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Abstract

There exist a number of satellites on different earth observation platforms, which provide multispectral images
together with a panchromatic image, that is, an image containing reflectance data representative of a wide range
of bands and wavelengths. Pansharpening is a pixel-level fusion technique used to increase the spatial resolution
of the multispectral image while simultaneously preserving its spectral information. In this paper, we provide a
review of the pan-sharpening methods proposed in the literature giving a clear classification of them and a
description of their main characteristics. Finally, we analyze how the quality of the pansharpened images can be
assessed both visually and quantitatively and examine the different quality measures proposed for that purpose.

1 Introduction
Nowadays, huge quantities of satellite images are avail-
able from many earth observation platforms, such as
SPOT [1], Landsat 7 [2], IKONOS [3], QuickBird [4]
and OrbView [5]. Moreover, due to the growing number
of satellite sensors, the acquisition frequency of the
same scene is continuously increasing. Remote sensing
images are recorded in digital form and then processed
by computers to produce image products useful for a
wide range of applications.
The spatial resolution of a remote sensing imaging

system is expressed as the area of the ground captured
by one pixel and affects the reproduction of details
within the scene. As the pixel size is reduced, more
scene details are preserved in the digital representation
[6]. The instantaneous field of view (IFOV) is the
ground area sensed at a given instant of time. The spa-
tial resolution depends on the IFOV. For a given num-
ber of pixels, the finer the IFOV is, the higher the
spatial resolution. Spatial resolution is also viewed as the
clarity of the high-frequency detail information available
in an image. Spatial resolution in remote sensing is
usually expressed in meters or feet, which represents the
length of the side of the area covered by a pixel. Figure
1 shows three images of the same ground area but with
different spatial resolutions. The image at 5 m depicted

in Figure 1a was captured by the SPOT 5 satellite, while
the other two images, at 10 m and 20 m, are simulated
from the first image. As can be observed in these
images, the detail information becomes clearer as the
spatial resolution increases from 20 m to 5 m.
Spectral resolution is the electromagnetic bandwidth

of the signals captured by the sensor producing a given
image. The narrower the spectral bandwidth is, the
higher the spectral resolution. If the platform captures
images with a few spectral bands, typically 4-7, they are
referred to as multispectral (MS) data, while if the num-
ber of spectral bands is measured in hundreds or thou-
sands, they are referred to as hyperspectral (HS) data
[7]. Together with the MS or HS image, satellites usually
provide a panchromatic (PAN) image. This is an image
that contains reflectance data representative of a wide
range of wavelengths from the visible to the thermal
infrared, that is, it integrates the chromatic information;
therefore, the name is “pan” chromatic. A PAN image of
the visible bands captures a combination of red, green
and blue data into a single measure of reflectance.
Remote sensing systems are designed within often

competing constraints, among the most important ones
being the trade-off between IFOV and signal-to-noise
ratio (SNR). Since MS, and to a greater extent HS, sen-
sors have reduced spectral bandwidths compared to
PAN sensors, they typically have for a given IFOV a
reduced spatial resolution in order to collect more
photons and preserve the image SNR. Many sensors
such as SPOT, ETM+, IKONOS, OrbView and
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QuickBird have a set of MS bands and a co-registered
higher spatial resolution PAN band. With appropriate
algorithms, it is possible to combine these data and pro-
duce MS imagery with higher spatial resolution. This
concept is known as multispectral or multisensor mer-
ging, fusion or pansharpening (of the lower-resolution
image) [8].
Pansharpening can consequently be defined as a pixel-

level fusion technique used to increase the spatial reso-
lution of the MS image [9]. Pansharpening is shorthand
for panchromatic sharpening, meaning the use of a PAN
(single band) image to sharpen an MS image. In this
sense, to sharpen means to increase the spatial resolu-
tion of an MS image. Thus, pansharpening techniques
increase the spatial resolution while simultaneously pre-
serving the spectral information in the MS image, giving
the best of the two worlds: high spectral resolution and
high spatial resolution [7]. Some of the applications of
pansharpening include improving geometric correction,
enhancing certain features not visible in either of the
single data alone, changing detection using temporal
data sets and enhancing classification [10].
During the past years, an enormous amount of pan-

sharpening techniques have been developed, and in
order to choose the one that better serves to the user
needs, there are some points, mentioned by Pohl [9],
that have to be considered. In the first place, the objec-
tive or application of the pansharpened image can help
in defining the necessary spectral and spatial resolution.
For instance, some users may require frequent, repetitive
coverage, with relatively low spatial resolution (i.e.,
meteorology applications), others may desire the highest
possible spatial resolution (i.e., mapping), while other
users may need both high spatial resolution and fre-
quent coverage, plus rapid image delivery (i.e., military
surveillance).
Then, the data that are more useful to meet the needs

of the pansharpening applications, like the sensor, the
satellite coverage and atmospheric constraints such as
cloud cover and sun angle have to be selected. We are
mostly interested in sensors that can capture

simultaneously a PAN channel with high spatial resolu-
tion and some MS channels with high spectral resolu-
tion like SPOT 5, Landsat 7 and QuickBird satellites. In
some cases, PAN and MS images captured by different
satellite sensors at different dates for the same scene
can be used for some applications [10], like in the case
of fusing different MS SPOT 5 images captured at dif-
ferent times with one PAN IKONOS image [11], which
can be considered as a multisensor, multitemporal and
multiresolution pansharpening case.
We also have to take into account the need for data

pre-processing, like registration, upsampling and histo-
gram matching, as well as the selection of a pansharpen-
ing technique that makes the combination of the data
most successful. Finally, evaluation criteria are needed
to specify which is the most successful pansharpening
approach.
In this paper, we examine the classical and state-of-

the-art pansharpening methods described in the litera-
ture giving a clear classification of the methods and a
description of their main characteristics. To the best of
our knowledge, there is no recent paper providing a
complete overview of the different pansharpening meth-
ods. However, some papers partially address the classifi-
cation of pansharpening methods, see [12] for instance,
or relate already proposed techniques of more global
paradigms [13-15].
This paper is organized as follows. In Section 2 data

pre-processing techniques are described. In Section 3 a
classification of the pansharpening methods is presented,
with a description of the methods related to each cate-
gory and some examples. In this section, we also point
out open research problems in each category. In Section
4 we analyze how the quality of the pansharpened
images can be assessed both visually and quantitatively
and examine the different quality measures proposed for
that purpose, and finally, Section 5 concludes the paper.

