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Short range tracking of rainy clouds by multi-
image flow processing of X-band radar data
Luca Mesin

Abstract

Two innovative algorithms for motion tracking and monitoring of rainy clouds from radar images are proposed.
The methods are generalizations of classical optical flow techniques, including a production term (modelling
formation, growth or depletion of clouds) in the model to be fit to the data. Multiple images are processed and
different smoothness constraints are introduced. When applied to simulated maps (including additive noise up to
10 dB of SNR) showing formation and propagation of objects with different directions and velocities, the
algorithms identified correctly the production and the flow, and were stable to noise when the number of images
was sufficiently high (about 10). The average error was about 0.06 pixels (px) per sampling interval (ΔT) in
identifying the modulus of the flow (velocities between 0.25 and 2 px/ΔT were simulated) and about 1° in
detecting its direction (varying between 0° and 90°). An example of application to X-band radar rainfall rate images
detected during a stratiform rainfall is shown. Different directions of the flow were detected when investigating
short (10 min) or long time ranges (8 h), in line with the chaotic behaviour of the weather condition. The
algorithms can be applied to investigate the local stability of meteorological conditions with potential future
applications in nowcasting.
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1. Introduction
Quantitative precipitation monitoring and forecast is an
important issue in water management, in flood forecast-
ing, and in predicting hazardous conditions. Specific
problems are the distinction of rain from snow [1], the
monitoring of basins subject to floods or of areas prone
to landslides [2], and the forecast of sudden rainfall over
strategic regions, like as airports [3]. In these situations,
detailed areal measurements of precipitation over a local
spatial scale of range of a few tens of km and on a short
time scale (e.g., 30 min, nowcasting) are needed.
For the remote sensing of rainfall, rain gauges dis-

persed on the surface area of interest have been used.
Nevertheless, they may be affected by gross mistakes, as
wind, snowfall, drop size distribution influence the mea-
sure. Moreover, a very dense network of gauges is
needed, as the correlation between the measurements
taken in two rain gauges is poor even at 500 m distance
over time scales of 30 min [4].

As an alternative, radars may be used to study rainy
clouds. Rainfall investigations have been usually con-
ducted using S-band or C-band polarimetric radars,
which use radiations with long wavelengths (about 10
and 5 cm, respectively) which allow for low attenuations
[5]. These radar constellations are typically used for
long range meteorological target detection. On the other
hand, X-band radars can work only at short ranges and
their radiations are significantly affected by attenuation
behind heavy precipitation (due to the smaller wave-
length, of about 3 cm). However, they have finer resolu-
tion and smaller sized antennas than those required by
S- or C-band radars, resulting in easier mobility and
lower costs [6]. Moreover, using X-band radars has
some advantages over S-band and C-band radars when
investigating regions exhibiting a complex orography
[4,7].
Radar images have been used for precipitation now-

casting. Different techniques are based on correlation of
successive images [8], on tracking the centroid of an
object [9], and on the use of numerical prediction of
wind advection [10]. Classical optical flow methods can
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estimate the motion of objects comparing a couple of
subsequent images [11,12]. Some multi-frame techni-
ques have also been introduced, in order to enhance
robustness to noise and improve the discriminating cap-
abilities of the algorithm [13,14]. When applied to preci-
pitation forecasting [15,16], optical flow techniques
track rainfall objects assuming that they remain constant
in intensity (brightness constancy condition). On the
other hand, shower clouds and the fine structure of stra-
tiform rain bands can develop in a few minutes [17].
Their identification is not possible with classical optical
flow techniques and their prediction is very difficult and
requires detailed local information (which could be
detected with X-band radars).
Other local weather forecast algorithms are based on

the analysis of a few time-series representing meteorolo-
gical variables like air temperature and humidity, visibi-
lity distance, wind speed and direction, precipitation
type and rate, cloud cover, and lightning [18]. Nonlinear
prediction methods (e.g., based on artificial neural net-
works models) usually compare the present condition
with similar ones happened in the past and saved in a
database. Nevertheless, meteorological variables have
chaotic dynamics which could abruptly lead to comple-
tely different conditions, even starting from similar ones
[19,20]. The identification of stability or instability of
the weather condition by a short range investigation
could enhance the performances of local predictions by
time-series analysis.
This article is devoted to the identification of forma-

tion and propagation of rainy clouds in short range,
using data from an X-band radar. An innovative
approach is proposed, based on classical optical flow
theory, but estimating the formation and decay of rainy
clouds in addition to their movements. This analysis can
hardly be used for forecasting purposes, as the short
spatial range investigated limits the time range of the
reliable prediction, especially in the presence of fast
rainy clouds or of showers. Nevertheless, it could pro-
vide valuable indications on the stability or instability of
weather conditions, which could feed a time-series
based local model for rain prediction.

