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Abstract

Scans acquired by 3D sensors are typically represented in a local coordinate system. When multiple scans, taken
from different locations, represent the same scene these must be registered to a common reference frame. We
propose a fast and robust registration approach to automatically align two scans by finding two sets of N-points,
that are approximately congruent under rigid transformation and leading to a good estimate of the transformation
between their corresponding point clouds. Given two scans, our algorithm randomly searches for the best sets of
congruent groups of points using a RANSAC-based approach. To successfully and reliably align two scans when
there is only a small overlap, we improve the basic RANSAC random selection step by employing a weight
function that approximates the probability of each pair of points in one scan to match one pair in the other. The
search time to find pairs of congruent sets of N-points is greatly reduced by employing a fast search codebook
based on both binary and multi-dimensional lookup tables. Moreover, we introduce a novel indicator of the
overlapping region quality which is used to verify the estimated rigid transformation and to improve the
alignment robustness. Our framework is general enough to incorporate and efficiently combine different point
descriptors derived from geometric and texture-based feature points or scene geometrical characteristics. We also
present a method to improve the matching effectiveness of texture feature descriptors by extracting them from an
atlas of rectified images recovered from the scan reflectance image. Our algorithm is robust with respect to
different sampling densities and also resilient to noise and outliers. We demonstrate its robustness and efficiency
on several challenging scan datasets with varying degree of noise, outliers, extent of overlap, acquired from indoor
and outdoor scenarios.

1 Introduction
In the past decade, there was a growing interest in 3-D
reconstruction and realistic 3-D modelling of large-scale
scenes such as urban structures. Applications of such
models include virtual reality, cultural heritage, urban
planning, and architecture. Commonly, these applica-
tions require a combination of laser sensing technology
with traditional digital photography.
Applications that employ only digital images extract 3-

D information using either a single moving camera or a
multi camera system, such as a stereo rig. In both cases,
the system extracts and matches distinctive features
(typically points) among the available images and esti-
mates both their 3-D positions and the camera para-
meters [1,2]. It is then possible to exploit the result of
this first step to perform a dense point reconstruction

by estimating a depth map for each image [3,4]. On one
hand, these approaches are useful for those applications
requiring a robust and low-cost acquisition system. On
the other hand, laser sensing technology yields much
higher precision and resolution. Thus, the laser sensing
technology represents an effective and powerful tool for
achieving accurate geometric representations of complex
surfaces of real scenes.
In recent years, 3-D laser scanners able to provide

satisfying measurement accuracy for different applica-
tions become commercially available. These sensors are
used to acquire a complex real scene through multiple
scans taken from different positions to fully describe the
scene while reducing the number of occluded surfaces.
For this reason, it is important to employ a systematic
and automatic way to align, or register, multiple 3-D
scans to represent and visualize them in a common
coordinate system. Geometrically, given a point cloudQ
considered as reference and a second point cloud P, the
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problem of registration consists in finding the rigid
transformation T , which optimally aligns P to Q in its
coordinate system.

1.1 Related works
The iterative closest point (ICP) algorithm [5] is the de
facto standard to compute the rigid transformation T
between two point clouds. It is basically an optimization
method that starts from an initial estimate of T and
iteratively refines it by generating pairs of corresponding
points on the scans and minimizing an error metric, e.
g., the sum of squared distances between corresponding
points. Although several variants of ICP were presented
[6] to improve its efficiency, the main problem is to
achieve a good initial estimate of T since the ICP opti-
mization can easily stop in local minima.
The problem of automatically registering two scans

was achieved with a wide variety of methods [7]. Most
of these extract sets of feature points, which are auto-
matically matched to recover a good approximation of
T . Aiger et al. [8] proposed to automatically match
congruent sets of four roughly coplanar points to solve
the largest common point (LCP) set problem. Congru-
ent sets of points have similar shapes defined in terms
of point distances and normal deviations. The best
match between congruent sets is randomly found by
following the RANdom SAmple Consensus (RANSAC)
approach [9]. Other approaches use shape descriptors
to identify sets of candidate feature points to be
matched. Gendalf et al. [10] use a 3-D integral invar-
iant shape descriptor to detect feature points, which
are matched in sets of three items using a branch-and-
bound algorithm. Other interesting shape descriptors
invariant with respect to rigid transformation are used
to identify feature points, such as scale invariant fea-
ture transforms (SIFT)s [11,12] or Harris corners [12]
extracted from reflectance images, 3-D SIFT-like
descriptors extracted from triangle meshes approximat-
ing the point clouds [13], wavelet features [14], inten-
sity-based range features [15], spin images [16,17], and
extended Gaussian images [18].
Methods to automatically recover the rigid transfor-

mations from matching sets of higher-level features
were also presented. The advantage of these approaches
is the reduction of the search space identified by two
small sets of features, which results in efficient match-
ing, but that should account for extra computation time
due to scene segmentation or feature detection. Among
the feature types presented the most interesting are:
lines [19,20], planes [19-22], circles [23], spheres [24]
and other fitted geometric primitives [25].
Other studies proposed to formulate the registration

as an energy optimization problem that does not need
any explicit set of point correspondences. Silva et al.

[26] proposed to use an enhanced genetic algorithm to
solve the range image registration problem using a
robust surface interpenetration measure. Boughorbel et
al. [27] defined an energy minimization function based
on Gaussian fields to solve the 3-D automatic
registration.
The last relevant class of registration approaches is

based on modelling the alignment of two point sets as
an assignment problem, where the probability of a point
in one set to has a correspondence in the other set is
estimated and maximized with expectation maximiza-
tion (EM) algorithms. Popular methods following this
approach are known as SoftAssign [28] and EM-ICP
[29], which are both based on entropy maximization
principles, but imposing different constraints for pro-
blem optimization, i.e., a two-way constraint embedded
into the deterministic annealing scheme for SoftAssign
and a one-way constraint for the EM-ICP. A detailed
review and analysis of these methods was provided in
[30], where Liu proposed a method to overcome SoftAs-
sign and EM-ICP limitations based on modelling the
registration problem as Markov chain of thermodynamic
systems and on an entropy model derived from the Lya-
punov function. Furthermore, fast implementations on
GPU of the SoftAssign and EM-ICP algorithms were
recently presented by Tamaki et al. [31].

1.2 Our algorithm
Our method utilizes 3-D points (possibly associated with
point descriptors, as it is described in Section 6) to
achieve automated registration. It automatically aligns
two scans by finding two N-points approximate congru-
ent sets leading to a good estimate of the transformation
T between the corresponding point clouds. T is then
further refined via the ICP algorithm.
Given two scans P and Q, our algorithm randomly

searches for sets of congruent groups of points in P and
Q. Corresponding groups are then used to estimate a
rigid transformation T to align P to Q. The optimal
transformation is recovered following a RANSAC opti-
mization [9], which iterates the following steps until a
good solution to the problem is found or the number of
iterations exceeds a predefined threshold Imax:

1) Random selection of a N-points base Bp in P.
2) Approximate congruent group selection of N-
points bases inQ. The definition of approximate point
set congruence is described in Section 2. This selection
is achieved by using a general codebook to efficiently
find approximate congruent points bases under rigid
transform by exploiting combinations of feature point
descriptors when available (see Section 3).
3) Estimation of the transformation T between P
andQ given a randomly selected N-points base Bp in
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P and each extracted approximate congruent N-
points base Bp inQ.
4) Verification of the transformation. T is verified
using all possibly corresponding points after the
alignment. The verification employs our proposed
quality-based largest common pointset (QLCP) mea-
sure described in Section 4.4.

The best transformation is selected as the one yielding
the best QLCP measure and then further refined with the
ICP algorithm. As in [20], we present a variant of this
RANSAC-based algorithm, which improves the random
selection step by employing a weight function approximat-
ing the probability of each pair of features in P to be
matched with one inQ. We call this variant as probability-
based RANSAC approach and describe it in Section 4.1.
Our algorithm is robust with respect to different sam-

pling densities and the typical noise introduced by laser
scanner acquisition. This is achieved by employing suita-
ble point sampling approaches described in Section 5,
and by using feature points and their descriptors to effec-
tively constrain rigid transformations on noisy point sets.
Through our proposed matching framework presented

in Sections 2 and 3, we efficiently match points and
point pairs in a multi-dimensional space defined by a
set of available geometric and texture feature descriptors
and geometrical constrains of a set of sampled points.
The matching is performed by combining suitable
metric functions to compare the provided descriptors.
Any type of features carrying suitable distance func-

tions to be compared can be easily integrated into our
matching framework. The major benefit of this approach
is to make possible efficient customizations for specific
applications aiming at relevantly improving the registra-
tion performance in terms of robustness, accuracy, and
execution time.
We also present a method to improve the matching

effectiveness of texture features extracted from typical
spherical reflectance images acquired by laser scanners.
It consists in extracting features from atlases of rectified
perspective images constructed by sampling the reflec-
tance image spherical field of view at suitable angles.
This approach mitigates the effect of spherical distortion
on the resulting feature signatures so that they can be
matched with higher reliability.
The robustness, accuracy and efficiency of our method

were overall evaluated on several challenging scan data-
sets acquired from indoor and outdoor scenes as
described in Section 7.