2 Pre-processing
Remote sensors acquire raw data that need to be pro-
cessed in order to convert it to images. The grid of

(a) (b) (c)

Figure 1 Images of the same area with different spatial resolutions. Spatial resolution (a) 5 m. (b) 10 m, (c) 20 m.
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pixels that constitutes a digital image is determined by a
combination of scanning in the cross-track direction
(orthogonal to the motion of the sensor platform) and
by the platform motion along the in-track direction. A
pixel is created whenever the sensor system electroni-
cally samples the continuous data stream provided by
the scanning [8]. The image data recorded by sensors
and aircrafts can contain errors in geometry and mea-
sured brightness value of the pixels (which are referred
to as radiometric errors) [16]. The relative motion of
the platform, the non-idealities in the sensors them-
selves and the curvature of the Earth can lead to geo-
metric errors of varying degrees of severity. The
radiometric errors can result from the instrumentation
used to record the data, the wavelength dependence of
solar radiation and the effect of the atmosphere. For
many applications using these images, it is necessary to
make corrections in geometry and brightness before the
data are used. By using correction techniques [8,16], an
image can be registered to a map coordinate system and
therefore has its pixels addressable in terms of map
coordinates rather than pixel and line numbers, a pro-
cess often referred to as geocoding.
The Earth Observing System Data and Information

System (EOSDIS) receives “raw” data from all space-
crafts and processes it to remove telemetry errors, elimi-
nate communication artifacts and create Level 0
Standard Data Products that represent raw science data
as measured by the instruments. Other levels of remote
sensing data processing were defined in [17] by the
NASA Earth Science program. In Level 1A, the recon-
structed, unprocessed instrument data at full resolution,
time-referenced and annotated with ancillary informa-
tion (including radiometric and geometric calibration
coefficients and georeferencing parameters) are com-
puted and appended, but not applied to Level 0 data (i.
e., Level 0 can be fully recovered from Level 1A). Some
instruments have Level 1B data products, where the data
resulting from Level 1A are processed to sensor units.
At Level 2, the geographical variables are derived (e.g.,
Ocean wave height, soil moisture, ice concentration) at
the same resolution and location as Level 1 data. Level 3
maps the variables on uniform space-time grids usually
with some completeness and consistency, and finally,
Level 4 gives the results from the analysis of the pre-
vious levels data. For many applications, Level 1 data are
the most fundamental data records with significant
scientific utility, and it is the foundation upon which all
subsequent data sets are produced. For pansharpening,
where the accuracy of the input data is crucial, at least
radiometric and geometric corrections need to be per-
formed on the satellite data. Radiometric correction rec-
tifies defective columns and missing lines and reduces
the non-uniformity of the sensor response among

detectors. The geometrical correction deals with sys-
tematic effects such as panoramic effect, earth curvature
and rotation. Note, however, that even with geometri-
cally registered PAN and MS images, differences might
appear between images as described in [10]. These dif-
ferences include object disappearance or appearance and
contrast inversion due to different spectral bands or dif-
ferent times of acquisition. Besides, both sensors do not
aim exactly at the same direction, and acquisition times
are not identical which have an impact on the imaging
of fast-moving objects.
Once the image data have already been processed in

one of the standard levels previously described, and in
order to apply pansharpening techniques, the images are
pre-processed to accommodate the pansharpening algo-
rithm requirements. This pre-processing may include
registration, resampling and histogram matching of the
MS and PAN images. Let us now study these processes
in detail.

2.1 Image registration
Many applications of remote sensing image data require
two or more scenes of the same geographical region,
acquired at different dates or from different sensors, in
order to be processed together. In this case, the role of
image registration is to make the pixels in the two
images precisely coincide with the same points on the
ground [8]. Two images can be registered to each other
by registering each to a map coordinate base separately,
or one image can be chosen as a master to which the
other is to be registered [16]. However, due to the dif-
ferent physical characteristics of the different sensors,
the problem of registration is more complex than regis-
tration of images from the same type of sensors [18]
and has also to face problems like features present in
one image that might appear only partially in the other
image or do not appear at all. Contrast reversal in some
image regions, multiple intensity values in one image
that need to be mapped to a single intensity value in the
other or considerably dissimilar images of the same
scene produced by the image sensor when configured
with different imaging parameters are also problems to
be solved by the registration techniques.
Many image registration methods have been proposed

in the literature. They can be classified into two cate-
gories: area-based methods and feature-based methods.
Examples of area-based methods, which deal with the
images without attempting to detect common objects,
include Fourier methods, cross-correlation and mutual
information methods [19]. Since gray-level values of the
images to be matched may be quite different, and taking
into account that for any two different image modalities,
neither the correlation nor the mutual information is
maximal when the images are spatially aligned, area-
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based techniques are not well adapted to the multisen-
sor image registration problem[18]. Feature-based meth-
ods, which extract and match the common structures
(features) from two images, have been shown to be
more suitable for this task. Example methods in this
category include methods using spatial relations, those
based on invariant descriptors, relaxation, and pyramidal
and wavelet image decompositions, among others [19].

2.2 Image upsampling and interpolation
When the registered remote sensing image is too coarse
and does not meet the required resolution, upsampling
may be needed to obtain a higher-resolution version of
the image. The upsampling process may involve interpo-
lation, usually performed via convolution of the image
with an interpolation kernel [20]. In order to reduce the
computational cost, preferably separable interpolants
have been considered [19]. Many interpolants for var-
ious applications have been proposed in the literature. A
brief discussion of interpolation methods used for image
resampling is provided in [19]. Interpolation methods
specific to remote sensing, as the one described in [21],
have been proposed. In [22], the authors study the
application of different interpolation methods to remote
sensing imagery. These methods include nearest neigh-
bor interpolation that only considers the closest pixel to
the interpolated point, thus requiring the least proces-
sing time of all interpolation algorithms, bilinear inter-
polation that creates the new pixel in the target image
from a weighted average of its four nearest neighboring
pixels in the source image and interpolation with
smoothing filter that produces a weighted average of the
pixels contained in the area spanned by the filter mask.
This process produces images with smooth transitions
in gray level, while interpolation with sharpening filter
enhances details that have been blurred and highlights
fine details. However, sharpening filters produce aliasing
in the output image, an undesirable effect that can be
avoided applying interpolation with unsharp masking
that subtracts a blurred version of an image from the
image itself. The authors of [22] conclude that only
bilinear interpolation, interpolation with smoothing filter
and interpolation with unsharp masking have the poten-
tial to be used to interpolate remote sensing images.
Note that interpolation does not increase the high-fre-
quency detail information in the image but it is needed
to match the number of pixels of images with different
spatial resolutions.

