block diagonal form of (4.7)
results directly from making independent angle esti-
mates from the sub-arrays–any beneficial correlation
between the angles has been lost. Starting with the joint
bound in the deterministic case,

Jd,2 =
2K
σ 2
n

[
Re
{
DH

1 A
⊥D1 � PT} Re {DH

1 A
⊥D2 � PT}

Re
{
DH

2 A
⊥D1 � PT} Re {DH

2 A
⊥D2 � PT}

]
(4:8)

where A⊥ � I − A
(
AHA

)−1 AH then using the standard

block inversion formulas [18], we can find the UL and
LR quantities desired in (4.7) as,

W =
σ 2
n

2K

((
Re
{
D1A⊥D1�

}
PT)− (

Re
{
D1A⊥D2 � PT})

(
Re
{
D2A⊥D2 � PT})−1 (

Re
{
D2A⊥D1 � PT}))−1

(4:9)

V =
σ 2
n

2K

((
Re
{
D2A⊥D2 � PT})− (

Re
{
D2A⊥D1 � PT})

(
Re
{
D1A⊥D1 � PT})−1 (

Re
{
D1A⊥D2 � PT}))−1

Breaking the array into non-linear sub-arrays may
make it difficult to estimate one angle while the other
is unknown, hence complexity may not be reduced.
However, if the sub-arrays are linear arrays, then each
is only sensitive to a (or, b) and ordinary 1-D estima-
tion can be used to reduce the overall complexity. In
the case of a linear sub-array, the 2-D CRLB does not
exist (i.e., the Fisher matrix is not invertible, as you
cannot estimate two angles from a single linear array);
so, we use the ordinary 1-D CRLB formulation from
each sub-array,

W = J−1
t,1 (1) , V = J−1

t,1 (2) (4:10)

c. Separability conditions
Generally, arrays are not “separable”, meaning joint esti-
mation will outperform separate estimation. However, in
some special array geometries the bounds are “separ-
able,” and separate processing is optimal.
Theorem 1 The CRLB for a Uniform Cross Array

(UCA) with a single user is separable.
This result is stated in [17] for the deterministic case

without proof. For the UCA with 2L-1 elements (L
assumed odd), the array position vectors are,

px �
[
vx,01×(L−1)

]T, vx = [−NUCA, . . . ,−1, 0, 1, . . . ,NUCA] ,

NUCA =
L − 1
2

py �
[
01×L, vy

]T
, vy = [−NUCA, . . . ,−1, 1, . . . ,NUCA]

(4:11)

For the single user case,

a (α,β) = exp
(

−j
2π

λ
�x

(
px cos (α) + py cos (β)

))
∈ C2L−1×1

A⊥ = I − a
(
aHa

)−1
aH = I − 1

2L − 1
a aH

dα = j
2π

λ
�x px sin (α) � a (α,β) = j

2π

λ
�x sin (α) 	pxa (α,β)

dβ = j
2π

λ
�x py sin (β) � a (α,β) = j

2π

λ
�x sin (β) 	pya (α,β)

(4:12)

where Λx ≜ diag (x) is a diagonal matrix. Inserting
into (4.8), we want to prove that the resulting matrix
has the form (4.7). Beginning with the upper-right term,

DH
1 A

⊥D2 = aH�px

(
I − 1

2L − 1
a aH

)
�pya = aH�px�pya − 1

2L − 1

(
aH�pxa

) (
aH�pya

) ?= 0

= 0 − (
aH�pxa

) (
aH�pya

)
(
aH�pxa

)
=

2L−1∑
i=1

ej f (i)e−j f (i)px (i) = sum
(
px

)
=sum (vx) = 0

(4:13)

Where f(i) is a real-valued function corresponding to
the exponent of the array response vector, the fact that
Λpx Λpy = 0, and that the sum over vx is zero by
inspection. Now turning to the upper-left term, and

defining a �
[
aT1, a

T
2

]T,
DH

1 A
⊥D1 =

(
j2π

�x

λ
cos α

)2

aH1 �vx

(
IL − 1

2L − 1
a1aH1

)
�vx a1 (4:14)

By inspection, this term is equal to the 1-D bound J1,d
(1) except for the scale factor 2L-1. However, for the
special case under consideration, this term is zero
because aH1 �vxa1 = sum (vx) = 0.
Likewise, we may show that the lower-left term is zero

and the lower-right term is J1,d (2) which completes the
proof in the deterministic case. However, as only prop-
erties of DHA⊥D were used, the result extends immedi-
ately to the stochastic case as well.
Theorem 2 The CRLB for an L-shaped Array (LSA)

with a single user is not separable.
For the LSA with 2L-1 elements, the element position

vectors are

px �
[
ux,01×(L−1)

]T, ux = [0, 1, · · · , L − 1]

py �
[
01×L,uy

]T, uy = [1, · · · , L − 1]