2 Approximate point set congruence
Given two point sets P and Q, we assume
Bp = {pi|pi ∈ P}Ni=1 and Bq = {qi|qi ∈ Q}Ni=1 to be the two

corresponding N-points bases from P and Q, respec-
tively. This means that for each point pi ∈ Bp there
exists one and only one corresponding point qi ∈ Bq.
We consider the two sets to be congruent, if they are
approximatively similar in shape and have a similar dis-
tribution in 3-D space. We define both a similarity score
function and a binary similarity score function in order
to measure the congruency of two matching N-points
bases as follows.
Given a point pi ∈ Bp, we characterize it using a set of

L local descriptors, i.e., {fl(pi)}Ll=1. Similarly, for each pair
of points (pi, pj) in Bp, we define a set of K measure-
ments {mk(pi,pj)}Kk=1. The L descriptors and the K mea-
surements characterize a N-points base in terms of
point features and point pairs relations (see Figure 1).
These values are then used to define the congruency of
the two different N-points bases Bp and Bq.
For each type of local descriptor or points pair mea-

surement, we define a similarity difference function d(·,
·) that is invariant under rigid transformation of each
single N-points base. In particular, given two descriptors
or measurements vp and vq, then d(vp, vq) is represented
by a real positive value that states how different the two
descriptors or measurements are.
We also define a set of boolean similarity measures

s(vp, vq) = b(d(vp, vq), t), (1)

where t is a threshold value associated to the particu-
lar feature descriptor or measurement and b(·, ·) is a
boolean function defined as:

b(x, t) =
{
1 x ≤ t,
0 x > t.

(2)

The set of functions {d(·, ·)} are then composed
together to define a similarity score sc(Bp,Bq)between
two congruent N-points bases as follows:

sc(Bp,Bq) = sfc(Bp,Bq) + smc (Bp,Bq), (3)

where sfc is the term related to the local descriptors
and smc is the term related to the similarity measures of
points pairs. These two terms are defined as:

sfc(Bp,Bq) =
1
Nf

N∑
i=1

L∑
l=1

wf
l ·

⎛
⎝1 −

min
(
d(fl(pi), fl(qi)), t

f
l

)
tfl

⎞
⎠ , (4)

smc (Bp,Bq) =
1
Nm

∑
i, j = 1 · · ·N

i �= j

K∑
k=1

wm
k ·

(
1 − min(d(mk(pi,pj),mk(qi,qj)), t

m
k )

tmk

)
,

(5)

where {wf
l } and {wm

k } are user-defined weights,

Nm = 2N(N − 1)
∑K

k=1 w
m
k and
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Nm = 2N(N − 1)
∑K

k=1 w
m
k are normalization factors.

Notice that sc is defined such that its values fall in the
range [0, 1], where a higher value represents a higher
similarity between the two N-points bases.
Similarly, we define the binary similarity score

sc(Bp,Bq) between two N-points bases as:

s(Bp,Bq) =

(
N∏
i=1

L∏
l=1

sl(fl(pi), fl(qi))

)
·

⎛
⎜⎜⎜⎜⎜⎝

∏
i, j = 1 · · ·N

i �= j

K∏
k=1

sk(mk(pi,pj),mk(qi,qj))

⎞
⎟⎟⎟⎟⎟⎠ . (6)

where sc(Bp,Bq) represents the product of all boolean
similarities associated to the matching points of the two
sets. We consider Bp and Bq to be approximate congru-
ent only if s(Bp,Bq) = 1.
In order to evaluate the N-points base congruence, we

need to define which local point descriptors {fl(·)} and
points pair measurements functions {mk(·, ·)} to employ,
their corresponding similarity differences {d(·, ·)} and
scalar thresholds {t}. We consider as first points pair
measurement the Euclidean distance m1(pi, pj) = ||pi -
pj|| and define its similarity difference as:

d1(m1(pi,pj),m1(qi,qj)) = 1 − min(m1(pi,pj),m1(qi,qj))

max(m1(pi,pj),m1(qi,qj))
. (7)

If the surface normal at each point is available, we
define the second points pair measurement m2(pi, pj) =
nangle(n(pi), n(pj)), where n(p) denotes the surface nor-
mal of the point p and nangle(·, ·) denotes the minimal
angle between the two surface normals. Its similarity dif-
ference is defined as:

d2(m2(pi,pj),m2(qi,qj)) = |m2(pi,pj) − m2(qi,qj)|.(8)
If the reflectance or colour images associated with the

range scans are available we can extract the correspond-
ing feature points (e.g., SIFT or SURF feature points
[32]) associated with each 3-D point of Bp and Bq. The

corresponding local feature descriptors can be used to
define a suitable similarity difference.
In some application, it is possible to exploit some

information about the environment to define additional
descriptors. This is the case of scans representing struc-
tural scenes with one common and main normal direc-
tion (ground floor scene) or environment with three
common orthogonal normal directions (orthogonal
scene). For instance, in an indoor/outdoor scene with a
common and main ground floor plane, all points lying
on the ground plane roughly have the same normal
directions. The type of a structural scene can be auto-
matically detected and classified by clustering the sur-
face normals.
In the case of ground floor scene, we initially transform

all points in P and Q to align their corresponding
ground floor normals to the z-axis. Then for each point
p = (px, py, pz)⊤, an additional local descriptor can be
defined as fz(p) = nangle(p, nz), where nz denotes the
direction of z-axis, i.e., nz = (0, 0, 1)⊤. fz(p) represents
the inclination of the surface passing through p w.r.t.
the ground. Its similarity difference is defined as:

dfz(fz(pi), fz(qi)) = |fz(pi) − fz(qi)|. (9)

In addition, we can introduce another points pair
measurement mz(pi,pj) = pz

i − pz
j , i.e., the height differ-

ence between the two points. Its corresponding similar-
ity difference can be defined as:

dmz(mz(pi,pj),mz(qi,qj)) = |mz(pi,pj) − mz(qi,qj)|.(10)
If both P and Q are acquired from an orthogonal

scene, P andQ are first transformed to align their cor-
responding three orthogonal point normals to the x-, y-
and z-axis, respectively. Then, we exploit two more local
descriptors defined as fx(p) = nangle(p, nx) and fy(p) =
nangle(p, ny), where nx = (1, 0, 0)⊤ and ny = (0, 1, 0)⊤.

1

i

j

N 1

N

i

j
1

( , )
K

k i j k
m p p

1
( ) L

l i l
f p

1
( , )

K

k i j k
m q q

1
( ) L

l i l
f q2 2

Figure 1 An example of two congruent N-points bases (left from P and right fromQ). For each point, we evaluate the set of L local
features and for each points pair, we evaluate the set of K measurements. Features and measurements between the two sets are compared
using the corresponding similarity differences.
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These descriptors represent the inclinations of the sur-
face passing through p w.r.t. the additional main axes nx
and ny, respectively. In addition, we introduce two other
points pair measurements mx(pi,pj) = px

i − px
j , and

my(pi,pj) = py
i − py

j . The corresponding similarity differ-

ence of fx, fy, mx and my are defined in the same way as
in Equations (9) and (10), respectively.

3 Fast search codebook
Using the criteria defined in the previous section, we are
able to evaluate the congruency of two given N-points
bases. To perform the registration, we need to couple a N-
points base Bp ∈ P with the N-points base Bq ∈ Q having
a high-similarity score. This task requires a search over all
possibly congruent N-points bases inQ. Using exhaustive
search approaches is impractical due to the large number
of candidates inQ. To solve this problem, we build a code-
book from P andQ composed of two different data struc-
tures used to perform a fast search of possibly
corresponding points (as described in Section 3.1) and
point pairs (as described in Section 3.2). In particular, we
employ a boolean table Sf used to detect candidate point
matches in Q of a selected point pi ∈ P and a multi-
dimensional table Sm used to detect candidate point pair
matches of a selected pair of points (pi,pj) ∈ P. If the
number of all detected congruent N-points bases is still
large, we further need to compute a similarity score
between Bp and each detected base inQ in order to sort
them and then consider only the best ones.
The used codebook is, thus, composed of a boolean m

× n table and a floating-point n × n × K tablea, where
m = |P |, n = |Q| and K denote the number of used
points pair measurements. The required memory for Sf
increases as O(mn) and for Sm increases as O(n2)
(assuming K ≪ n).
Our algorithm detects candidate congruent N-points

bases incrementally. Given Bp ∈ P, we start by selecting
two points in Bp and collect all congruent 2-points
bases in Bq. We then iteratively add points to the cur-
rent selection and grow the set of candidate bases until
we reach a set of N-points bases.

3.1 Point features lookup table
We build Sf as a m × n boolean similarity measure table
according to the used local descriptors, where m = |P |
and n = |Q|, i.e., the sizes of P andQ, respectively. Each
element in Sf is defined as:

Sf (pi,qj) =
L∏
l=1

sl(fl(pi), fl(qj)), (11)

where pi ∈ P and qj ∈ Q, i = 1 . . .m, and j = 1...n.
Thus, given a point pi ∈ P, we can recover all possibly

matching points inQ considering the ith row of Sf. The
set of candidate matches inQ for pi is represented by:

Mf (pi) = {qj|Sf (pi,qj) = 1}qj∈Q. (12)

Notice that, to build Sf, we only make use of the local
feature descriptors. Its size depends on the number of
points of both point clouds. In Section 5, we describe
several techniques to sample the input acquisitions in
order to reduce their sizes.