2.3 Histogram matching
Some pansharpening algorithms assume that the spec-
tral characteristics of the PAN image match those of
each band of the MS image or match those of a

transformed image based on the MS image. Unfortu-
nately, this is not usually the case [16], and those pan-
sharpening methods are prone to spectral distortions.
Matching the histograms of the PAN image and MS
bands will minimize brightness mismatching during the
fusion process, which may help to reduce the spectral
distortion in the pansharpened image. Although there
are general purpose histogram matching techniques, as
the ones described, for instance in [16] and [20], that
could be used in remote sensing, specific techniques like
the one presented in [23] are expected to provide more
appropriate images for the application of pansharpening
techniques. The technique in [23] minimizes the modifi-
cation of the spectral information of the fused high-
resolution multispectral (HRMS) image with respect to
the original low-resolution multispectral (LRMS) image.
This method modifies the value of the PAN image at
each pixel (i, j) as

StretchedPAN(i, j) = (PAN(i, j) − μPAN)
σb

σPAN
+ μb, (1)

where μPAN and μb are the mean of the PAN and MS
image band b, respectively, and sPAN and sb are the
standard deviation of the PAN and MS image band b,
respectively. This technique ensures that the mean and
standard deviation of PAN image and MS bands are
within the same range, thus reducing the chromatic dif-
ference between both images.

3 Pansharpening categories
Once the remote sensing images are pre-processed in
order to satisfy the pansharpening method requirements,
the pansharpening process is performed. The literature
shows a large collection of these pansharpening methods
developed over the last two decades as well as a large
number of terms used to refer to image fusion. In 1980,
Wong et al.[24] proposed a technique for the integration
of Landsat Multispectral Scanner (MSS) and Seasat syn-
thetic aperture radar (SAR) images based on the modu-
lation of the intensity of each pixel of the MSS channels
with the value of the corresponding pixel of the SAR
image, hence named intensity modulation (IM) integra-
tion method. Other scientists evaluated multisensor
image data in the context of co-registered [25], resolu-
tion enhancement [26] or coincident [27] data analysis.
After the launch of the French SPOT satellite system

in February of 1986, the civilian remote sensing sector
was provided with the capability of applying high-resolu-
tion MS imagery to a range of land use and land cover
analyses. Cliche et al.[28] who worked with SPOT simu-
lation data prior to the satellite’s launch showed that
simulated 10-m resolution color images can be pro-
duced by modulating each SPOT MS (XS) band with
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PAN data individually, using three different intensity
modulation (IM) methods. Welch et al.[29] used the
term “merge” instead of “integration” and proposed
merging of SPOT PAN and XS data using the Intensity-
Hue-Saturation (IHS) transformation, a method pre-
viously proposed by Haydn et al.[30] to merge Landsat
MSS with Return Beam Vidicon (RBV) data and Landsat
MSS with Heat Capacity Mapping Mission data. In
1988, Chavez et al.[31] used SPOT panchromatic data
to “sharpen” Landsat Thematic Mapper (TM) images by
high-pass filtering (HPF) the SPOT PAN data before
merging it with the TM data. A review of the so-called
classical methods, which include IHS, HPF, Brovey
transform (BT) [32] and principal component substitu-
tion (PCS) [33,34], among others, can be found in [9].
In 1987, Price [35] developed a fusion technique based

on the statistical properties of remote sensing images,
for the combination of the two different spatial resolu-
tions of the High Resolution Visible (HRV) SPOT sen-
sor. Besides the Price method, the literature shows other
pansharpening methods based on the statistical proper-
ties of the images, such as spatially adaptive methods
[36] and Bayesian-based methods [37,38].
More recently, multiresolution analysis employing the

generalized Laplacian pyramid (GLP) [39,40], the dis-
crete wavelet transform [41,42] and the contourlet
transform [43-45] has been used in pansharpening using
the basic idea of extracting the spatial detail information
from the PAN image not present in the low-resolution
MS image, to inject it into the later.
Image fusion methods have been classified in several

ways. Schowengerdt [8] classified them into spectral
domain, spatial domain and scale-space techniques. Ran-
chin and Wald [46] classified them into three groups:
projection and substitution methods, relative spectral
contribution methods and those relevant to the ARSIS
concept (from its French acronym “Amélioration de la
Résolution Spatiale par Injection de Structures” which
means “Enhancement of the spatial resolution by struc-
ture injections”). It was found that many of the existing
image fusion methods, such as the HPF and additive
wavelet transform (AWT) methods, can be accommo-
dated within the ARSIS concept [13], but Tu et al.[47]
found that the PCS, BT and AWT methods could be
also considered as IHS-like image fusion methods.
Meanwhile, Bretschneider et al.[12] classified IHS and
PCA methods as transformation-based methods, in a
classification that also included more categories such as
addition and multiplication fusion, filter fusion (which
includes HPF method), fusion based on inter-band rela-
tions, wavelet decomposition fusion and further fusion
methods (based on statistical properties). Fusion meth-
ods that involve linear forward and backward transforms
had been classified by Sheftigara [48] as component

substitution methods. Recently, two comprehensive fra-
meworks that generalize previously proposed fusion
methods such as IHS, BT, PCA, HPF or AWT and
study the relationships between different methods have
been proposed in [14,15].
Although it is not possible to find a universal classifi-

cation, in this work we classify the pansharpening meth-
ods into the following categories according to the main
technique they use:
(1) Component Substitution (CS) family, which

includes IHS, PCS and Gram-Schmidt (GS), because all
these methods utilize, usually, a linear transformation
and substitution for some components in the trans-
formed domain.
(2) Relative Spectral Contribution family, which

includes BT, IM and P+XS, where a linear combination
of the spectral bands, instead of substitution, is applied.
(3) High-Frequency Injection family, which includes

HPF and HPM, where these two methods inject high-
frequency details extracted by subtracting a low-pass fil-
tering PAN image from the original one.
(4) Methods based on the statistics of the image,

which include Price and spatially adaptive methods,
Bayesian-based and super-resolution methods.
(5) Multiresolution family, which includes generalized

Laplacian pyramid, wavelet and contourlet methods and
any combination of multiresolution analysis with meth-
ods from other categories.
Note that although the proposed classification defines

five categories, as we have already mentioned, some
methods can be classified in several categories and, so,
the limits of each category are not sharp and there are
many relations among them. The relations will be
explained when the categories are described.