2. Methods
2.1. Description of experimental data
A new version of the X-band radar described in [4] was
used. The radar transmits rectangular 10 kW peak
power pulses (400 ns duration) at a frequency of 9.41
GHz, through a parabolic antenna with 3.6° beamwidth
and 34 dB maximum gain. A maximum coverage of 30
km can be reached with an angular resolution of about
3° and a range resolution equal to 120 m.
Received power related to meteorological echoes

within each single radar volume bin is converted into

the averaged reflectivity inside that volume. Two dimen-
sional (2D) maps of reflectivity (Z in mm6m-3) are pro-
vided as output to the pre-processing stage with a
sampling interval of 1 min. Radar reflectivity Z was con-
verted into rainfall rate R (measured in mm/h), using
the Marshall and Palmer Z-R relation [21]

Z = ARb (1)

where A and b are parameters that can be estimated
by fitting experimental data from rain gauges placed on
the area investigated by the radar. In this study, radar
reflectivity data were converted into rainfall rates using
the relation introduced in [22], fitting data of 7 years
recorded in central Europe:

Z = 316R1.5. (2)

2.2. Mathematical model
Different radar images of rainfall rate can be compared
to identify rainy clouds formation, growing or propaga-
tion. Radar maps (within the considered time window)
are modelled by the following equation

∂I(x, y, t)
∂t

+ −→v (x, y) · ∇I(x, y, t) = F(x, y) (3)

where I(x, y, t) is the intensity of the image as a
function of the spatial coordinates (x, y) and
time t (representing the radar reflectivity Z),
−→v (x, y) = (v1(x, y), v2(x, y)) is the velocity flow and F

(x, y) is a production term (which describes generation
if positive, depletion if negative). The left hand side of
Equation 3 is the total time derivative along the path of
a propagating object of the image, that during its propa-
gation may also vary its amplitude as an effect of the
production term F(x, y). This model is quite general, but
is based on assumptions which are not physical. For
example, the distribution of clouds is 3D, whereas our
model is 2D. Thus, the merging, intersection or growing
of the available images of clouds could be the result of a
complicated 3D motion. Thus, caution is needed in the
interpretation of results.
In practice, both space and time variables are sampled.

Thus, differential operators in Equation 3 are estimated
within some approximation from sampled images. Velo-
city flow and production term are assumed to be con-
stant in the considered time window, which is sampled
by N radar images.
When neglecting the production term, Equation 3

describes only flow. Such a model was applied to
investigate different moving objects, for example to
track images within the scenes from a television signal
[23].
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It is not possible to solve directly optical flow pro-
blems from two images, as two unknowns (the two
components of the velocity flow) are to be estimated
from one equation (aperture problem [24]). In the case
of problem (3), the production term is a further
unknown. Moreover, the production term could account
for any time evolution of the image I(x, y, t) without

including any flow −→v (x, y) , leading to the trivial solu-

tion

F =
∂I
∂t

−→v = 0. (4)

This problem is avoided when more than two images
are included, assuming that both the velocity field and
the production term are constant for all the N frames in
the time window under consideration. This imposes that
the motion of objects in different images is accounted

for by the velocity field −→v (x, y) and the appearing,

growth, depletion or extinction of objects determine the
production term F(x, y).

2.3. Numerical implementation
The simplifying assumptions of the model and the ran-
dom noise included in the experimental data impose
that Equation 3 can apply only within some approxima-
tions. For this reason, it is not expected that the para-

meters of the model (i.e., −→v (x, y) and F(x, y)) can be

estimated exactly, but only minimising the error with
respect to the data. Given N images, the velocity field
−→v (x, y) and the production term F(x, y) can be esti-

mated optimally by solving the following mean square
error problem

[−→v , F
]
= argmin

−→w ,f

N−1∑
i=1

min(N,i+3)∑
j=i+1

∥∥∥Iijt + −→w · ∇Iij − f
∥∥∥2
2
(5)

where ‖·‖22 indicates the square of the norm of the

space of square-integrable functions L2, Iijt =
Ii − Ij

(i − j)dt
the discrete version of the time derivative, with Iiindicat-
ing the ith reflectivity map and dt the time sampling

interval, Iij the radar map at the time sample
i + j
2

dt

(the mean of the two closest maps was used when
i + j
2

was not an integer number), and ∇Iijthe gradient of Iij

(estimated with a second order finite difference approxi-
mation). It is worth noticing that in Equation 5 all pairs
of maps were considered with maximal distance equal
to 3. Including more maps lowers the effect of noise.
On the other hand, when considering maps with

increasing delay, the finite difference approximation of
model (3) is affected by an increasing error. For this rea-
son, it is better to limit the time range of map pairs
included in (5) (or, as an alternative, it is also possible
to penalize the terms in the sum as a function of the
delay between maps). Depending on the application and
on the sampling frequency, the optimal maximal delay
between maps should be properly chosen.
When time evolutions of the velocity field and of the

production term are of interest, their estimation can be
performed for a set of sliding time windows. Time evo-
lutions are expected to be smooth, as the velocity field
and the production term are computed assuming that
they are constant for all the N maps in the considered
time window.
In optical flow techniques, to avoid the aperture pro-

blem, the velocity field is also constrained to be smooth
in space [11,12]. This condition can be imposed either
locally (requiring the flow to be constant in the neigh-
bouring pixels of the considered one, Lucas and Kanede
method [11]) or introducing global constraints of
smoothness (Horn-Schunck method [12]).