3.2 Point pairs lookup table
Given a point pair (pi,pj) ∈ P, we need to efficiently
find candidate matching pairs in Q. Using a blind
exhaustive search, this would require a comparison with
n(n−1)

2
point pairs. To reduce the searching time, we

build a lookup table Sm for Q by uniformly quantising
the K-dimensional space formed by the used K points
pair measurements {mk(·, ·)}, i.e., the Euclidean distance,
the surface normal minimal angle, the gap difference(s)
in the x-, y- or z-axis for structural scenes, etc. The
quantisation is achieved by uniformly dividing their cor-
responding value ranges into B1, B2, ..., BK bins, respec-
tively. The range of the Euclidean distance is
[dqmin, d

q
max], where dqmin and dqmax denote the minimal

and maximal distances of point pairs inQ. Surface nor-
mal minimal angle falls in the range [0, π]. The gap dif-
ferences fall in the ranges [-bx, bx], [-by, by] and [-bz, bz],
respectively, where bx, by and bz represent the lengths in
x, y and z-axis of the minimal bounding box covering all
points in Q, respectively. Each K-dimensional bin con-
tains all points pairs (qi,qj) ∈ P whose measurements
{mk(qi, qj)} fall within the bin ranges.
In order to detect the matching point pairs of (pi, pj),

we initially evaluate the set of measurements {mk(pi,
pj)}. We then consider the thresholds {tmk } associated
with each measurement function in order to estimate a
set of ranges {(mk(pi, pj) − tmk , mk(pi,pj) + tmk )}. We
select all K-dimensional bins of Sm that are covered or
partially covered by the estimated set of ranges and
recover the associated points pairs of Q. In particular
points pairs that belong to partially covered bins are
checked by verifying whether their measurements fall
within the estimated set of ranges. Each extracted candi-
date matching pair (qi, qj) is further verified by exploit-
ing the point feature table Sf to keep only pairs whose
points features correspond. In particular, we test that:

Sf (pi,qi) ∧ Sf (pj,qj) = 1. (13)

Finally, using Equation 3, we evaluate the similarity
score of each remaining candidate pair with (pi, pj) and
keep only the best Kp pairs. In case of very distinctive
points pi and pj, there are few correspondences in Q
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with similar local features. For such points pairs, it is
more convenient to select, at first, the set of matching
points using Sf and then verify each points pair using
the set of measurements {mk(pi, pj)}. This initial test is
conducted by evaluating the value of
|Mf (pi)| × |Mf (pj)|, i.e., the largest number of candi-
date point pair matches w.r.t. pi and pj due to their
local features. When this value is lower than a thresh-
old, we employ this latter selection method. Our code-
book-based search method allows one to efficiently
range-search candidate matching point pairs using
adaptive ranges for each query. If we regard the K
point pair difference measurements as a K-dimensional
vector, other fast search methods can be used for
searching, e.g., the approximate nearest neighbor based
on kd-tree [33]. However, these methods cannot han-
dle the threshold constraints in each dimension, which
may produce more candidates to test while discarding
valid ones.

3.3 Iterative search of matching N-points bases
Finding the best corresponding point base set of a N-
points base Bp ∈ P requires to test O(nN) N-points
bases inQ with a blind exhaustive search, which is often
impractical due to the size of the search space. To effi-
ciently search approximate congruent N-points bases in
Q given a base Bp ∈ P, we employ an iterative approach
that makes use of the codebook defined in the previous
sections. We start by selecting a query set Bi composed
by a points pair of Bp and search candidate congruent
2-points bases using Sf and Sm. We then iteratively add
points of Bp to Bi and build the corresponding candidate
congruent bases by grouping point pairs or adding

single points to the previous candidate bases until Bi

corresponds to Bp and all candidate bases are repre-
sented by N-points bases. Algorithm 1 describes the
procedure in detail, which is also illustrated in Figure 2.
In Algorithm 1, we describe two approaches to gradually
expand the size of a congruent base in Q. The first
approach is to add an approximate congruent point pair
having a common point with a previous base and satis-
fying the used congruent constraint. The second
approach is to add a single point from Mf (pi+1) accord-
ing with the used congruent constraint. Since it is diffi-
cult to select the best approach, we use a simple
strategy based on the product of set sizes
|Mf (pi)| × |Mf (pi+1)|. In particular, if this size product
is large, we use the former method, otherwise the latter
one.

4 RANSAC pose optimization
To find the best transformation T that aligns the two
points sets P and Q, we employ a variant of the RAN-
SAC algorithm [9], which is a widely used general tech-
nique for robust fitting of models to data corrupted
with noise and outliers. The RANSAC-based alignment
procedure is straightforward: randomly pick a base Bp of
N non-collinear points from P; detect the corresponding

best congruent bases {Bk
q}Kg

k=1 and for each one compute

the candidate transformation that aligns points in Bp

with points in Bk
q; and finally verify the recovered trans-

formations and detect the best one using a best fit cri-
teria. To achieve a certain probability of success, this
procedure is repeated for different choices of bases from
P. Over all such trials in all iterations, we select the
best transformation T with the best fit measure. Our

… …
…

…

p

1

gKk
q k

1p

2p

1p 1p

2p 2p

3p 3p

4p

1q
2q

1q 1q
2q 2q

3q3q 4q

Figure 2 The procedure of N-points approximate congruent set searching.
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adopted RANSAC algorithm terminates when one of the
following two cases is reached:

1. The number of iterations reaches a predefined
maximal iteration number Imax;
2. The best transformation is not updated after Inou
continuous iterations.

Our method makes use of the codebook-based search
scheme defined in Section 3, which is constructed
before the optimization. The following sections describe
in details each single step of the RANSAC iteration.

4.1 Random selection
Assumed k points in P having corresponding points in
Q, the probability of successfully selecting N-points
from P having correspondences in Q is p(N) ≈ (k/m)N,
where m = |P |. To successfully recover the transforma-
tion, in general, we employ a base size N = 3, 4 or 5
points because the probability of success greatly
decreases when the base size N increases. Moreover, to
make the estimated transformation more robust, we
select the N-points base Bp from P as decentralized as
possible in 3-D space.
Notice that when the overlap between two scans is

small only a very small subset of points in P have corre-
sponding points in Q. In this case, the probability of
selecting a N-points base in P with a uniform distribu-
tion having a corresponding N-points base in Q is very
low. To improve the selection probability, we propose a
probability-based RANSAC approach described as fol-
lows. We initially build a m × m pairwise matching
probability table Sp for all point pairs in P. Given a
point pair (pi, pj) in P, its matching probability is
defined by

Sp(pi,pj) =
1
C
exp

(
−ϕ1

|Mf (pi)| · |Mf (pj)|
n2

− ϕ2
||pi − pj||

dqmax
− ϕ3sc((pi,pj), (q̃i, q̃))

)
, (14)

where C is a normalization factor, and {ϕi}3i=1 are three
positive constants. (q̃i, q̃j) is the best matched point pair
of (pi, pj) with the best similarity score in Equation 3.
Notice that if no approximate congruent match (q̃i, q̃j)
is found, we set the probability value to zero, i.e., Sp(pi,
pj) = 0. This probability is high if:

1. Both points pi and pj potentially have several
matches in Q based on their considered local
descriptors (see Equation 12),
2. They are well spaced and
3. There exists a very similar 2-points base
(pi,pj) ∈ Q according to the similarity measure sc(·,
·) defined in Equation 3.

The selection of a N-points base Bp = {psk}Nk=1 from P
proceeds iteratively by adding points to a selected point
set Bc

p. This is done as follows:

1. We randomly select the first two points (ps1 ,ps2 )
based on the probability values {Sp(pi, pj)}i>j,1 ≤ i, j≤m

of the upper triangular part of the symmetric pair-
wise matching probability table Sp. These points are
added to the initially empty Bc

p.
2. The next point psk+1 , k ≥ 2 is randomly selected
based on the joint probability values{∏

psk
∈Bc

p
p(pi,psk)

}
pi∈P ,pi �∈Bc

p
.

In this way, there is a high probability to select a N-
points base Bp with corresponding points inQ.
At the end of the RANSAC iteration, if we success-

fully recover a candidate transformation T using the
selected N-points base, the probability table Sp is
updated. In particular, we update the corresponding ele-
ments of points psk ∈ Bp by suitably increasing the prob-
ability values: for each point pi ∈ P, the new probability
value S′

p(pi,psk) (and its symmetric value S′
p(psk , pi)) is

evaluated as

S′
p(pi,psk) = Sp(pi,psk) · exp(ν · fQLCP(T , δ)), (15)

where fQLCP(T , δ) is the transformation fitting criter-
ion described in Section 4.4 and ν is a positive constant.
The update of probabilities increases the chance to
select good samples in P, which is very useful for align-
ing two scans with a small overlap. To avoid unbalanced
values in Sp, we decrease the probabilities of some ele-
ments if these have been updated too frequently during
the RANSAC iterations. In particular, we decrease the
probability value as follows:

S′
p(pi,psk) = S′

p(psk ,pi), = ψ · Sp(pi,psk), (16)

where ψ Î (0, 1) is a positive constant.

4.2 Approximate congruent group selection
After selecting an N-points base Bp from P, we need to
detect a set of approximate congruent N-points bases.
This is done by exploiting the fast codebook structures
Sf and Sm defined in Section 3. In particular following
Algorithm 1, we are able to iteratively recover the set of
congruent N-points bases as we select points of Bp from
P. We keep only the first Kg candidates according to

Equation 3. These Kg N-points bases {Bk
q}Kg

k=1 are used in

the following step to estimate a set of point clouds
transformations.
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4.3 Transformation estimation
Given two point sets P andQ with overlapping regions
in arbitrary initial positions, we recover the best trans-
formation from a prescribed family of transformations,
typically rigid transformations, that best aligns the over-
lapping regions of P andQ. In case of rigid transforma-
tion, we need a base size of at least three points to
uniquely determine the aligning transformation. This
means that our algorithm requires at least a pair of
matching 3-points bases from P andQ, respectively. In
particular for any given N-points bases pairs Bp and Bq,
we recover the corresponding transformation T using
the closed-form solution [34].