3.1 Component substitution family
The component substitution (CS) methods start by
upsampling the low-resolution MS image to the size of
the PAN image. Then, the MS image is transformed
into a set of components, using usually a linear trans-
form of the MS bands. The CS methods work by substi-
tuting a component of the (transformed) MS image, Cl,
with a component, Ch, from the PAN image. These
methods are physically meaningful only when these two
components, Cl and Ch, contain almost the same spec-
tral information. In other words, the Cl component
should contain all the redundant information of the MS
and PAN images, but Ch should contain more spatial
information. An improper construction of the Cl com-
ponent tends to introduce high spectral distortion. The
general algorithm for the CS sharpening techniques is
summarized in Algorithm 1. This algorithm has been
generalized by Tu et al.[47], where the authors also
prove that the forward and backward transforms are not
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needed and steps 2-5 of Algorithm 1 can be summar-
ized as finding a new component Cl and adding the dif-
ference between the PAN and this new component to
each upsampled MS image band. This framework has
been further extended by Wang et al.[14] and Aiazzi et
al.[15] in the so-called general image fusion (GIF) and
extended GIF (EGIF) protocol, respectively.
Algorithm 1 Component substitution pansharpen-

ing

1. Upsample the MS image to the size of the PAN
image.
2. Forward transform the MS image to the desired
components.
3. Match the histogram of the PAN image with the
Cl component to be substituted.
4. Replace the Cl component with the histogram-
matched PAN image.
5. Backward transform the components to obtain the
pansharpened image.

The CS family includes many popular pansharpening
methods, such as the IHS, PCS and Gram-Schmidt (GS)
methods [48,49], each of them involving a different
transformation of the MS image. CS techniques are
attractive because they are fast and easy to implement
and allow users’ expectations to be fulfilled most of the
time, since they provide pansharpened images with good
visual/geometrical quality in most cases [50]. However,
the results obtained by these methods highly depend on
the correlation between the bands, and since the same
transform is applied to the whole image, it does not
take into account local dissimilarities between PAN and
MS images [10,51].
A single type of transform does not always obtain the

optimal component required for substitution, and it
would be difficult to choose the appropriate spectral
transformation method for diverse data sets. In order to
alleviate this problem, recent methods incorporate sta-
tistical tests or weighted measures to adaptively select
an optimal component for substitution and transforma-
tion. This results in a new approach known as adaptive
component substitution [52-54].
The Intensity-Hue-Saturation (IHS) pansharpening

method [31,55] is one of the classical techniques
included in this family, and it uses the IHS color space,
which is often chosen due to the tendency of the visual
cognitive system of human beings to treat the intensity
(I), hue (H) and saturation (S) components as roughly
orthogonal perceptual axes. IHS transform originally
was applied to RGB true color, but in the remote sen-
sing applications and for display purposes only, arbitrary
bands are assigned to RGB channel to produce false
color composites [14]. The ability of IHS transform to

separate effectively spatial information (band I) and
spectral information (bands H and S) [20] makes it very
applicable in pan-sharpening. There are different models
of IHS transform, differing in the method used to com-
pute the intensity value. Smith’s hexacone and triangular
models are two of the most widely used ones [7]. An
example of pansharpened image using IHS method is
shown in Figure 2b.
The major limitation of this technique is that only

three bands are involved. Tu et al.[47] proposed a gen-
eralized IHS transform that surpasses the dimensional
limitation. In any case, since the spectral response of I,
as synthesized from the MS bands, does not generally
match the radiometry of the histogram-matched PAN
[50], when the fusion result is displayed in color compo-
sition, large spectral distortion may appear as color
changes. In order to minimize the spectral distortion in
IHS pansharpening, Tu et al.[56] proposed a new adap-
tive IHS method in which the intensity band approxi-
mates the PAN image for IKONOS images as closely as
possible. This adaptive IHS has been extended by Rah-
mani et al.[52] to deal with any kind of image by deter-
mining the coefficients ai that best approximate

PAN =
∑
i

αiMSi, (2)

subject to the physical constraint of nonnegativity of
the coefficients ai. Note that, although this method
reduces spectral distortion, local dissimilarities between
MS and PAN images might remain [10].
Another method in the CS family is principal compo-

nent substitution (PCS) that relies on the principal
component analysis (PCA) mathematical transforma-
tion. The PCA, also known as the Karhunen-Loéve
transform or the Hotelling transform, is widely used in
signal processing, statistics and many other areas. This
transformation generates a new set of rotated axes, in
which the new image spectral components are not cor-
related. The largest amount of the variance is mapped
to the first component, with decreasing variance going
to each of the following ones. The sum of the var-
iances in all the components is equal to the total var-
iance present in the original input images. PCA and
the calculation of the transformation matrices can be
performed following the steps specified in [20]. Theo-
retically, the first principal component, PC1, collects
the information that is common to all bands used as
input data to the PCA, i.e., the spatial information,
while the spectral information that is specific to each
band is captured in the other principal components
[42,33]. This makes PCS an adequate technique when
merging MS and PAN images. PCS is similar to the
IHS method, with the main advantage that an arbitrary
number of bands can be considered. However, some
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spatial information may not be mapped to the first
component, depending on the degree of correlation
and spectral contrast existing among the MS bands
[33], resulting in the same problems that IHS had. To
overcome this drawback, Shah et al.[53] proposed a
new adaptive PCA-based pansharpening method that
determines, using cross-correlation, the appropriate PC
component to be substituted by the PAN image. By
replacing this PC component by the high spatial reso-
lution PAN component, adaptive PCA method will
produce better results than traditional ones [53].
A widespread CS technique is the Gram-Schmidt (GS)

spectral sharpening. This method was invented by
Laben and Brover in 1998 and patented by Eastman
Kodak [57]. The GS transformation, as described in
[58], is a common technique used in linear algebra and
multivariate statistics. GS is used to orthogonalize
matrix data or bands of a digital image removing redun-
dant (i.e., correlated) information that is contained in
multiple bands. If there were perfect correlation between
input bands, the GS orthogonalization process would
produce a final band with all its elements equal to zero.
For its use in pansharpening, GS transformation had
been modified [57]. In the modified process, the mean
of each band is subtracted from each pixel in the band
before the orthogonalization is performed to produce a
more accurate outcome.
In GS-based pansharpening, a lower-resolution PAN