2.4. Estimation of flow and production
In optical flow problems, in which the production term
is not included, the brightness constancy condition
together with spatial constraints are sufficient to esti-
mate the flow even from two images. Such a flow was
proven to reside in a low-dimensional linear space. Con-
straining it to have the correct low number of degrees of
freedom, noise content in the data can be reduced and a
robust estimation of the flow can be obtained [13]. Two
methods for the estimation of optical flow from a multi-
frame analysis were recently introduced in [14] and
compared to the technique proposed in [13]. The
smoothness constraint was imposed locally (in line with
Lucas-Kanede approach). Performances improved as the
number of processed images increased. The two meth-
ods were superior to that in [13] both in terms of com-
putational cost and precision. The most precise method
was based on the incremental difference approach, in
which adjacent frames are used to estimate time deriva-
tives, in line with Equation 5.
Both Lucas-Kanede [11] and Horn-Schunck

approaches [12] are here generalized to impose that the
estimated velocity field and production term are smooth
in space.
2.4.1. Lucas-Kanede approach
Within Lucas-Kanede framework, for each pixel of the
image, the same equation was written for the M neigh-
bouring pixels of the considered one. A Gaussian
weighting factor (with standard deviation equal to 2

√
2

pixels) was assigned to such conditions, to give more
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prominence to the central pixel and lower importance
to more distant ones. For each pixel, the flow and the
production terms were estimated in order to satisfy
these multiple conditions optimally in the least square
sense. Specifically, the following linear system was
defined

AX = b X =

⎡
⎢⎣
v1
v2
F

⎤
⎥⎦ (6)

with the following definitions of the matrix A and of
the vector b

As =

⎡
⎢⎢⎣
w1Isx(p1) w1Isy(p1) − w1

...
...

...

wMIsx(pM) wMIsy(pM) − wM

⎤
⎥⎥⎦ A =

⎡
⎢⎢⎣

A1

...

A3(N−2)

⎤
⎥⎥⎦

bs =

⎡
⎢⎢⎣
w1Ist(p1)

...

wMI
s
t(pM)

⎤
⎥⎥⎦ b =

⎡
⎢⎢⎣

b1
...

b3(N−2)

⎤
⎥⎥⎦

(7)

where p1,...,pMis the set of neighbours of the consid-
ered point, w1,..., wMare the weights and s labels each of
the 3(N-2) pairs of maps (indicated by ij in Equation 5).
In this article, 25 neighbours of each point were consid-
ered (M = 25). Hence, for points located far from the
boundary, the neighbours were located in a square with
side 5, in line with [14]. The system (6) is over-deter-
mined. The unknown vector X was estimated optimally
in the least square sense by pseudoinversion (which pro-
vides a close analytical solution to the problem).
2.4.2. Horn-Schunck approach
Following the Horn-Schunck method [12], the smooth-
ness constraint is introduced by adding the energy norm
of the gradients of the velocity flow and of the produc-
tion term as regularization components in Equation 3.
Other constraints can be included, in order to introduce
a-priori knowledge on the solution. For each map pair
considered in Equation 5 (here labelled with s), the fol-
lowing functional to be minimized was considered

Js(
−→v , F) =

∥∥Ist + −→v · ∇Is − F
∥∥2
2+α2

(∥∥∇−→v ∥∥2
2 + ‖∇F‖22

)
+β2

∥∥F−→v ∥∥2
2+γ 2 ‖F‖22+δ2

∥∥−→v ∥∥2
2 (8)

where α2
∥∥∇−→v ∥∥2

2
is the Horn-Schunck smoothness

constraint, α2 ‖∇F‖22 is an equivalent constraint for the

production term, β2
∥∥F−→v ∥∥2

2
reduces the correlation

between flow and production term (to force production
and propagation terms to be present in different

regions), γ 2 ‖F‖22 and δ2
∥∥−→v ∥∥2

2
limit the amplitude of

the two unknowns (Tikhonov regularization, [25]), in
order that they do not become large to follow noise
details.

The functional (8) can be minimized by solving the
associated Euler-Lagrange equations [26]

⎧⎨
⎩

(Ist +
−→v · ∇Is − F)Isx − α2�v1 + β2F2v1 + δ2v1 = 0

(Ist +
−→v · ∇Is − F)Isy − α2�v2 + β2F2v2 + δ2v2 = 0

−(Ist +
−→v · ∇Is − F) − α2�F + β2F(v21 + v22) + γ 2F = 0

(9)

where Δ indicates the Laplacian operator. As proposed
in [12], an iterative technique (Jacobi’s method) was
applied to solve the system of equations (9). The non-
linear terms F2v1, F