4.4 Transformation verification
To determine the best transformation, Aiger et al. [8]
employ a best fit criteria called as the largest common
pointset (LCP) measure fLCP(T , δ), which refers to the
transformation bringing the maximum number of points
from P to within some δ-distance of points inQ. Unfor-
tunately, this criteria completely depends on the choice
of the distance threshold δ. On one hand, if this thresh-
old is too large wrong transformations may result in
large LCP measure values. On the other hand, if δ is too
small in some cases no transformation can be found.

The main problem is that the LCP measure only consid-
ers the quantity of matched points in overlapping
regions, but not their matching quality. To solve this
problem to some extent, we propose to integrate a sui-
table matching quality measure into the LCP measure.
Suppose that we have two transformations Ta and Tb
computed from two different selected N-points congru-
ent group pairs and resulting in the same LCP measure
under the same distance threshold δ. Assume that the
histograms of the point distances of the two transforma-
tions correspond to the ones shown in Figure 3a, b,
respectively. Intuitively, Tb is a better solution than Ta
because most of the corresponding point pairs have
shorter distances in Figure 3b than in Figure 3a, i.e., the
mean distance of the corresponding point pairs in Fig-
ure 3b is smaller than that in Figure 3a. We expect that
better point matches (with shorter distances) result in a
better transformation. We, thus, define a suitable match-
ing score based on a normalized accumulated histogram
Hn(T , δ) (see Figure 3c, d) corresponding to some given
transformation T as follows:

ms(T , δ) = exp

⎛
⎝−λ

⎛
⎝1 −

1∫
0

Hn(T , δ)

⎞
⎠

⎞
⎠ , (17)
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Figure 3 Histograms of points under two found transformations between two point sets resulting in the same LCP measure under
the same distance threshold δ and their normalized accumulated histograms.
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where l is a positive parameter and
∫ 1
0 Hn(T , δ)

denotes the integral of Hn(T , δ), i.e., the area below the
cumulative curve in Hn(T , δ). We use a quality-based
LCP (QLCP) measure defined by
fQLCP(T , δ) = ms(T , δ) · fLCP(T , δ) as our best fit criteria.
By weighting fLCP(T , δ) with the quality estimate
ms(T , δ) the QLCP measure is made less sensitive to the
choice of δ than the LCP measure.
After the transformation estimation step we evaluate

each recovered transformation Tk between Bp and Bk
q w.

r.t. the mean alignment error. In particular, we test

whether the error
1
N

∑
pi∈Bp,qk

l ∈Bk
q

||Tkpi − qk
i ||2 is less

than some predefined threshold, where Tkpi denotes the
transformed point of pi via Tk. We further verify each
remaining transformation by detecting how many points
in P have correspondences inQ under Tk and then mea-
suring the matching score as described in Equation 17.
We say that one point p ∈ P have a corresponding
point inQ under Tk, if there exists some point inQ clo-
ser within δ-distance to the transformed point Tkp, i.e.,
∃q∈Q||q − Tkp|| ≤ δ. For efficiency, we use the approxi-
mate nearest neighbours [33] for neighbourhood query-
ing in ℝ3. We first select a fixed number of points
{pi} ∈ P and apply the transformation Tk. Then, for each
transformed point Tkpi we query the nearest neighbour
inQ. If enough points of {pi} are matched, we perform a
similar tests for the remaining points in P and assign to
Tk a score based on our used QLCP measure.
Finally, we update the current best transformation

found with the best QLCP measure and start the next
RANSAC iteration.

5 Point sampling approaches
Given two large point sets P andQ, matching approxi-
matively congruent sets of points over the entire data set
is not feasible. Thus, we need efficient point sampling
strategies to quickly search corresponding sets and to
effectively estimate and verify their transformation on a
limited number of meaningful candidates points. The
reliability of the proposed registration approach depends,
to some extent, on the used sampling strategy. If we sam-
ple too many points from scarcely meaningful regions
the registration might converge slowly, find the wrong
transformation (such as solutions showing sliding effects
produced by samples poorly constraining the transforma-
tion), or even diverge, especially in the presence of noise
and outliers. Several point sampling techniques for point
cloud alignment were recently proposed [6,35-37]. In [6]
the random, uniform (over the surface area of a model)
and normal-space sampling are considered to evaluate
the convergence of the ICP algorithm. The normal-space
sampling algorithm tries to uniformly spread the normals

of the selected points on the sphere of directions. The
aim is to consider points that sufficiently constrain the
estimated rigid transformation and improve the align-
ment quality by reducing surface sliding effects. Gelfand
et al. [35] proposed a variant of this algorithm to make
the transformation estimation geometrically stable by
selecting points that reduce both translational and rota-
tional uncertainties in the ICP algorithm. This technique
samples points in order to equally constrain all eigenvec-
tors of the covariance matrix estimated from the points
and the normals of the overlapping region of two point
clouds. A similar approach was used in [36] to conceive a
probability function to guide the selection of stable sam-
ple points, which are also constrained by specific features.
Torsello et al. [37] proposed a sampling technique to
select feature points with high-local distinctiveness,
which is inversely proportional to the average local radius
of curvature and related to the area formed by similar
points in the neighbourhood of each point. Nehab and
Shilane [38] discussed the limitation of the area-based
uniform sampling, where the probability of a surface
point being sampled is equal for all surface points. This
type of sampling might produce points very closed to
each other and miss important surface features, which
could successfully constrain the transformation. To over-
come these drawbacks they proposed a stratified point
sampling strategy ensuring an even distribution of the
sample points on all surface, which implies a higher
probability to catch important surface regions. This algo-
rithm uses the voxelization of the model to generate ran-
dom samples with controlled intra-distances. Other
sampling strategies providing with uniform distribution
of sample points on a surface are based on the farthest
point [39] and Poisson disk sampling [40], which require
the computation of geodesic distances.
In this section, we investigate four sampling

approaches: random, uniform, probabilistic and com-
bined sampling, which are described in details in the
following.

5.1 Random sampling
Random sampling is the simplest and widely used sam-
pling technique. In random sampling, each item or ele-
ment of the population has an equal chance of being
selected at each draw. A sample is random if the method
for obtaining the sample meets the criterion of random-
ness (each element having an equal chance at each draw).
The actual composition of the sample itself does not
determine whether or not it was a random sample.

5.2 Uniform sampling
To achieve a high probability of success for registering two
overlapping point sets, we expect that the sampled point

Yao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:72
http://asp.eurasipjournals.com/content/2011/1/72

Page 9 of 22



sets have similar point densities. If the acquired surfaces
present similar point densities, the above mentioned ran-
dom sampling deserves to be an acceptable choice, which
will also result in similar point densities in the sampled
overlapping parts. However, this assumption does not
hold in general. Point density depends on the distances
and on the incident angles of the scanned surfaces with
respect to the scanner sensor position and orientation,
respectively. Normally, short distances and small incident
angles lead to surfaces with high-point densities and
accuracies, which we consider as high-resolution regions.
Random sampling does not guarantee an equal spread of
the generated points neither on the surface nor in the
volume of the scanned model, and can sample points very
close to each other. Thus, it is more likely that it misses
important surface features than an evenly distributed sam-
pling [38]. This effect is particularly evident in case of
scanned data with non-uniform point densities.
Many approaches to perform a sampling of uniformly

distributed points on the model surface can be employed
[38-40]. We propose a simple and efficient variant of the
method presented in [38], which is based on cubic voxeli-
zation of point clouds and that provides with samples
evenly displaced on typical scanned surfaces. Given a
point set P, we can assign them into a set of 3-D cubic
voxels of equal sizes, which partition the 3-D space. For
each such voxel, we select the closest point to the voxel
center as the sampled point. To obtain a sampled point
set of a given size Ns, we start by splitting the minimal
bounding box of the point cloud into a small set of 3-D
cubic voxels. We then iteratively split each voxel into
eight small voxels until there are enough sampled points
found. With this strategy, however, we cannot obtain an
accurately fixed-size set of sampled points since most of
the voxels do not contain points. Let Nl be the number of
sampled points at the lth level. The final level L is such
that its number of points NL is not less than Ns and the
number of points at the previous level is NL-1 < Ns. To
obtain a sampling of the expected size Ns, the simple way
is to randomly select Ns points from the NL points of the
L level. To achieve a more uniform distribution, we pro-
pose, instead, to re-split all points in P into a set of cubic

voxels of size
(

8N2
s

NL−1NL

) 1
3 SL−1

, where SL-1 denotes the

voxel size at the (L - 1)th level. In this way, the number
of uniformly sampled points is very close to Ns, but still
not exact. If the number is larger than Ns, we randomly
select Ns points from them. Otherwise, we add some new
points from sampled point set at the Lth level.