Examining the term DH
1 A

⊥D2, as in the upper-right
term of (4.8),

(
2π

d
λ

)2

cos α cos β aH�x

(
I − 1

2L − 1
a aH

)
�ya

=
(
2π

d
λ

)2

cosα cos β

(
− 1
2L − 1

) (
aH�xa

) (
aH�ya

)
(
aH�xa

)
=
[
aH1 , a

H
2

] [diag(ux) 0
0 0

][
a1
a2

]
= aH1 diag(ux)a1 = sum (ux) �= 0

Likewise,
(
aH�ya

) �= 0

Since the upper-right is not zero, (4.7) does not hold
for either UMA or CMA.
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An intuitive explanation for Theorem 2 is to note
that the LSA is able to make measurements over a
“long baseline” pair–the pair of sensors at the tips of
the two arms. There are no two elements within a
sub-array having as large a spacing as this, giving an
advantage to the joint processing for LSA. By contrast,
the tip-to-tip distance in the UCA does not exceed the
largest spacing found in a sub-array, and there is no
such advantage.
Theorem 3 The 2-D CRLB is non-increasing in the

number of sensors (regardless of their positions).
This is an extension to the 2-D case of a proof in [3]

for the deterministic case. Consider a system with N
sensors, AÎCN×M, DÎCN×2M , and the Fisher matrix,

J =
σ 2
n

2K

[
Re
{(
DH

α A
⊥Dα

)� PT
}
Re
{(
DH

β A
⊥Dα

)� PT
}

Re
{(
DH

α A
⊥Dβ

)� PT} Re {(DH
β A

⊥Dβ

)� PT}
]
(4:15)

Adding an extra sensor,

Ā =
[
A
uT

]
, D̄ =

[
D̄α D̄

β

]
, D̄α =

[
Dα

vTα

]
(4:16)

The new system (with over-bar notation) has Fisher
matrix,

J̄ =
σ 2
n

2K

⎡
⎣Re

{(
D̄

H
α Ā

⊥
D̄α

)
� PT

}
Re
{(

D̄
H
β Ā

⊥
D̄α

)
� PT

}
Re
{(

D̄
H
α Ā

⊥
D̄β

)
� PT

}
Re
{(

D̄
H
β Ā

⊥
D̄β

)
� PT

}
⎤
⎦ (4:17)

Note that,

Ā
⊥ � IN+1 − Ā

(
Ā
H
Ā
)−1

Ā
H

=
[
IN 0
0T 1

]
−
[
A
uT

] (
AHA + u∗uT)−1 [

AH u∗ ] (4:18)

(
AHA + u∗uT)−1

=
(
AHA

)−1 −
(
AHA

)−1uTu∗(AHA
)−1

1 + uT
(
AHA

)−1u∗
=
(
AHA

)−1 −  (4:19)

Focusing on the upper-left term of (4.17),

D̄
H
α Ā

⊥
D̄α =

[
DH

α v∗
α

] ([ IN 0
0T 1

]
−
[
A
uT

] ((
AHA

)−1 − 
) [

AH u∗ ]) [Dα

vTα

]
(4:20)

Following the somewhat involved algebra of [3, App.
F] this can be simplified to,

D̄
H
α Ā

⊥
D̄α = DH

α A
⊥Dα + εαεHα , εα =

v∗
α − DH

α A
(
AHA

)−1u∗√
1 + uT

(
AHA

)−1u∗
(4:21)

Likewise, for the three remaining terms in (4.17) we
can show,

D̄
H
β Ā

⊥
D̄α = DH

β A
⊥Dα + εβεHα

D̄
H
α Ā

⊥
D̄β = DH

α A
⊥Dβ + εαεHβ

D̄
H
β Ā

⊥
D̄β = DH

β A
⊥Dβ + εβεHβ

(4:22)

The Fisher matrix is now,

J̄ = Re

{([
DH

α A
⊥Dα DH

α A
⊥Dβ

DH
β A

⊥Dα DH
β A

⊥Dβ

]
+
[

εα

εβ

] [
εα

εβ

]H)
�
[
PT PT

PT PT

]}

= J + Re

{[
εα

εβ

] [
εα

εβ

]H
�

[
PT PT

PT PT

]}
� J + Re

{
E � P̄

} (4:23)

The matrix P̄ is easily found to be positive semi-defi-
nite (psd) as follows. Since PT is a covariance matrix we
can write it in terms of eigenvectors and eigenvalues as
PT = VDVH. The matrix P̄ has 2M eigenvectors, which
by inspection are v̄ =

[
vTi , v

T
i

]T
,
[
vTi ,−vTi

]T, and the eigenva-
lues are λ̄i = 2λi and λ̄i = 0 (with multiplicity M). Hence,
for PT ≥ 0, it follows that P̄ ≥ 0. Next, it follows from
the Schur Product Theorem that E � P̄ ≥ 0 since the
individual matrices are psd. Then, X ≥ 0 ⇒ Re {X} ≥ 0
for X Hermitian. So, we can state, J̄ ≥ J, and J̄

−1 ≤ J−1,
which completes the proof for the deterministic case.
To extend the result to the stochastic case, it is only
necessary to prove that U ≥ 0, which follows directly
from the factorization U = (R-1/2AHP)H (R-1/2AHP).