2v2, and F(v21 + v22) were estimated

from the previous step in the iteration. The Laplacian
was expressed as

�U = U − U (10)

where U is an average value estimated from the pre-
vious step in the iteration. As time is sampled, Equa-
tions 9 were written for each pair of maps considered to
estimate the time derivative (refer to Equation 5). The
following linear system of equations was obtained for
the nth step of the iteration, for each pair of maps

⎡
⎢⎢⎣

(
Isx

)2 + α2 + δ2 IsxI
s
y −Isx

IsxI
s
y

(
Isy

)2
+ α2 + δ2 −Isy

−Isx −Isy 1 + α2 + γ 2

⎤
⎥⎥⎦

⎡
⎣ vn1
vn2
Fn

⎤
⎦ =

⎡
⎢⎣ −Ist I

s
x + α2vn−1

1 − β2(Fn−1)2vn−1
1

−IstI
s
y + α2vn−1

2 − β2(Fn−1)2vn−1
2

Ist + α2F
n−1 − β2Fn−1((vn−1

1 )
2
+ (vn−1

2 )
2
)

⎤
⎥⎦ . (11)

An estimation of the unknowns optimal in the least
square sense was obtained by pseudoinverting the rec-
tangular matrix containing the conditions (11) for each
considered pair of maps. In order to facilitate conver-
gence to smooth solutions, the flow and the production
term estimated at each step of iteration were convolved
with the Gaussian mask

1
16

⎡
⎣1 2 1
2 4 2
1 2 1

⎤
⎦ . (12)

The following expressions were chosen for the para-
meters in Equation 8

α = 0.25 exp
(
−n
5

)
rms(∇I) β = 0.1 exp

(
−n
5

)
rms(−→v n−1

)

γ = 0.1 exp
(
−n
5

)
rms(∇I) δ = 0.1 exp

(
−n
5

)
rms(∇I)

(13)

where n is the number of iteration, rms(∇I) is the
average root mean square (RMS) of the gradients of the

images and rms(−→v n−1) is the RMS of the vector flow

estimated in the previous step of the iteration. As the
iterations proceed, the values of the parameters decrease
giving more importance to the fitting of data.
The fit of the model to the data was measured by the

RMS error of the model with respect to the data nor-
malized with respect to the norm of the data itself. The
RMS error was defined considering the entire map pairs
included, as follows
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RMS =

N−1∑
i=1

min(N,i+3)∑
j=i+1

∥∥∥Iijt + −→v · ∇Iij − F
∥∥∥
2

N−1∑
i=1

min(N,i+3)∑
j=i+1

∥∥Iij∥∥2
. (14)

The algorithm proceeded as long as such an RMS
error decreased. When the RMS error increased with
respect to the previous step in the iteration, the algo-
rithm was stopped and the estimated flow and produc-
tion term at the previous step (i.e., the ones for which
the RMS was minimum) were considered.

3. Results
The performance of the methods in tracking objects
moving and growing in subsequent images was first
tested in simulations. Then, some representative exam-
ples of application to radar data are shown.

3.1. Simulated data
The reliability of the algorithms in tracking the motion
and the growing up of 2D Gaussian functions was
tested. In a preliminary test shown in Figures 1 and 2,
two Gaussian functions were simulated to follow
straight intersecting paths, whereas one Gaussian func-
tion was growing at a rate of 0.1 per time sample. Speci-
fically, the definitions of the three Gaussian functions
are the followings

Gi(x, y, t) = exp

(
−(x − vxt − x0i )

2 + (y ± vyt − y0i )
2

2σ 2

)
i = 1, 2

G3(x, y, t) = A(t) exp

(
−(x − x03)

2 + (y − y03)
2

2σ 2

)
A(t) = 0.1 t

(15)

where Gi(x, y, t) indicates the ith Gaussian function,
the first two propagating (at velocities (vx ± vy)), the
third one remaining stationary, but growing at constant
rate; moreover, (x0i , y

0
i ) with i = 1, 2, 3 indicates the

initial position of the ith function. The initial conditions
and the standard deviation (s = 2) of the three functions
were chosen in order that their essential supports were
separated in all considered images, except when the tra-
jectories of the first two functions intersect (see Figure
1A). Additive Gaussian noise was included with signal
to noise ratio (SNR) equal to 10 dB. No smoothing was
performed before processing, even if the computation of
numerical derivatives would improve by low pass filter-
ing the images. Time was sampled with 16 images. It is
worth noticing that the problem is not well posed, as
the flow cannot be estimated in the points in which the
first two Gaussian functions intersect.
Three experiments including a different number of

images were performed. The initial and the final images
were always considered. The other images were under-