5.3 Probabilistic sampling
If the acquired surfaces are very similar in structure, e.g.,
the surfaces of an indoor environment composed of a

main flat wall and several small objects in the front of it,
the above two sampling approaches may not be efficient
for our proposed registration. One reason is that we select
the best transformation based on the degree of overlap in
the point sets, but not based on the whole scene structure.
In the above example, points from the main single wall
weakly constrain translations and generate sliding effects
in the final alignment, as already discussed in [6,35-37].
Another reason is that a selected N-points base from the
wall would have a large number of approximate congruent
bases. This would require expensive searches, tests, esti-
mates and verifications of candidate transformations over
a large set of approximate congruent bases. To avoid these
problems, we expect to consider more points from objects
in front of the wall, which would reduce the computation
and better constrain the rigid transformation. Similarly to
[37], this is achieved by utilizing a probabilistic sampling
technique, which selects points based on their likelihoods
computed from a specific weight function. The weight
function determines how much each point is relevant for
registration and is basically associated with the local geo-
metrical properties of the surface at each point. We
experimented with two different weight functions ωSV and
ωAPD based on surface variation and adjacent point dis-
tance, respectively.
The surface variation of a point p is defined as:

ωSV(p) =
3λ1

λ1 + λ2 + λ3
, (18)

where l1 ≤ l2 ≤ l3 are the eigenvalues corresponding
to the principal components of a set of k points in the
neighbourhood of p. ωSV(p) Î [0, 1] indicates how
much the surface at p locally deviates from the tangent
plane [41]. In practice, ωSV(p) roughly approximates the
mean curvature at p: when its value is close to zero it
indicates that the surface is locally planar, while, when
ωSV(p) is large, p identifies an interesting feature like
corners, bumps, etc.
The adjacent point distance [42] is defined by exploit-

ing the grid structure of range image I related to the
acquired point cloud. Let p be a valid point associated
with a pixel of I , its adjacent point distance Ad(p) is
defined as the median of the distances between p and
its adjacent valid points pk in a 3 × 3 neighbourhood of
p, i.e., Ad(p) = mediank||p − pk||. Then, to reduce the
effect of measurement noise, a median filter of size 5 ×
5 is applied on the resulting adjacent point distance
map Ad to get a filtered map Ãd. The weight function
ωAPD of a point p is then defined as:

ωAPD(p) =

{
Â2

d if Âd(p) ≥ Âd,
Âd(x)

2 otherwise.
(19)
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where Âd denotes the 95th percentile of the adjacent
point distances in an ascending order of all points in

Ãd. The use of Âd effectively suppresses estimation
errors from outliers. ωAPD(p) estimates the local sam-
pling sparsity of the scanned surface at p. High values
of ωAPD characterize those points having a neighbour-
hood sparsely sampled, typical of corner and edge points
and regions scanned with low incident angle, which are
likely located in the overlapping area of the models.

5.4 Coupled sampling
Besides the aforementioned three sampling approaches,
we also consider to couple different sampling
approaches in some order. For example, a point set P1

is selected from the initial point set P based on prob-
abilistic sampling, after that, another point set P2 is
selected from P1 based on uniform sampling. The finally
sampled point set can be selected from the initial point
set P via two or more sampling in some order with
given sampling ratios. The sampling ratios of the finally
sampled point set PS from P via S sampling processes
are denoted as |P1| : |P2| : · · · : |PS| where | · |
denotes the set size. For different scans to be aligned,
we can select a suitable sampling approach.

6 Integrating texture features
If the acquired models lack geometric details to be used
as good anchor points for correct registration, we can
still employ features extracted from other visual sources
provided by the laser range scanners, e.g., the reflectance
image. Laser range scanners are non-contact 3-D scan-
ners that measure the distance from the sensor to points
in the scene, typically in a regular grid pattern. A nat-
ural byproduct of this acquisition process is the reflec-
tance image. A reflectance image (shown in Figure 4)
stores in each pixel the portion of laser light reflected
from the corresponding surface point, providing with
important information about its texture. Both 3-D space
distribution and texture characteristics of the texture
features extracted from the reflectance images can well
constrain a rigid transformation in 3-D space. As shown
in [11,12] texture features can be effectively used to
identify anchor points leading to a well-constrained
rigid transformation.
A feature is accompanied by a descriptor, which

locally and compactly describes the texture around the
feature pixel. In our application, we are interested in
good local feature descriptors, which should have a
high-local distinctiveness, invariant w.r.t. affine

Figure 4 Atlas of rectified images generated from a reflectance image: (top) reflectance image; (bottom) atlas of 14 rectified images
generated by sampling a sphere every 60°.
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transformations, and possibly robust w.r.t. illumination
changes and local deformation. Several local feature
descriptors were presented in the literature [32,43].
Among them, the most suitable for our application are
the SIFT [44], SURF [45] and FAST [46] descriptors,
which we extract from the reflectance images of our
scanned models and consider as relevant sample points
to be matched by our registration algorithm.

6.1 Reflectance image rectification
The aforementioned features cannot be efficiently
extracted directly from the reflectance image associated
with a scanned model, since its intrinsic spherical for-
mat strongly affects the quality of their descriptors,
which are not designed to be robust w.r.t. spherical dis-
tortions. Indeed, typical laser scanner acquisition sys-
tems are usually composed by a fixed platform and a
rotating head, which are naturally modelled by simple
spherical projections. The resulting acquired images are
then obtained by mapping spherical images onto single
image planes. The meridians of a spherical image are
mapped to vertical viewing planes, and the parallels are
mapped to viewing cones with the vertex in the sensor
position.
In order to reduce the distortion induced by the sphe-

rical projection, we compute the above mentioned fea-
ture descriptors on an atlas of rectified images (shown
in Figure 4). This is possible since both the spherical
projection and the atlas perspective projections will
share the same point of view.
To recover the set of rectified images, we initially

select a field of view value afov (in our experiments afov

= 60°). We then calculate the width wr and height hr of
each rectified image by constraining the pixel resolution
to the resolution of the spherical image equator, i.e., the
width ws of the spherical image : wr = hr = ws · αfov

360o.
Given the pixel dimensions of the image plane, we
define a standard perspective projection whose principal
point is represented by the central pixel of the image
plane. The only missing intrinsic parameter, the projec-
tion focus, can be easily recovered given afov, wr and hr.
To determine the extrinsic parameters of each projec-
tion, we fix the camera point of view to the spherical
projection point of view, i.e., the local origin of the
point cloud. We then sample the sphere with v equally
distributed directions. The value of v depends on the
required field of view and is estimated such that the
images contained in the atlas completely cover the
initial spherical image. Given the camera direction di we
recover the remaining extrinsic parameters of the ith
image aligning the camera principal direction to di and
the vertical direction with the vertical direction of the
spherical image. Exploiting each projection matrix, we

can associate to each final image pixel its corresponding
viewing ray, and from this the pixel’s corresponding
coordinates in the original spherical image. These corre-
spondences are used to perform a bilinear interpolation
of the spherical image to recover each single finally rec-
tified image (see Figure 4).
The atlas generation only depends on the field of view

used. Small values generate multiple small images,
whereas large values generate fewer images but with
higher-perspective distortions.

6.2 Texture features extraction and integration
From the original reflectance image or the atlas of recti-
fied images generated from a reflectance image, we
extract a set of texture features for registration by using
the following methods:

1. SIFT [44]: this feature descriptor encodes the trend
of the image local gradient around a pixel as a histo-
gram of typically 128 bins. This descriptor is invariant
w.r.t. scaling and rigid 2-D transformation and robust
w.r.t. affine distortion, addition of noise, and change
in illumination. This descriptor is very accurate in
identifying relevant interest point, but its computa-
tion is usually slow without exploiting the GPU [47].
2. SURF [45]: this method efficiently detects features
by computing a rough approximation of the Hessian
matrix using integral images. The resulting descrip-
tor is based on sums of approximated 2-D Haar
wavelet responses, which is more compact and
much faster to compute than the SIFT descriptor.
3. FAST [48]: this techniques classifies a pixel as
corner if there is a sufficiently large set of relevantly
brighter (darker) pixels in a circular pixel neighbour-
hood of fixed radius. This feature detection algo-
rithm is very fast, up to 30 times faster than the
SIFT one, but is not invariant w.r.t. scaling and does
not provide with effective descriptors [43], which are
usually computed by using other techniques (e.g.,
with the SURF method in this paper).
4. Harris corner detector [49]: it has been widely
used in image processing and computer vision, and
computes corner features by analysing the local
changes of the image intensity with patches shifted
by a small amount in different directions. It is not
scale and affine invariant, and usually generates a
high number of features.

The 3-D points corresponding to the extracted texture
features are then considered as sampled points and used
with their descriptors by our registration algorithm to
match congruent sets of points, as described in Sections
2 and 3.