band needs to be simulated and used as the first band

of the input to the GS transformation, together with the
MS image. Two methods are used in [57] to simulate
this band; in the first method, the LRMS bands are
combined into a single lower-resolution PAN (LR PAN)
as the weighted mean of MS image. These weights
depend on the spectral response of the MS bands and
high-resolution PAN (HR PAN) image and on the opti-
cal transmittance of the PAN band. The second method
simulates the LR PAN image by blurring and subsam-
pling the observed PAN image. The major difference in
results, mostly noticeable in a true color display, is that
the first method exhibits outstanding spatial quality, but
spectral distortions may occur. This distortion is due to
the fact that the average of the MS spectral bands is not
likely to have the same radiometry as the PAN image.
The second method is unaffected by spectral distortion
but generally suffers from a lower sharpness and spatial
enhancement. This is due to the injection mechanism of
high-pass details taken from PAN, which is embedded
into the inverse GS transformation, carried out by using
the full-resolution PAN, while the forward transforma-
tion uses the low-resolution approximation of PAN
obtained by resampling the decimated PAN image pro-
vided by the user. In order to avoid this drawback,
Aiazzi et al.[54] proposed an Enhanced GS method,
where the LR PAN is generated by a weighted average
of the MS bands and the weights are estimated to mini-
mize the MMSE with the downsampled PAN. GS is
more general than PCA, which can be understood as a

(a) Original LRMS image (b) IHS

(c) BT (d) HPF

Figure 2 Results of some classical pansharpening methods using SPOT five images.
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particular case of GS in which LR PAN is the first prin-
cipal component [15].

3.2 Relative Spectral Contribution (RSC) family
The RSC family can be considered as a variant of the CS
pansharpening family, when a linear combination of the
spectral bands, instead of substitution, is applied.
Let PANh be the high spatial resolution PAN image,

MSlb the b low-resolution MS image band, h the origi-

nal spatial resolution of PAN and l the original spatial

resolution of MSb (l <h), while MShb is the image MSlb
the b low-resolution MS image band, h the original spa-
tial resolution of PAN and l the original spatial resolu-

tion of MSb (l <h), while MSlb resampled at resolution

h. RSC works only on the spectral bands MSlb the b

low-resolution MS image band, h the original spatial
resolution of PAN and l the original spatial resolution

of MSb (l <h), while MSlb lying within the spectral range

of the PANh image. The synthetic (pansharpened) bands

HRMShb are given at each pixel (i, j) by

HRMShb(i, j) =
MShb(i, j)PAN

h(i, j)∑
b MShb(i, j)

, (3)

where b = 1, 2, ..., B and B is the number of MS
bands. The process flow diagram of RSC sharpening
techniques is shown in Algorithm 2. This family does

not tell what to do when MSlb the b low-resolution MS

image band, h the original spatial resolution of PAN
and l the original spatial resolution of MSb (l <h), while

MSlb lies outside the spectral range of PANh. In Equa-

tion 3 there is an influence of the other spectral bands

on the assessment of MSlb the b low-resolution MS

image band, h the original spatial resolution of PAN
and l the original spatial resolution of MSb (l <h), while

HRMShb , thus causing a spectral distortion. Furthermore,

the method does not preserve the original spectral con-

tent once the pansharpened images HRMShb are brought

back to the original low spatial resolution [46]. These
methods include the Brovey transform (BT) [32], the P
+ XS [59,60] and the intensity modulation (IM) method
[61].
Algorithm 2 Relative spectral contribution panshar-

pening

1. Upsample the MS image to the size of the PAN
image.
2. Match the histogram of the PAN image with each
MS band.

3. Obtain the pansharpened image by applying
Equation 3.

The Brovey transform (BT), named after its author, is a
simple method to merge data from different sensors
based on the chromaticity transform [32], with the lim-
itation that only three bands are involved [42,14]. A
pansharpened image using the BT method is shown in
Figure 2(c).
The Brovey transform provides excellent contrast in

the image domain but greatly distorts the spectral char-
acteristics [62]. The Brovey sharpened image is not sui-
table for pixel-based classification as the pixel values are
changed drastically [7]. A variation of the BT method
subtracts the intensity of the MS image from the PAN
image before applying Equation 3 [14]. Although the
first BT method injects more spatial details, the second
one preserves better the spectral details.
The concept of intensity modulation (IM) was origin-

ally proposed by Wong et al.[24] in 1980 for integrating
Landsat MSS and Seasat SAR images. Later, this method
was used by Cliche et al.[28] for enhancing the spatial
resolution of three-band SPOT MS (XS) images. As a
method in the relative spectral contribution family, we
can derive IM from Equation 3, by replacing the sum of
all MS bands, by the intensity component of the IHS
transformation [6]. Note that the use of the IHS trans-
formation limits to three the number of bands utilized
by this method. The intensity modulation may cause
color distortion if the spectral range of the intensity
replacement (or modulation) image is different from the
spectral range covered by the three bands used in the
color composition [63]. In the literature, different ver-
sions based on the IM concept have been used [6,28,63].
The relations between RSC and CS families have been

deeply studied in [14,47] where these families are con-
sidered as a particular case of the GIHS and GIF proto-
cols, respectively. The authors also found that RSC
methods are closely CS, with the difference, as already
commented, that the contribution of the PAN varies
locally.

3.3 High-frequency injection family
The high-frequency injection family methods were first
proposed by Schowengerdt [64], working on full-resolu-
tion and spatially compressed Landsat MSS data. He
demonstrated the use of a high-resolution band to
“sharpen” or edge-enhance lower-resolution bands hav-
ing the same approximate wavelength characteristics.
Some years later, Chavez [65] proposed a project whose
primary objective was to extract the spectral information
from the Landsat TM and combine (inject) it with the
spatial information from a data set having much higher
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spatial resolution. To extract the details from the high-
resolution data set, he used a high-pass filter in order to
“enhance the high-frequency/spatial information but,
more important, suppress the low frequency/spectral
information in the higher-resolution image” [31]. This
was necessary so that simple addition of the images did
not distort the spectral balance of the combined
product.
A useful concept for understanding spatial filtering is

that any image is made of spatial components at differ-
ent kernel sizes. Suppose we process an image in such a
way that the value at each output pixel is the average of
a small neighborhood of input pixels, a box filter. The
result is a low-pass (LP) blurred version of the original
image that will be noted as LP. Subtracting this image
from the original one produces high-pass (HP) image
that represents the difference between each original
pixel and the average of its neighborhood. This relation
can be written as the following equation:

image(i, j) = LP(i, j) +HP(i, j), (4)