sampled by a factor 5 (N = 4 images considered) or 3 (N =
6), or all of them (N = 16) were used to estimate the pro-
pagation and growth of the three Gaussian functions. Fig-
ure 1 shows results obtained using the algorithm based on
the Horn-Schunck approach. Results indicate that using
the minimum considered number of images (N = 4), the
flow cannot be estimated: in such a case, the production
term accounts for the disappearing of the first two Gaus-
sian functions from their initial positions and their appear-
ance in the final positions, with some contribution along
their paths. Moreover, the growing of the third Gaussian
function is identified. When increasing the number of
images to 6, a local flow is estimated close to the initial
and final positions of the first two Gaussian functions. The
paths of the estimated flow are noisy and not straight.
Moreover, the production term includes both the estimate
of the growth of the third Gaussian function and some
contribution along the paths of the two travelling ones.
Including all the images, the estimation of the flow and of
the production term is clear: the flow paths are straight
and go from the initial to the final positions of the first
two Gaussian functions; the production of the third Gaus-
sian function is correctly estimated; the only residual pro-
blem is in the region in which the paths of the first two
Gaussian functions intersect, but in such a region the pro-
blem is not well posed, as stated above.
Figure 2 shows a comparison between the two imple-

mented algorithms, considering the same simulations as
in Figure 1, using 16 frames. Both Lucas-Kanede and
Horn-Schunck approaches allows identifying the flow
and the production term, with similar results (similar
results are also obtained using the two different
approaches with a lower number of frames).
Different sets of simulated signals are considered in

Figure 3 to investigate the performances of the algo-
rithms in estimating the flux as a function of the modu-
lus and direction of the propagation velocity and of the
energy of additive random noise. A single propagating
Gaussian function defined by an expression equal to
that of G1(x, y, t) in Equation 15 was considered (Figure
3A). Its motion was sampled by 10 images.
The algorithms were applied either to the whole set of

images (N = 10), or to a sub-set obtained under-sampling
by a factor 3 (N = 4). The same initial and final images
were used (as shown in Figure 3A, lower panel). Ten reali-
zations of Gaussian noise were added over the maps, with
SNR of 10 or 20 dB in different sets of simulations. From
each processed set of images, a single velocity vector was
computed from the estimated flow, by averaging the flow
vectors in the region in which the propagating Gaussian
function was larger than the threshold 0.75 in at least one
of the processed maps. The estimated modulus of the
velocity vector is shown in Figure 3B as a function of the
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simulated modulus of velocity, superposing curves corre-
sponding to different angles obtained averaging with
respect to the noise realization and indicating the standard
deviation (STD). In general, there is not an important
effect of the angle on the estimated modulus of velocity.
Good estimates are obtained by both methods when

the whole set of images is considered (Figure 3B2, B4).
Using a small number of images (N = 4), the velocity
can be estimated only if it is small (Figure 3B1, B3).
Indeed, the estimates of the derivatives of the images
with respect to the time and space variables are accurate
only if the displacement is small (and only under the
same condition the optical flow equations are justified
[14]). Moreover, in the Lucas-Kanede approach, only
small neighbours of each point are explored, so that the
pairs of images contributing to the definition of matrix

A in Equation 6 could be not correlated within such
small regions as the displacement of objects in different
images is too large. On the other hand, Horn-Schunck
method is based on global constraints and the Euler-
Lagrange Equations 9 have a diffusion operator which
contributes to coupling neighbouring points. It provides
reliable estimates up to velocities of about 1.5 pixels per
time sample. Thus, a proper choice of parameters (e.g.,
the extension of the neighbouring region in the Lucas-
Kanede approach or the diffusion coefficient a2 in the
Horn-Schunck approach) could help in following fast
movements (as occurring when convective cells are pre-
sent in the radar images). Nevertheless, increasing the
sampling frequency is the best solution (e.g., in [14] dif-
ferent methods were tested on a synthetic sequence
manually generated by moving the images of the

1

2 3

1 2

3

+

1

2

3

A) B1)

B2)

B3)

C1)

C2)

C3)

Figure 1 Test of the method following the Horn-Schunck approach on a simulated signal. Three Gaussian functions are considered: the
first two propagate without shape changes, the third is stationary, but it grows in amplitude. Three sampled 2D maps are shown in (A)). A
different number N of maps are considered, using the same initial and final conditions, but under-sampling by different factors. The estimated
flow and growth are shown in (B1) and (C1), respectively, for the case in which 4 maps are considered, in (B2) and (C2) in the case in which 6
maps are used, and in (B3) and (C3) for the case in which 16 maps are processed.
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sequence with the flow vector (0.1, 0.1) pixel/frame).
Estimates of the angle of the velocity are depicted in
Figure 3C as a function of the modulus and the angle of
the simulated velocity, showing mean and STD of the
estimates obtained with different realizations of noise.
The direction of propagation is poorly estimated using a
small number of images, even with a high SNR. The
estimates are much more stable and precise when the
number of images increases.
It is worth noticing that, as only propagation was

simulated in this case, algorithms for optical flow avail-
able in the literature could also be applied. The Lucas-
Kanede algorithm for optical flow estimation, without
including the production term, can be obtained substi-
tuting the Equations 6 and 7 with the following

AX = b X =

[
v1
v2

]
(16)

where the matrix A and the vector b are defined as

As =

⎡
⎢⎢⎣
w1Isx(p1) w1Isy(p1)

...
...

wMIsx(pM) wMIsy(pM)

⎤
⎥⎥⎦ A =

⎡
⎢⎢⎣

A1

...