Yao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:72
http://asp.eurasipjournals.com/content/2011/1/72

Page 12 of 22



7 Experimental results
7.1 Test data and evaluation criteria
We tested our point-based registration algorithm on a
variety of input data with varying amount of noise, out-
liers, and extent of overlap. Our test dataset includes
some small object models as shown in Figure 5a, b, c,
which are selected from the data provided in the demo
application of the 4PCS algorithm [8]b. Other test data
are models of large indoor/outdoor scenes acquired by
different types of scanners, which are mostly selected
from [20], as shown in Figure 5d, e, f, g, h, i, j, k. In
total, we tested 11 pairs of scans with different extents
of overlap as shown in Figure 5. These 11 pairs of scans
are noted by {Gn}n=a,...,k corresponding to the models
shown in Figure 5a, b, c, d, e, f, g, h, i, j, k, respectively.
The small objects models in Ga − Gc consist of around
20,000-30,000 points. Indoor scan data (Gd − Gi) were
captured by Z+F IMAGER 5003/5006/5006i laser range-
scanners. Outdoor scan data (Gjand Gk) were captured
by the RIEGL LMS-Z420i laser range-scanner. The
accuracy of a point acquired by the Z+F IMAGER 5003
(5006 and 5006i) laser scanner is 3 mm (1 mm) along
the laser-beam direction at a maximal distance of 50 m
from the scanner. The accuracy of the RIEGL LMS-
Z420i laser scanner is 10 mm at 50 m. The resolution
of all indoor scans is about 2, 530 × 1, 080 and the reso-
lution of all outdoor scans is 3, 000 × 666. No surface
normals were provided for points in the scan data Ga, Gb

and Gc. For the other scans, we always employed the
surface normals into our registration algorithm. The
scan data in Ga − Gc were scaled so that the bounding
box diagonal lengths of the first scans in these scan
pairs are taken as 100 units. The bounding box diagonal
lengths of the first scans of other eight scan pairs
Gd − Gk are around 10, 28, 26, 37, 77, 142, 1, 860, and
398 m, respectively. The overlap rates shown in Figure 5
were computed as follows. The overlap rate of two
point sets P and Q is defined as
o(P ,Q) = min

(
|P∈Q|

|P | , |Q∈P |
|Q|

)
, where | · | denotes the size of a

point set and P ∈ Q denotes a subset of P in which for
each point there exist at least one point inQ whose dis-
tance to it is below a given threshold. To produce a rea-
sonable overlap rate in 3-D space, we compute the
overlap rate by using large point subsets selected from
P andQ using our voxel-based uniform sampler instead
of using original point sets. Our registration algorithm
was implemented in C++ on a Windows XP system and
integrated into our commercial software JRC 3-D Recon-
structor. All experiments were executed on a 2.67 GHz
Intel machine.
We fixed the poses of all reference scans (i.e., {Q}) to

an identity rotation matrix and no translation. To evalu-
ate the transformation estimation accuracy of our

registration algorithm, we first employed our algorithm
on all tested pairs of scans to recover a good initial
transformation for each scan pair and then applied the
ICP optimization algorithm [5] to get a well-aligned
transformation. We observed that the mean residual
error after the ICP registration optimization was always
comparable with the laser scanner measurement error,
which is much lower than the estimation errors of our
proposed N-points congruent sets (NPCS) registration
algorithm. For this reason, we regarded this ICP-opti-
mized transformation as the ground truth transforma-
tion Tg for evaluation. Thus, given an estimated
transformation T from P to Q, the estimation error is
defined as the median of the point distances after apply-
ing T and Tg onto P, i.e., medianp∈P ||T p − Tgp||.
The transformation estimation accuracy was statisti-

cally evaluated by running our registration algorithm
Nrun = 20 times on each tested pair of scans. In each
run, we refresh the input data by setting a random pose
for the moving scan followed by re-sampling. For each
scan pair, we set a suitable maximal estimation error
Δmax in advance. If the estimation error was above Δmax,
we considered it as failed. The maximal estimation
errors were set as Δmax = 5 units, Δmax = 1 m, Δmax = 2
m and Δmax = 5 m for small object models Ga − Gc, the
indoor models Gd − Gh, the large indoor models Gi and
the outdoor models Gj − Gk, respectively. Based on the
number Nsuc of successful estimations and the number
Nrun of runs the following three indicators were then
used to evaluate our method: (1) the successful estima-

tion rate Sr =
Nsuc
Nrun

to evaluate its robustness; (2) the

median estimation error Δ among all Nsuc successful
estimations to evaluate its accuracy; (3) the median esti-
mation time t over all Nrun runs to evaluate its effi-
ciency. Note that the estimation time does not include
pre-processing computation time (i.e., texture feature
detection/matching, point sampling, etc), but it incorpo-
rates the codebook building time, which took <1 s with
the basic RANSAC and around two seconds with the
probabilistic RANSAC using our parameter setting. The
feature detectors listed by increasing processing time are
Harris, FAST, SURF and SIFT. The point sampling
approaches listed by increasing processing time are ran-
dom, probabilistic and uniform samplings.

7.2 Performance evaluation
The performance of our proposed NPCS registration
algorithm was evaluated on the aforementioned test
data. The main parameters were set as follows. We
employed congruent points sets of size N = 4. The two
main parameters for searching best N-points congruent
sets in Algorithm 1 were set as Kp = 2, 000 and Kg = 50.
The exponential parameter l = 1 for computing our
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(a) bunny - 100% overlap (b) coati - 91% overlap (c) dragon - 32% overlap

(d) 90% overlap (e) 68% overlap (f) 85% overlap

(g) 79% overlap (h) 43% overlap

(i) 45% overlap (j) 39% overlap (k) 12% overlap
Figure 5 All test pairs of scan data described with aligned point clouds (different colours represent different scans), approximated
overlapping percentage, and one reflectance image for each pair of scans representing: a, b, c small objects; d, e, f, g, h indoor
scenes; i large indoor scenes; j, k outdoor scenes.
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proposed QLCP measure in Equation 17. Given two
point sets P and Q, we tried to recover the transforma-
tion from P (moving point set) to Q (reference point
set). We selected 500 points from P and 1,000 points
from Q for searching N-points congruent sets between
them. However, for transformation verification, we
selected larger subsets, i.e., 1,000 points from P and
2,000 points from Q. This allows the estimation of a
more accurate and robust transformation. The voxel-
based uniform sampling approach was used to select
these points. Our registration algorithm always used the
surface normals of points when provided. The maximal
normal deviation for the corresponding point pairs was
set to 30°. In our experiments, we used the RANSAC-
based approach by setting Imax = 1, 000 and Inou = 200,
which are the allowed maximal iteration number and
the continuous iteration number in which no better
transformation was found, respectively. The estimation
errors of the first three scan pairs Ga − Gc were reported
in canonical units (i.e., 100 units are equal to the
bounding box diagonal lengths), while those of the other
eight scan pairs Gd − Gk in meters. Notice that the same
parameter values were used in all experiments described
below, unless clearly stated otherwise for particular
experiments.
Figure 6 shows the performance comparison of our

NPCS algorithm with different Kp and Kg on three scan
pairs Ga, Ge and Gi. First, we fixed Kg = 50 and tested the
effects of different Kp on the registration accuracy (med-
ian estimation errors), efficiency (median estimation
times) and robustness (successful estimation rates), as

shown in Figure 6a, b, c, respectively. We can observe
that larger values of Kp led to an improvement of the
registration accuracy and robustness, but also required
longer execution times. In Figure 6c, we can notice that
100% successful estimation rates were achieved for all
tested scan pairs when Kp ≥ 1, 000. Second, we fixed Kp

= 2, 000 and tested the effects of different Kg on regis-
tration performance shown in Figure 6d, e, f. The varia-
tion of Kg results in similar effects as for Kp. When Kg ≥
50, the successful estimation rates were always Sr =
100% for all tested scan pairs.
Table 1 illustrates the performance evaluation of our

NPCS algorithm on three scan pairs Gc, Gd and Gj when
the size N of congruent point sets was set as N = 3, ...,
6, respectively. As explained before, large values of N (≥
6) result in a low probability of successfully selecting N-
points congruent sets between two point sets and in
longer estimation times. Small values of N (= 3) led to
an increase of the candidate N-points congruent sets in
Q given N points in P, but sometimes the matched sets
found are not enough to well constraint the transforma-
tion and the algorithm falls into local minima.
The performance comparison of different sampling

approaches on five scan pairs is shown in Table 2. In
this experiment, we tested the following sampling strate-
gies: the random sampling; the voxel-based uniform
sampling; two probabilistic sampling approaches (pro-
bAPD-based on adjacent point distances, probSurfVar-
based on surface variations); four texture feature-based
sampling using the SIFT, SURF, FAST and HARRIS fea-
ture detectors as samplers. Some sampling strategies
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Figure 6 Performance comparison with different Kp and Kg on three scan pairs Ga, Ge and Gi.
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were coupled and reported in Table 2 combined with
the character ‘+’. For instance, the coupled sampling
“random+uniform” denotes that we first applied the ran-
dom sampling to get a point subset P1 from the initial
point set P and then applied the uniform sampling to
get the final point subset P2 from P1. Here, the sam-
pling ratios of all coupled sampling approaches were set
to P2 : P1 = 0.5. All texture feature-based sampling
methods were coupled with random or uniform sam-
pling. From Table 2, we observe that the uniform sam-
pling performs better than the random sampling both
when is considered alone and when is coupled with
other sampling strategies, i.e., with the probAPD-based
sampling and feature detectors. Among the probabilistic
sampling methods the probAPD-based sampling
resulted to be a very good choice if available, since it
relevantly improved the registration robustness and also
increased its accuracy. On the contrary, the probSurf-
Var-based sampling showed lack of robustness, but
worked very well for models rich of geometric features,
which were captured from geometrically complex

scenes, as those in Gg. In some scenes, texture feature
detectors turned out to be a good first sampler. In those
cases, they improved the transformation accuracy as
shown by ‘FAST+uniform” in Ge(	 = 0.0672 m) and by
“HARRIS+random” in Gg(	 = 0.0121 m) and
Gi(	 = 0.0820 m). Among the texture feature-based
sampling “SIFT+uniform” and “FAST+uniform” also
demonstrated a very good robustness by always scoring
Sr = 100% as the probAPD-based sampling, but with
improved accuracies for all models apart from those in
Gj. Notice that if it is not possible to extract enough tex-
ture features the remaining points were selected by the
following coupled sampling approach.
Our employed QLCP measure for verifying the esti-

mated transformation depends on two main parameters,
i.e., l in Equation 17 and δ-distance. In this paper, we
computed δ = αḋvref , where a is a positive constant and

ḋvref = medianq∈Qv||q − nc(q)||, where Qv ⊂ Q repre-
sents the set of points used for transformation verifica-
tion and nc(q) denotes the closest point of q in Qv.
Table 3 shows the comparison of our NPCS algorithm
when using the LCP or the QLCP measure with differ-
ent parameters on three scan pairs: Gb, Gi, and Gj. In
practice, the LCP measure corresponds to the QLCP
measure with l = 0. From Table 3, we observe that our
proposed QLCP measure led to higher successful esti-
mation rates and more accurate transformations than
the LCP one. In addition, notice that a large l slightly
increased the estimation robustness when a large a was
used. In the rest of the experiments reported in the
paper, we used l = 1 and a = 2.