which is valid for any neighborhood size (scale). As
the neighborhood size is increased, the LP image hides
successively larger and larger structures, while the HP
image picks up the smaller structures lost in the LP
image (see Equation 4) [8].
The idea behind this type of spatial domain fusion is

to transfer the high-frequency content of the PAN
image to the MS images by applying spatial filtering
techniques [66]. However, the size of the filter kernels
cannot be arbitrary because it has to reflect the radio-
metric normalization between the two images. Chavez
et al.[34] suggested that the best kernel size is approxi-
mately twice the size of the ratio of the spatial resolu-
tions of the sensors, which produce edge-enhanced
synthetic images with the least spectral distortion and
edge noises. According to [67], pansharpening methods
based on injecting high-frequency components into
resampled versions of the MS data have demonstrated a
superior performance and compared with many other
pansharpening methods such as the methods in the CS
family. Several variations of high-frequency injection
pansharpening methods have been proposed as High-
Pass Filtering Pansharpening and High Pass Modulation.
As we have already mentioned, the main idea of the

high-pass filtering (HPF) pansharpening method is to
extract from the PAN image the high-frequency infor-
mation, to later add or inject it into the MS image pre-
viously expanded to match the PAN pixel size. This
spatial information extraction is performed by applying
a low-pass spatial filter to the PAN image,

filteredPAN = h0 ∗ PAN, (5)

where h0 is a low-pass filter and * the convolution
operator. The spatial information injection is performed
adding, pixel by pixel, the filtered image that results
from subtracting filteredPAN from the original PAN
image, to the MS one [31,68]. There are many different
filters that can be used: Box filter, Gaussian, Laplacian,
and so on. Recently, the use of the modulation transfer
function (MTF) of the sensor as the low-pass filter has
been proposed in [69]. The MTF is the amplitude spec-
trum of the system point spread function (PSF) [70]. In
[69], the HP image is also multiplied by a weight
selected to maximize the Quality Not requiring a Refer-
ence (QNR) criterion proposed in the paper.
As expected, HPF images present low spectral distor-

tion. However, the ripple in the frequency response will
have some negative impact [14]. The HPF method could
be considered the predecessor of an extended group of
image pansharpening procedures based on the same
principle: to extract spatial detail information from the
PAN image not present in the MS image and inject it
into the latter in a multiresolution framework. This
principle is known as the ARSIS concept [46].
In the High Pass Modulation (HPM), also known as

High Frequency Modulation (HFM) algorithm [8], the
PAN image is multiplied by each band of the LRMS
image and normalized by a low-pass filtered version of
the PAN image to estimate the enhanced MS image
bands. The principle of HPM is to transfer the high-fre-
quency information of the PAN image to the LRMS
band b (LRMSb) with a modulation coefficient kb which
equals the ratio between the LRMS and the low-pass fil-
tered version of the PAN image [14]. Thus, the algo-
rithm assumes that each pixel of the enhanced
(sharpened) MS image in band b is simply proportional
to the corresponding higher-resolution image at each
pixel. This constant of proportionality is a spatially vari-
able gain factor, calculated by,

kb(i, j) =
LRMSb(i, j)

filteredPAN(i, j)
, (6)

where filteredPAN is a low-pass filtered version of PAN
image (see Equation 5) [8]. According to [14] (where
HFI has also been formulated into the GIF framework
and relations with CS, RSC and some multiresolution
family methods are explored) when the low-pass filter is
chosen as in the HPF method, the HPM method will
give slightly better performance than HPF because the
color of the pixels is not biased toward gray.
The process flow diagram of the HFI sharpening tech-

niques is shown in Algorithm 3. Also, a pansharpened
image using the HPM method is shown in Figure 2d.
Note that the HFI methods are closely related, as we
will see later, to the multiresolution family. The main
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differences are the types of filter used, that a single level
of decomposition is applied to the images and the differ-
ent origins of the approaches.
Algorithm 3 High-frequency injection pansharpen-

ing

1. Upsample the MS image to the size of the PAN
image.
2. Apply a low-pass filter on the PAN image using
Equation 5.
3. Calculate the high-frequency image by subtracting
the filtered PAN from the original PAN.
4. Obtain the pansharpened image by adding the
high-frequency image to each band of the MS image
(modulated by the factor kb(i, j) in Equation 6 in the
case of HPM).

3.4 Methods based on the statistics of the image
The methods based on the statistics of the image
include a set of methods that exploit the statistical char-
acteristics of the MS and PAN images in the panshar-
pening process. The first known method in this family
was proposed by Price [35] to combine PAN and MS
imagery from dual-resolution satellite instruments based
on the substantial redundancy existing in the PAN data
and the local correlation between the PAN and MS
images. Later, the method was improved by Price [71]
by computing the local statistics of the images and by
Park et al.[36] in the so-called spatially adaptive
algorithm.
Price’s method [71] uses the statistical relationship

between each band of the LRMS image and HR images
to sharpen the former. It models the relationship
between the pixels of each band of the HRMS zb, the
PAN image x and the corresponding band of the LRMS
image yb linearly as

zb − ŷb = â(x − x̂), (7)

where ŷb is the band b of the LRMS image y
upsampled to the size of the HRMS image by pixel
replication, x̂ represents the panchromatic image down-
sampled to the size of the MS image by averaging the
pixels of x in the area covered by the pixels of y and
upsampling again to its original size by pixel replication,
and â is a matrix defined as the upsampling, by pixel
replication, of a weight matrix a whose elements are cal-
culated from a window 3 × 3 of each LR image pixel.
Price’s algorithm succeeds in preserving the low-reso-

lution radiometry in the fusion process, but sometimes,
it produces blocking artifact because it uses the same
weight for all the HR pixels corresponding to one LR
pixel. If the HR and LR images have little correlation,
the blocking artifacts will be severe. A pansharpened
image using Price’s method proposed in [71] is shown
in Figure 3a.
The spatially adaptive algorithm [36] starts from

Price’s method [71], but with a more general and
improved mathematical model. It features adaptive
insertion of information according to the local correla-
tion between the two images, preventing spectral distor-
tion as much as possible and sharpening the MS images
simultaneously. This algorithm has also the advantage
that a number of high-resolution images, not only one
PAN image, can be utilized as references of high-fre-
quency information, which is not the case for most
methods [36].
Besides those methods, most of the papers in this

family have used the Bayesian framework to model the
knowledge about the images and estimate the panshar-
pened image. Since the work of Mascarenhas [37], a
number of pansharpening methods have been proposed
using the Bayesian framework (see [72,73] for instance).
Bayesian methods model the degradation suffered by

the original HRMS image, z, as the conditional probabil-
ity distribution of the observed LRMS image, y, and the
PAN image, x, given the original z, called the likelihood
and denoted as p(y, x|z). They take into account the