A3(N−2)

⎤
⎥⎥⎦

bs =

⎡
⎢⎢⎣
w1Ist(p1)

...

wMI
s
t(pM)

⎤
⎥⎥⎦ b =

⎡
⎢⎢⎣

b1
...

b3(N−2)

⎤
⎥⎥⎦ .

(17)

Horn-Schunck algorithm for optical flow estimation,
without including the production term, can be obtained
substituting Equation 11 with the following⎡

⎣
(
Isx

)2 + α2 IsxI
s
y

IsxI
s
y

(
Isy

)2
+ α2

⎤
⎦ [

vn1
vn2

]
=

[−Ist I
s
x + α2vn−1

1
−Ist I

s
y + α2vn−1

2

]
. (18)

In general, their results are expected to be better than
those obtained using the methods introduced here, in
particular when the number of frames is small. Indeed,
the new algorithms considered here have an additional
degree of freedom (the production term) with respect to
classical optical flow methods. Thus, for sets of images
related only by flow, they need more information to learn
that the production term is absent. Nevertheless, with the
simulations considered here, the results are comparable,
as shown in Table 1, where the errors in estimating velo-
city and direction of the flow are indicated for the four
methods (Horn-Schunck and Lucas-Kanede, including or
excluding the production term), for each considered pair
of values of N and SNR. We can notice that the estimate
of the modulus of the velocity is marginally affected by
the intensity of the noise, whereas the estimation of the
angle is less precise when the noise content increases.
For all the simulations considered in this paper, the

number of iterations required by the Horn- Schunck
algorithm to converge was about 5 to 10 and the RMS
error in fitting the data (defined in Equation 14) was
between 5 and 15% for all the methods considered.

A) B)

Figure 2 Test of the two methods (Lucas-Kanede–LK–and Horn-Schunck–HS) on the same simulated signal as in Figure 1, considering
16 frames. (A) Estimated flows. (B) Estimated production terms.
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3.2. Application to experimental data
As an example of application, the meteorological condi-
tions during the night (from 23:00 to 7:00) between the
20th and the 21th of November, 2010 were considered.
Rainfall rate was estimated using data detected from the
X-band radar described in Section 2.1 and shown in Fig-
ure 4A, placed on the roof of Politecnico, close to the
centre of Turin. The first considered map of rainfall rate
is shown in Figure 4B. The spikes are associated to clut-
ters. Data were re-sampled in order to convert the polar
coordinates into Cartesian ones, with homogeneous
sampling with resolution 500 m. Moreover, maximum
rainfall rate considered was 10 mm per h. Experimental
values larger than such a limit (assumed to correspond
to clutters) were removed and their value was computed
by linear interpolation. A square region centred 15 km
at East of the centre of Turin and with side 20 km was

considered (Figure 4C). Before processing, experimental
noise was reduced by a spatial low pass filter obtained
by 2D convolution with a Gaussian mask with standard
deviation equal to 500 m, as shown in Figure 4D.
The case study concerns a stratiform rain fallen on

Turin. From the meteorological analysis, low pressure in
the South of France entailed a cyclone circulation: wind
fields at 500 hPa (height of clouds responsible of preci-
pitation) move from South to North in Northern Italy,
as noticeable from MetOffice pressure map (Figure 5A)
and Cuneo-Levaldigi radio-sounding station near Turin
(Figure 5B).
Figure 6 shows two examples of estimation of the flow

and production of rainy clouds by the proposed algo-
rithm based on the Horn and Schunck approach. The
square region on the East of Turin shown in Figure 4C,
D was studied. Two time ranges were considered: 10
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Figure 3 Test of the methods on different sets of simulated signals. A translating Gaussian function is considered. (A) Different velocities
and directions of propagation were simulated, considering 10 images. The algorithm was applied either on the whole set of images (N = 10), or
under-sampling by a factor 3 (N = 4, maintaining the same initial and final image, as shown in (A), lower panel). Ten realizations of Gaussian
noise were added over the maps, with SNR of 10 or 20 dB. Estimates of the velocity are shown in (B), superposing curves corresponding to
different angles obtained averaging with respect to the noise realization and indicating the standard deviation (STD). Estimates of the angle of
the velocity are shown in (C).
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min sampled by 10 radar maps (Figure 6A, B) and 8 h
sampled by 17 maps of cumulative rainfall rate, each
obtained adding sampled images for 30 min (Figure 6C,
D). The estimated flows are shown on the left (Figure
6A, C). The flow averaged over the longer time range

(Figure 6C) is predominantly directed upward, in North-
East direction, in agreement with the indications of the
MetOffice pressure map (Figure 5A). On the other
hand, the flow estimated from the radar maps recorded
during the specific short time period shown in Figure

A)

C)

B)

D)

Figure 4 (A) Picture of the X-band radar on the roof of Politecnico, in Turin. (B) Rainfall rate estimated from the measured reflectivity (the
range of rainfall rate was limited to 10 mm per hour; spikes correspond to clutters). (C) Rainfall rate in a region in the East of Turin selected for
further processing. (D) Smooth rainfall rate computed from the image in (C) by low pass filtering with a Gaussian mask with standard deviation
equal to 1 pixel.