Table 1 Performance evaluation of our NPCS algorithm
with different sizes N of congruent point sets

N Gc Gd Gj

Δ Sr (%) t (s) Δ Sr (%) t (s) Δ Sr(%) t (s)

3 0.7060 100 61.5 0.0770 100 29.4 0.5903 100 18.5

4 0.3906 100 35.1 0.0508 100 45.4 0.7819 100 16.6

5 0.4532 100 39.2 0.0484 100 53.9 0.6114 100 20.6

6 0.4277 100 40.8 0.0462 100 90.6 0.9586 95 77.1

Table 2 Performance evaluation of different sampling approaches on five pairs of scans

Sampling approaches Gc Ge Gg Gi Gj

Δ Sr (%) Δ Sr (%) Δ Sr (%) Δ Sr (%) Δ Sr (%)

Random 0.4561 100 ★ 0 0.0606 95 ★ 0 ★ 0

Uniform 0.4465 100 0.2160 95 0.0854 100 0.5146 95 0.4231 100

probAPD 0.2045 100 0.0501 100 0.3260 100 0.3548 100

probSurfVar 0.0774 10 0.0329 100 ★ 0 ★ 0

Random+uniform 0.4719 100 0.1547 100 0.0410 100 0.1961 5 ★ 0

Random+probAPD 0.1670 100 0.0679 100 0.4719 65 0.8053 45

Uniform+probAPD 0.2001 100 0.0629 100 0.4211 100 0.4343 100

SIFT+random 0.1020 100 0.0276 100 0.6754 5 ★ 0

SURF+random 0.0840 85 0.0264 100 0.3329 10 0.2675 30

FAST+random 0.1331 75 0.0252 100 0.4970 55 ★ 0

HARRIS+random 0.0679 100 0.0121 100 0.0820 100 0.3756 100

SIFT+uniform 0.0647 100 0.0349 100 0.1491 100 0.1959 100

SURF+uniform 0.0848 100 0.0542 100 0.3064 100 0.3426 100

FAST+uniform 0.0672 100 0.0446 100 0.1118 100 0.2719 100

HARRIS+uniform 0.1131 100 0.0194 100 0.1077 100 0.5959 100

“★” denotes that no correct transformations were found in 20 runs
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The integration of scene structure information to our
NPCS algorithm can greatly reduce the estimation time,
as described in Section 2 and illustrated in Table 4. This
can also slightly improve the accuracy of the recovered
transformation. Here, the scans in Gd and Gf were auto-
matically classified as orthogonal scenes.
Table 5 shows the performance evaluation of our

NPCS algorithm on Gg and Gh using texture features
detected from original reflectance images and from
atlases of rectified reflectance images. In this experiment
the texture features were used to first sample the mod-
els and their descriptors were used to improve the
matching of congruent sets, as described in Section 2.
These techniques were compared with the pure uniform
sampling method, which worked well in Gg(Sr = 100%),
but failed completely in Gh(Sr = 0%).
The reason of complete failure in Gh is due to the pre-

sence of wrong transformations with a better QLCP mea-
sure than the ground truth transformation. In this
example, we clearly showed how the integration of tex-
ture features can relevantly improve the robustness of
our registration algorithm, especially when they are
extracted from rectified images. We recall that there are
two ways of integrating texture features. The first one is
to consider detected features only as sampled points, as
for the experiments reported in Table 2. The second one
(reported with the prefix “match“) is to rank the matched
features using their descriptors and keep in P the best k

correspondences for each feature point. This experiment
showed that: (1) the SURF features were more robust
than the SIFT features in both Gg and Gh; (2) the accuracy
of the transformation obtained with SURF features is
much better than the one obtained with SIFT features in
Gg; (3) the features detected from the atlas of rectified
reflectance images led to a more robust and generally
accurate registration than those extracted from the origi-
nal reflectance images (the improvement in term of accu-
racy is particularly evident in Gg, where the very low
estimation error within 1-2 cm is 0.5 h of the bounding
box diagonal length); (4) decreasing the number k of best
feature correspondences based their descriptors greatly
improves the efficiency (i.e., shorter computation times),
but possibly deteriorates the robustness (i.e., lower suc-
cessful rates); (5) in some experiments the features
detected from the atlas of rectified reflectance images led
to slightly higher estimation errors than those extracted
from the original reflectance images. This happens when
k is not large enough (e.g., k = 50, 100) and is mainly
related to features located close to the rectified image
boundaries. Those features extracted in these regions are
less reliable due to the lack of enough texture informa-
tion around them. This effect can be overcome by impos-
ing a given degree of overlap between neighbouring
rectified images.
As explained in Section 4.1, the proposed probability-

based RANSAC is especially useful for aligning two
scans with a small overlap. This advantage is evident in
aligning the scan pair Gk with a very small overlap (12%)
as reported in Table 6, where Sr = 95% for the probabil-
istic RANSAC, but Sr = 65% for the basic RANSAC.
The probability-based RANSAC led to similar results in
both Ga and Ge with large overlaps, but with slightly bet-
ter robustness in Ge. Note that Kp = 5, 000 and Kg = 100
for Gk were used in this experiment.

Table 3 Performance comparison between the LCP and QLCP measures on different models

Gb Gi Gj

Δ Sr (%) t (s) Δ Sr (%) t (s) Δ Sr(%) t (s)

LCP (a = 1) 0.3738 100 21.4 0.7377 95 25.6 0.7141 100 6.6

LCP (a = 2) 0.7252 100 8.3 0.7264 90 26.5 2.4107 100 15.2

LCP (a = 4) 1.2058 100 16.8 0.9550 30 24.8 3.7339 10 27.1

LCP (a = 8) 0.5809 100 47.9 1.3048 20 22.6 4.5258 10 37.8

QLCP (l = 1, a = 1) 0.3524 100 31.3 0.5304 95 33.2 0.4041 100 11.7

QLCP (l = 1, a = 2) 0.2622 100 30.8 0.5225 100 43.0 0.5107 100 14.6

QLCP (l = 1, a = 4) 0.2895 100 62.0 0.7329 95 43.9 0.7857 100 28.6

QLCP (l = 1, a = 8) 0.3934 100 81.5 0.8767 80 85.1 0.9193 100 97.1

QLCP (l = 2, a = 1) 0.2127 100 49.3 0.3264 95 29.1 0.3782 100 10.9

QLCP (l = 2, a = 2) 0.3055 100 35.9 0.4783 100 61.2 0.5394 100 23.5

QLCP (l = 2, a = 4) 0.2904 100 59.3 0.4910 100 97.8 0.6343 100 33.6

QLCP (l = 2, a = 8) 0.3537 100 142.3 0.8897 85 79.5 0.7970 100 64.0

Table 4 Performance evaluation of our algorithm using
scene structure information

Gd Gf

Δ Sr (%) t (s) Δ Sr (%) t (s)

Uniform 0.0498 100 42.2 0.2269 100 30.3

Uniform (scene structure) 0.0326 100 13.4 0.1500 100 10.5
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Figure 7 shows seven outdoor scans acquired from the
train station Gare de Lyon in Paris, which were automa-
tically aligned by applying our NPCS algorithm followed
by ICP registration. These seven scans were coupled by
proximity to generate a set of scan pairs to register one
after another. The generated pairs of scans have overlap
rates of 39, 51, 31, 56, 25 and 29%. The first two scans
in these seven scans comprise the tested scan pair Gj.
Furthermore, our algorithm was tested on two scans

acquired from the same scene at different time instants
with some changes as shown in Figure 8, where we
acquired two scans almost at the same position after
some people moved. In this example, the overlap rate is
around 71%. Our algorithm always successfully and
accurately registered these two scans (i.e., Sr = 100% and
Δ = 2.86 cm).