5. Numerical results
Unless otherwise stated, our numerical results assume a
LSA of 11 elements (L = 6), spaced at half-wavelength
and the CMA is used. The instantaneous SNR = 10 dB,
15 snapshots are used, and we set CF = 0.95. The array
height is either 1500 or 3000 ft; there is no fading or
multipath. Figure 3 compares error ellipses for separate
processing at two heights and two locations. In Figure
3a the source is almost under the array, at (0.25, 0.25)
km. The confidence contours are nearly circular, and
notice the position error is smaller at lower height. On
the other hand, Figure 3b shows a more distant source
at (0.75, 0.75) km. Now the position error is smaller at
the greater height. This demonstrates a basic trade-off
for our location geometry: distant sources require
greater array height. Intuitively, for a distant source,
lower height increases the error two ways: the source is
increasingly off-boresight which reduces the effective
aperture size, i.e., the sin(a) dependence seen in (3.13),
and simultaneously, the error contour expands like a
“lengthening shadow” when projected to the ground
plane.
Figure 4 shows the source at (0.25, 0.25) and height =

1500 ft. The contours correspond to separate, and joint
processing (with el-el and az-el coordinates). In Figure
4a there is no interferer; we see a modest performance
gain with joint processing and the contours for joint el-
el and az-el are identical, as expected. However, in Fig-
ure 4b an interferer (an independent, in-band source) is
added at location (0.1, -1.1) km at 0 dB relative to the
desired source. Now the ellipse for separate processing
is greatly enlarged, and is much worse than joint
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processing. As seen, joint processing seems particularly
beneficial when multiple sources are present. We
repeated Figure 4a,b under the UMA, and the results
appeared equivalent (not shown).
In Figure 5, the interferer is moved to the location

(0.5, -1.95). Note that a linear array is subject to an
“ambiguity cone": identical array responses are created
by sources rotated around the array axis. Here, an origi-
nal source at (0.25, 0.75) and another source anywhere
along the line c(0.25,-0.75) creates the same response.
The interferer in Figure 5 is nearly on this line (c = 2)
and the related A(θ1, θ2) matrix is ill-conditioned as
both sources have nearly the same response vector. As
seen, the separate approach produces a very large

ellipse. However, the joint approaches give excellent
error performance, as in the larger space (with dimen-
sion 2L - 1) the A(θ1, θ2) matrix is not ill-conditioned.
In Figure 6 we compare the LSA with the L + z array

having two additional elements on the z-axis (z = 2). In
Figure 6a, a single source is present. The LSA is shown
with separate and joint processing as before. The L + z
with separate processing shows only a very small gain
relative to LSA; however, joint processing shows a
strong improvement. In Figure 6b, a single interferer is
present, and some additional improvement between LSA
and L + z with separate processing is observed. Again,
large gains are seen obtained for L + z over LSA with
joint processing. The “lengthening shadow” effect can be
significantly reduced by joint processing of the L + z
array; it is reduced by about 50%.

A 

 

 

B 

Figure 3 Separate processing at two heights (1500 and 3000
ft). (a) Source at (0.25, 0.25) km. (b) Source at (0.75, 0.75) km.

A 

 

B  

Figure 4 Separate and joint processing. (a) No interference:
separate vs. joint, (b) One interferer: separate vs. joint.
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In Figure 7 we repeat the comparison of LSA vs. L +
z, but with constant number of elements, and a single
interferer. Take LSA, joint processing with L = 5 (9 ele-
ments in total) as a baseline. Consider adding two addi-
tional elements, either the LSA with L = 6, or the L + z
with L = 5 and z = 2, each having 11 elements in total.
As seen, for this geometry, the L + z is much preferred;
the L + z ellipse has the same width as the L = 5 base-
line, but much reduced length.

6. Conclusions
Two-dimensional angle-of-arrival estimation can be used
to locate ground sources on the ground plane from a
single array. The 2-D CRLB must be used to bound the
performance, and we were able to find the needed
bounds in the literature for both the Conditional Model
Assumption (CMA) and the Unconditional Model
Assumption (UMA). Some location systems may use
suboptimal “separate” estimation of the two spatial
angles, and this required us to modify the bounds. Our
numerical examples show that joint processing has con-
siderable advantage when interferers are present, parti-
cularly when an interferer lies near the “ambiguity cone”
of the source. We also showed that adding additional
elements along the z-axis can be very beneficial for dis-
tant sources when joint processing is used.

Endnotes
a[10,11] give the second term inside the braces as
PT ⊗ 121T2 and give D in a “parameters-first” ordering.
Elementary permutation matrices can be used to reorder
their D to be consistent with (3.9) in “users-first” order-
ing, which changes (3.8) to the form shown. Users-first
ordering is preferred to analyze the “separate” bounds.

Figure 5 L-array with a single interferer.

A 

 

B 

Figure 6 L + z array. (a) LSA vs. L + z with no interference. (b) LSA
vs. L + z with one interferer.

Figure 7 L + z with constant number of elements.
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