Table 1 Absolute error in estimating modulus and phase of the flow

Simulation parameters Lucas-Kanede approach Horn-Schunck approach

Modulus (px/ΔT) Angle (°) Modulus (px/ΔT) Angle (°)

F No F F No F F No F F No F

N = 4, SNR = 10 dB 0.58 ± 0.62 0.49 ± 0.54 1.0 ± 1.7 0.6 ± 0.7 0.50 ± 0.59 0.41 ± 0.42 2.3 ± 2.0 2.2 ± 1.7

N = 4, SNR = 20 dB 0.58 ± 0.60 0.49 ± 0.53 0.9 ± 1.8 0.5 ± 1.7 0.49 ± 0.57 0.39 ± 0.40 1.8 ± 1.9 1.7 ± 1.5

N = 10, SNR = 10 dB 0.06 ± 0.03 0.04 ± 0.04 0.2 ± 0.2 0.2 ± 0.2 0.06 ± 0.03 0.07 ± 0.08 2.4 ± 3.3 1.7 ± 1.9

N = 10, SNR = 20 dB 0.05 ± 0.04 0.04 ± 0.03 0.2 ± 0.2 0.2 ± 0.2 0.06 ± 0.03 0.07 ± 0.08 0.7 ± 0.6 0.7 ± 0.5

Notes: The same data as in Figure 3 were used. Different methods (Lucas-Kanede or Horn-Schunck approach, including the production term [F] or estimating
only the flow [No F]), eight values of modulus and nine values of phase of the simulated flow, different numbers N of frames, additive Gaussian noise with
different SNR (ten realizations for each simulation) are considered. The errors are given in terms of mean ± standard deviation, approximated to the second digit
for the modulus and to the first digit for the phase. Modulus is indicated in pixel (px) per sampling period (ΔT). Angles are indicated in(°).
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6A is predominantly directed downward, in South direc-
tion, opposite to the indications of the MetOffice pres-
sure map and to the average flow estimated processing
a time period covering the majority of the event (Figure
6C). Moreover, the motions of clouds appear to be

more turbulent and discontinuous (i.e., with large spatial
variations) when a short time range is considered. The
estimated productions of rainy clouds are shown on the
right of Figure 6 (in 6B and 5D). The production is
lower when the time range is larger, probably due to the

A)

B)

Figure 5 Example of meteorological conditions processed by the algorithm (results in Figure 6). The night (from 23:00 to 7:00) between
the 20th and the 21th of November, 2010 was considered. (A) MetOffice pressure map. (B) Radio-sounding data from Cuneo-Levaldigi station
(near Turin).
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low pass filter effect of cumulating the rainfall rate. Such
a procedure has the effect of smoothing out the differ-
ences between successive maps, which are identified by
the algorithm as production or extinction of clouds (if
they are not moving).
All radar maps presented a still local maximum, which

is a clutter, centred about 19 km East and 5 km North
of Turin. The estimated flow and production term van-
ish close to such a region.
The number of iterations required by the algorithm to

converge was about 5 to 10 when processing 10 maps
sampled every minute. In such a case, the RMS error
(defined in Equation 14) was between 5 and 10%. Processing
the 17 maps of rainfall rate cumulated every 30 min required
12 iterations; the RMS error in fitting the data was 1.2%.

4. Discussion and conclusions
Two innovative algorithms are proposed to track rainy
clouds motion and to identify their generation and loss.
The methods are based on the classical Lucas-Kanede
[11] and Horn-Schunck [12] optical flow techniques, but
estimate also a production term accounting for the
appearance, growing, depletion, or extinction of objects
in subsequent images. This requires the inclusion of
more than two images in the processing.
The two methods have comparable performances

when applied to simulated signals (Figures 2 and 3).
Moreover, when applied to a set of images satisfying the
bright constancy condition, their performances are simi-
lar to those of multi-frame versions of classical optical
flow techniques (Table 1).

A)

C)

B)

D)

Figure 6 Processing of a portion of data of the radar shown in Figure 4A, placed close to the centre of Turin (during the
meteorological conditions shown in Figure 5). (A) and (B) show the flow and the production term, respectively, obtained processing 10
maps of rainfall rate (expressed in mm per hour) sampled every minute. Flow and production term shown in (C) and (D), respectively, were
obtained processing 17 maps of cumulative rainfall rate, each obtained adding sampled images for 30 min.
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An important parameter affecting performances is the
number of images processed by the algorithms (Figures
1 and 3). Including an increasing number of images
makes the results more and more stable to random
noise. Indeed, a single flow and a single production
term are estimated out of more noisy images, extracting
average properties (i.e., the motion and the generation
of objects) which consistently appear in different images,
and reducing the effect of random fluctuations. Flow
and production term estimated from sets of simulated
images with constant flow and generation improved
when the number of processed images increased (Fig-
ures 1 and 3 and Table 1). On the other hand, increas-
ing the number of images keeping constant the
sampling interval increases the time range of investiga-
tion. As the algorithms assume that the flow and the
generation of objects do not change within the pro-
cessed images, increasing the investigation interval
reduces their capability to detect rapid variations devel-
oping at a shorter time scale. Thus, a proper over-sam-
pling related to the time scale of the phenomenon of
interest is needed for a correct application of the meth-
ods. Over-sampling is more important for the Lucas-
Kanede approach, as the smoothness constraint is
imposed locally.
The methods were implemented in Matlab, on a Pen-