(a) Price (b) Super-resolution [76]

Figure 3 Results of some statistical pansharpening methods using SPOT five images.
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available prior knowledge about the expected character-
istics of the pansharpened image, modeled in the so-
called prior distribution p(z), to determine the posterior
probability distribution p(z|y, x) by using Bayes law,

p(z|y, x) = p(y, x|z)p(z)
p(y, x)

, (8)

where p(y, x) is the joint probability distribution.
Inference is performed from the posterior distribution
to draw estimates of the HRMS image, z.
The main advantage of the Bayesian approach is to

place the problem of pansharpening into a clear prob-
abilistic framework [73], although assigning suitable dis-
tributions for the conditional and prior distributions and
the selection of an inference method are critical points
that lead to different Bayesian-based pansharpening
methods.
As prior distribution, Fasbender et al.[73] assumed a

noninformative prior p(z) ∝ 1, which gives equal prob-
ability to all possible solutions, that is, no solution is
preferred as no clear information on the HRMS image
is available. This prior has also been used by Hardie et
al.[74]. In [37], the prior information is carried out by
an interpolation operator and its covariance matrix;
both will be used as the mean vector and the covariance
matrix, respectively, for a Bayesian synthesis process. In
[75], the prior knowledge about the smoothness of the
object luminosity distribution within each band makes it
possible to model the distribution of z using a simulta-
neous autoregressive model (SAR) as

p(z) =
B∏
b=1

p(zb) ∝
B∏
b=1

exp
{
−1
2

αb||Czb||2
}

(9)

where C denotes the Laplacian operator and 1/ab is
the variance of the Gaussian distribution of zb, b = 1, ...,
B, with B being the number of bands in the MS image.
More advanced models try to incorporate a smoothness
constrain while preserving the edges in the image.
Those models include adaptive SAR model [38], Total
Variation (TV) [76], Markov Random Fields (MRF) [77]-
based models and Stochastic Mixing Models (SMM)
[78]. Note that the described models do not take into
account the correlations between the MS bands. In [79],
the authors propose a TV prior model to take into
account spatial pixel relationships and a quadratic
model to enforce similarity between the pixels in the
same position in the different bands.
It is usual to model the LRMS and PAN images as

degraded versions of the HRMS image by two different
processes: one modeling the LRMS image and usually
described as

y = gs(z) + ns, (10)

where gs(z) represents a function that relates z to y
and ns represents the noise of the LRMS image, and a
second one that models how the PAN image is obtained
from the HRMS image, which is written as

x = gp(z) + np, (11)

where gp(z) represents a function that relates z to x
and np represents the noise of the PAN image. Note
that, since the success of the pansharpening algorithm
will be limited by the accuracy of those models, the phy-
sics of the sensor should be considered. In particular,
the MTF of the sensor and the sensor’s spectral
response should be taken into account.
The conditional distribution of the observed images

given the original one, p(y, x|z), is usually defined as

p(y, x|z) = p(y|z)p(x|z) (12)

by considering that the observed LRMS image and the
PAN image are independent given the HRMS image.
This allows an easier formulation of the degradation
models. However, Fasbender et al.[73] took into account
that y and x may carry information of quite different
quality about z and defined p(y, x|z) = p(y|z)2(1-w)p(x|z)
2w, where the parameter w Î [0, 1] can be interpreted as
the weight to be given to the panchromatic information
at the expense of the MS information. Note that w = 0.5
leads back to Equation 12 while a value of zero or one
means that we are discarding the PAN or the MS
image, respectively.
Different models have been proposed for the condi-

tional distributions p(y|z) and p(x|z). The simpler model
is to assume that gs(z) = z, so that y will be then y = z +
ns [73] where ns ~ N(0, Σs). Note that in this case, y has
the same resolution as z so an interpolation method has
to be used to obtain y from the observed MS image.
However, most of the authors consider the relation y =
Hz + ns where H is a matrix representing the blurring,
usually represented by its MTF, the sensor integration
function and the spatial subsampling and ns is the cap-
ture noise, assumed to be Gaussian with zero mean and
variance 1/b, leading to the distribution

p(y|z) ∝ exp
{
−1
2

β||y − Hz||2
}
. (13)

This model has been extensively used [77,78,80], and
it is the base for the so-called super-resolution-based
methods [81] as the ones described, for instance, in
[38,76]. The degradation model in [37] can be also writ-
ten in this way. A pansharpened image using the super-
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resolution method proposed in [76] is shown in Figure
3b.
On the other hand, gp(z) has been defined as a linear

regression model linking the MS pixels to the PAN
ones, as estimated from both observed images, so that

gp(z) = a +
∑B

b=1 λbzb , where a and lb, b = 1, 2, ..., B,

are the regression parameters. Note that this model is
used by IHS, PCA and Brovey methods to relate the
PAN and HRMS images. Mateos et al.[82] (and also
[38,76,77] for instance) used a special case for gp(z),
where a = 0 and lb ≥ 0, b = 1, 2, ..., B are known quan-
tities that can be obtained from the sensor spectral
characteristics (see Figure 4 for the Landsat 7 ETM+
spectral response) that represent the contribution of
each MS band to the PAN image. In all those papers,
the noise np is assumed to be Gaussian with zero mean
and covariance matrix Cp and hence,

p(x|z) ∝ exp
{
−1
2
((x − gp(z))

tC−1
p (x − gp(z))

}
. (14)