Finally, we also compared our algorithm with the
4PCS algorithm [8] on five scan pairs Ga, Gc, Gi, Gj and
Gk. Initially we extracted 2,000 points from each scan
using our proposed voxel-based uniform sampling
approach. To make the comparison fair, we performed
both the 4PCS algorithm and our proposed NPCS one
with N = 4 using 600 randomly selected points from
pre-extracted 2,000 points of each scan. Point surface
normals (not available in Ga and Gc) and same normal
difference thresholds were used in both algorithms. The
estimated overlapping rates of these five scan pairs
shown in Figure 5 were used in 4PCS except for Ga

where 90% overlapping rate was used. However, in
NPCS other parameters were fixed for all five tested
scan pairs as mentioned before. Table 7 shows the per-
formance comparison of both algorithms. The 4PCS

Table 5 Performance evaluation on the texture feature-based variants of our algorithm with features detected on the
original reflectance images and on atlases of rectified reflectance images

Gg Gh

Δ Sr (%) t (s) Δ Sr (%) t (s)

Uniform 0.0727 100 32.2 ★ 0 53.1

SURF + uniform 0.0349 100 26.2 0.2632 60 11.0

matchSURF(k = 500) + uniform 0.0353 100 15.9 0.2555 55 4.6

matchSURF(k = 200) + uniform 0.0568 100 7.7 0.2532 40 4.6

matchSURF(k = 100) + uniform 0.0952 100 4.7 0.3667 50 4.4

matchSURF(k = 50) + uniform 0.1592 90 4.5 0.3201 25 3.1

Atlas: SURF + uniform 0.0148 100 17.8 0.2018 100 8.7

Atlas: matchSURF(k = 500) + uniform 0.0199 100 6.2 0.1560 85 6.1

Atlas: matchSURF(k = 200) + uniform 0.0248 100 5.1 0.2299 95 4.3

Atlas: matchSURF(k = 100) + uniform 0.0318 100 4.9 0.3095 75 4.0

Atlas: matchSURF(k = 50) + uniform 0.0367 100 2.5 0.3354 60 3.3

SIFT + uniform 0.0433 100 34.4 0.2351 30 11.5

matchSIFT(k = 500) + uniform 0.0548 100 15.3 0.2222 10 10.4

matchSIFT(k = 200) + uniform 0.0849 100 9.5 0.2801 10 3.9

matchSIFT(k = 100) + uniform 0.1674 100 5.9 ★ 0 3.4

matchSIFT(k = 50) + uniform 0.2842 85 5.5 ★ 0 1.5

Atlas: SIFT + uniform 0.0287 100 28.7 0.0494 30 10.8

Atlas: matchSIFT(k = 500) + uniform 0.0321 100 29.4 0.1584 25 4.3

Atlas: matchSIFT(k = 200) + uniform 0.0484 100 10.2 0.3768 15 5.3

Atlas: matchSIFT(k = 100) + uniform 0.1716 100 5.2 0.5138 10 4.4

Atlas: matchSIFT(k = 50) + uniform 0.3017 90 5.6 ★ 0 1.9

“★” denotes that no correct transformations 44 were found in 20 runs

Table 6 Performance comparison between the basic RANSAC and the probabilistic RANSAC

Type of RANSAC Ga Ge Gk (12% overlap)

Δ Sr (%) t (s) Δ Sr (%) t (s) Δ Sr(%) t (s)

Basic RANSAC 0.8910 100 50.1 0.2160 95 25.3 0.9393 65 118.4

Probabilistic RANSAC 0.9013 100 55.7 0.2071 100 29.4 0.9543 95 102.7
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algorithm sometimes worked successfully in the first
four tested scan pairs (Sr = 30-90%), but always failed in
Gk(Sr = 0%). However, our NPCS algorithm almost
always succeeded in the first four tested scan pairs and
also succeeded in Gk with a high successful rate (Sr =
60%). By utilizing the probability-based RANSAC, a
higher successful rate can be obtained in Gk (Sr = 95%,
see Table 6). Note that the same maximal estimation
errors for all tested scan pairs were used in the 4PCS
algorithm for computing the estimation successful rate.
However, the success of the 4PCS algorithm depends on
the provided estimate for the overlap rate of two point
sets to some extent. In our application, this overlap rate
cannot be robustly approximated in advance. Thus, a

feasible strategy would be to try it with different overlap
rates until success. This obviously increases the overall
execution time. However, in this comparison experi-
ment, we directly used the pre-estimated overlapping
rates with recovered ground truth transformations
except that 90% overlapping rate was used in Ga.
Another drawback of the 4PCS algorithm is related to
the co-planarity constrain applied on the 4-points bases.
Although this greatly reduces the search space, it may
miss-lead the algorithm to false transformation estima-
tions, especially in case of a very low overlap rate. We
also noticed that in this case the computation time of
the 4PCS algorithm increases significantly, since no suc-
cessful transformations can be found efficiently. Finally,

Figure 7 Automatically aligned point clouds of seven outdoor scans by applying our NPCS algorithm followed by ICP registration:
(left) rendered by colour (each scan is represented in different colour); (right) rendered by blending colour images.

Figure 8 An example of the scene environment changed at two different acquisition time instants: the first scan is rendered with its
reflectance and the second one is rendered with a colour map based on its changes w.r.t. the first one.
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the NPCS algorithm achieved a higher estimation accu-
racy than the 4PCS one especially in Gc and Gj mainly
due to our proposed QLCP measure as reported in
Table 3.

8 Conclusions
In this paper, we presented the NPCS registration,
which is a robust and efficient approach for automati-
cally aligning two point sets with overlap. Given two
point sets P and Q, our algorithm randomly searches
for sets of congruent groups of N-points in P and Q,
which lead to the best estimate of the transformation.
This is achieved by employing a RANSAC-based algo-
rithm, which can also estimate the matching probability
of each point to drive the search of possibly successful
congruent bases of N-points. This probabilistic RAN-
SAC approach improves the registration robustness
especially for aligning two point sets with a small over-
lap. The search of congruent sets is efficiently per-
formed by using a fast search codebook inspired by [20]
to relevantly reduce the execution time. Our proposed
search method can efficiently combine different metric
functions to match points and point pairs in a multidi-
mensional search space, which can be defined by geo-
metric and texture feature descriptors and geometrical
constraints of set of sampled points. This makes our fra-
mework general and flexible The efficient combination
of feature descriptors can relevantly improve the regis-
tration performance, accuracy, and robustness of models
with known specific characteristics. Moreover, we pro-
posed a method to extract texture features from an atlas
of rectified images recovered by sampling the reflectance
image spherical field of view. The resulting feature
descriptors were less sensitive to spherical distortions
yielding more precise matches than those extracted
from the original reflectance image.
To further improve the registration robustness, we

introduced a new measure called QLCP. This is used to
efficiently verify the rigid transformation estimated at
each RANSAC iteration. The QLCP considers both the
quantity and quality of the overlapping point set, and
improved the verification robustness w.r.t. the LCP mea-
sure utilized in the 4PCS algorithm [8].
Our proposed NPCS algorithm was overall evaluated

on a variety of input data with varying amount of noise,
outliers, and extent of overlap (12-100%), acquired from

small objects, indoor and outdoor scenes. The experi-
ments focused on three main aspects: robustness (suc-
cessful estimation rate), accuracy (median estimation
error), and efficiency (median estimation time), respec-
tively. In almost all cases, our NPCS algorithm (executed
with the same parameters) successfully aligned two
point clouds in less than a minute by accurately recover-
ing their rigid transformations (the estimation errors are
mostly within 0.5-5 h of their bounding box diagonal
lengths). We tested our registration method with differ-
ent sampling techniques and experimentally demon-
strated the benefits of using methods generating
uniformly distributed point samples w.r.t. random-based
sampling strategies. Our proposed voxel-based uniform
sampling approach was robust and efficient in almost all
tested cases. We showed that the proposed QLCP mea-
sure is more reliable than the LCP measure. Still, it is
possible to obtain wrong estimations, e.g., the failure
related to the scan pair Gh. Nevertheless, these wrong
estimations can be successfully recovered by using tex-
ture-based features detected from the atlas of rectified
reflectance images as shown by our experiments, or by
using other suitable geometric features as those pre-
sented in [10,13,50]. In our experiments the NPCS regis-
tration performed, on average, better than the 4PCS
method in terms of robustness and accuracy. In some
experiments, in particular in presence of large overlaps,
the execution time of our algorithm was slightly higher
than 4PCS. While aligning two scans with a small over-
lap, our NPCS algorithm took similar computation time
(mostly less than a minute) to achieve the good solution.
However, 4PCS sometimes took more than 10 min, but
still failed (e.g., in Gk).
Future work will be focused on improving the perfor-

mance of our method by exploiting a parallel hardware
and to improve the robustness of our QLCP measure
for inspection applications, which typically require to
automatically align models captured at different times
from scenes possibly containing changes.

Endnotes
aOnly upper triangle part is stored in practice due to the
symmetry of the point pairs lookup table. bThe demo
application of 4PCS algorithm [8] is available at http://
graphics.stanford.edu/~niloy/research/fpcs/4PCS_demo.
html.

Table 7 Performance comparison of 4PCS and NPCS algorithms

Ga Gc Gi Gj Gk

Δ Sr (%) t (s) Δ Sr (%) t (s) Δ Sr (%) t (s) Δ Sr (%) t (s) Δ Sr (%) t (s)

4PCS 2.845 85 10.6 1.953 90 22.1 0.775 40 56.3 3.762 30 48.8 ★ 0 356.3

NPCS 0.875 100 46.3 0.420 100 31.2 0.458 95 45.5 0.517 100 13.5 0.980 60 76.2
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1 , . . . ,q

m
i ) of points in

M = {(qm
1 , . . . ,q

m
i )}|M|

m=1do
case 1: group point pair
for each point pair (qk

i ,q
k
i+1) in Sdo

if qm
i = qk

i and

Sf (pi+1,q
k
i+1)

∏i−1
j=1

∏K
k=1 sk(mk(pm

j ,pi+1), mk(qj,qs)) = 1

then

M′ ← {M′, (qm
1 , . . . ,q

m
i , q

k
i+1)}

end if
end for

case 2: add a single point
for each point qs ∈ Mf (pi+1)do

if
∏i

j=1
∏K

k=1 sk(mk(pm
j ,pi+1), mk(qj,qs)) = 1

then
M′ ← {M′, (qm

1 , . . . ,q
m
i , qs)}

end if
end for

end for
M ← M′

end for

return {Bk
q}Kg

k=1 by filtering M according with Eq. (3)
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