tium(R) Dual-Core, with clock frequency of 2.8 GHz, 4
GB of RAM and 64 bits operating system, using routines
running on a single core. The computational cost is
shown in Figure 7 in terms of the processing time as a
function of the number of frames, in the case of images
with different dimensions (notice the erratic processing
time corresponding to the Horn-Schunck approach,
which depends on the number of iterations needed to
converge). The computational cost increases rapidly
with the dimension of the frame and with the number
of images considered. The inclusion of the production
term increases marginally the processing time. The algo-
rithms are feasible for parallel implementation, as the
same steps should be repeated for each pixel in the
image. Moreover, using an optimized implementation
and a compiled language could significantly reduce the
processing time. Thus, processing about 10 to 20 frames
with dimension similar to those considered here, the
algorithms could process data in (quasi) real time.
Nevertheless, this is not strictly needed for the specific
application on meteorological nowcasting.
The algorithm generalizing the Horn-Schunck

approach includes many parameters which could be
properly chosen in order to fit the specific application.
Four parameters give to the user the possibility to
weight properly some constraints which facilitate the
convergence of the algorithm toward a solution with
smoothness properties defined a-priori. In this work,

such parameters were fine tuned by a trial and error
approach. A slow reduction of the parameters for each
iteration of the algorithm provided reliable results.
A representative example of application to rainy

clouds tracking is shown in Figures 4 to 6. A stratiform
rainfall event with main stream from South to North
was investigated. When a long portion (8 h long) of the
event was investigated using images of cumulated rain-
fall rate, the main direction of the estimated flow agreed
with the indications of the MetOffice pressure map.
Nevertheless, it was possible to identify a local flow in
the opposite direction when a shorter time range (10
min long) was considered. Moreover, dynamics were
more irregular in space when the investigated time
range was shorter. These experimental observations are
in line with the nonlinear and chaotic dynamics charac-
terizing the meteorological variables [20]. Indeed, the
equations governing the temporal evolution of weather
are a series of partial differential equations with chaotic
solutions, showing self-similar (fractal) geometry [27].
This implies that similar variations of flow can be
observed at different spatial scales (becoming more and
more complicated and discontinuous as the spatial scale
is reduced). Moreover, similar past events could evolve
into very different conditions, as already noted in [28].
Indeed, small differences in the conditions measured in
a point can be amplified by the nonlinear dynamics. The
Lyapunov exponent is a measure of the rate of exponen-
tial divergence of trajectories starting from neighbouring
points [29]. When forecasting weather dynamics, predic-
tion horizon is usually very short, especially in unstable
conditions, and related to the inverse of the Lyapunov
exponent [30] characterizing the chaotic system.
As a consequence of the chaotic and fractal behaviour

of the weather system, even when it appears to be stable
and predictable on a large spatial scale, in some
restricted regions the meteorological conditions can
suddenly change [31]. The local, short time range varia-
tions of estimated flow shown in Figure 6A constitute
an example of motion which is mainly in opposite direc-
tion with respect to the average stream, dictated by the
pressure distribution (Figure 5A) and in agreement with
the local flow estimated on a long time range (Figure
6C). The goal of local weather nowcast is to provide
precise predictions of the intensity, location, onset, and
extinction of significant events. Both time and space
scales must be sampled at high resolution. The proposed
algorithm, together with a technique to extend the esti-
mated flow, could be used to perform local nowcast,
even though the time range of the reliable prediction
could be limited by the short spatial range of investiga-
tion, in particular in case of convective precipitations.
Other methods to perform local predictions are based
on the analysis of a few time-series representing
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meteorological variables measured in the location in
which the forecast is of interest. The prediction is not
based on a simple linear extension of the present condi-
tions, but on a nonlinear algorithm comparing the
actual state with similar ones found in the past [29,31].
However, local variables usually contain poor informa-
tion about the stability or instability of weather condi-
tions, which is important to perform a reliable forecast.
Indeed, predicting the onset or the duration of rainy
events from local measurements is very difficult, as it
requires identifying the transition between two comple-
tely different weather states. The task could benefit
from some specific indication extracted from a short
range investigation indicating if the weather is stable or
not. The algorithm presented here could provide infor-
mation about the presence of rainy clouds in the vicinity
of the local position of interest, their movements (possi-
bly related to the wind at high altitude), which could be

turbulent or stationary, and cloud formation and grow-
ing. All this information could be converted into a set
of scalar time-series feeding a predictor model, together
with the other time series already used, in order to
improve the reliability of the forecast.
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