Finally, we want to mention that a similar approach
has been used in the problem of hyperspectral (HS)
resolution enhancement in which a HS image is shar-
pened by a higher-resolution MS or PAN image. In this
context, Eismann and Hardie [80,78] and other authors
later (see for instance [83]) proposed to use the model x
= Stz + n, where z is the HR original HS image, x is a
HRMS or PAN image used to sharpen a LRHS image, S
is the spectral response matrix, and n is assumed to be
a spatially independent zero-mean Gaussian noise with
covariance matrix C. The spectral response matrix is a
sparse matrix that contains in each column the spectral
response of a MS band of x. Note that in the case of
pansharpening, the image x has only one band and the
matrix S will be a column vector with components lb as
in the model proposed in [82].
Once the prior and conditional distributions have

been defined, Bayesian inference is performed to find an
estimate of the original HRMS image. Different methods

have been used in the literature to carry out the infer-
ence, depending on the form of the chosen distributions.
Maximum likelihood (ML) [73], linear minimum mean
square error (LMMSE) [83], maximum a posteriori
(MAP) [74], the variational approach [38,76] and simu-
lated annealing [77] are some of the techniques used.
Bayesian methods usually end up with an estimation of
the HRMS image z that is a convex combination of the
LRMS image, upsampled to the size of the HRMS image
by inverting the degradation model, the PAN image, and
the prior knowledge about the HRMS image. The com-
bination factors usually are pixel adaptive and related to
the spectral characteristics of the images.
Although all approaches already mentioned use the

hypothesis of Gaussian additive noise for mathematical
convenience, in practice, remote sensing imagery noise
shows non-Gaussian characteristics [84]. In some appli-
cations, such as astronomical image restoration, Poisson
noise is usually used, or a shaping filter [85] may be
used in order to transform non-Gaussian noise into
Gaussian. Recently, Niu et al.[84] proposed the use of a
mixture of Gaussian (MoG) noise for multisensor fusion
problems.

3.5 Multiresolution Family
In order to extract or modify the spatial information in
remote sensing images, spatial transforms represent also
a very interesting tool. Some of these transforms use
only local image information (i.e., within a relatively
small neighborhood of a given pixel), such as convolu-
tion, while others use frequency content, such as the
Fourier transform. Beside these two extreme transforma-
tions, there is a need for a data representation allowing
the access to spatial information over a wide range of
scales from local to global [8]. This increasingly impor-
tant category of scale-space filters utilize multiscale
decomposition techniques such as Laplacian pyramids
[86], wavelet transform [41], contourlet transform [43]
and curvelets transform. These techniques are used in
pansharpening to decompose MS and PAN images in

Figure 4 Landsat 7 ETM+ band spectral response.
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different levels in order to derive spatial details that are
imported into finer scales of the MS images, highlight
the relationship between PAN and MS images in coarser
scales and enhance spatial details [87]. This is the idea
behind the methods based on the successful ARSIS
(from French “Amèlioration de la Résolution by Struc-
ture Injection”) concept [46].
We will now describe each of the above multiresolu-

tion methods and their different types in detail.
Multiresolution analysis based on the Laplacian pyra-

mid (LP), originally proposed in [86], is a bandpass
image decomposition derived from the Gaussian pyra-
mid (GP) which is a multiresolution (multiscale) image
representation obtained through a recursive reductions
of the image. LP is an oversampled transform that
decomposes the image into nearly disjoint bandpass
channels in the spatial frequency domain, without losing
the spatial connectivity of its edges [88]. Figure 5 shows
the concept of GP and its relation to LP. The general-
ized Laplacian pyramid (GLP) is an extension of the LP
where a scale factor different of two is used [89]. An
attractive characteristic of the GLP is that the low-pass
reduction filter, used to analyze the PAN image, may be
designed to match the MTF of the band into which the
details extracted will be injected. The benefit is that the
restoration of the spatial frequency content of the MS
band is embedded into the enhancement procedure of
the band itself, instead of being accomplished ahead of
time.
The steps for merging Landsat images using this GLP

are described in Algorithm 4, where different injection
methods can be used with GLP [40,90]. In this context,
injection means adding the details from the GLP to
each MS band weighted by the coefficients obtained by
the injection method. The Spectral Distortion Minimiz-
ing (SDM) injection model is both a spatially and spec-
trally varying model where the injected details at a pixel

position must be parallel to the resampled MS vector at
the same resolution. At the same time, the details are
weighted to minimize the radiometric distortion mea-
sured as the Spectral Angle Mapper (SAM). In Context-
Based Decision (CBD) injection model, the weights are
calculated locally between the MS band resampled to
the scale of the PAN image and an approximation of
the PAN image at the resolution of the MS bands.
Details are only injected if the local correlation coeffi-
cient between those images, calculated on a window of
size N × N, is larger than a given threshold. The CBD
model is uniquely defined by the set of thresholds, gen-
erally different for each band, and by the window size
N, depending on the spatial resolutions and scale ratio
of the images to be merged, as well as on the landscape
characteristics, to avoid loss of local sensitivity [40].
Pansharpened images using wavelet/contourlet-based
methods are shown in Figure 6.
Algorithm 4 General Laplacian Pyramid-based pan-

sharpening

1. Upsample each MS band to the size of the PAN
image.
2. Apply GLP on the PAN image.
3. According to the injection model, select the weights
for the details from GLP at each level.
4. Obtain the pansharpened image by adding the
details from the GLP to each MS band weighted by
the coefficients obtained in the previous step.

The Ranchin-Wald-Mangolini (RWM) injection model
[40], unlike the SDM and CBD models, is calculated on
bandpass details instead of approximations. RWM mod-
els the MS details as a space and spectral-varying linear
combination of the PAN image coefficients.
Another popular category of multiresolution panshar-

pening methods is the one based on Wavelet and

Figure 5 Laplacian pyramid created from Gaussian pyramid by subtraction.
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Contourlet. Wavelet provide a framework for the
decomposition of images into a hierarchy with a
decreasing degree of resolution, separating detailed spa-
tial information between successive levels [91]. The dis-
crete approach of the wavelet transform, named discrete
wavelet transform (DWT), can be performed using sev-
eral different approaches, probably the most popular
ones for image pansharpening being Mallat’s
[42,46,92,93] and the “a’ trous” [13,94,95] algorithms.
Each one has its particular mathematical properties and
leads to different image decompositions. The first is an
orthogonal, dyadic, non-symmetric, decimated, non-
redundant DWT algorithm, while “a’trous” is a non-
orthogonal, shift-invariant, dyadic, symmetric, undeci-
mated, redundant DWT algorithm [91]. Redundant
wavelet decomposition, as well as GLP, has an attractive
characteristic: the low-pass reduction filter used to ana-
lyze the PAN image may be easily designed to match

the MTF of the band to be enhanced. If the filters are
correctly chosen, the extracted high spatial frequency
components from the PAN image are properly retained,
thus resulting in a greater spatial enhancement. It is
important to note that undecimated, shift-invariant
decompositions, and specifically “a’ trous” wavelets,
where sub-band and original image pixels correspond to
the same locations, produce fewer artifacts and better
preserve the linear continuity of features that do not
have a horizontal or vertical orientation [96] and hence
are better suited for image fusion.
Contourlets provide a new representation system for

image analysis [43]. The contourlet transform is so
called because of its ability to capture and link the dis-
continuity points into linear structures (contours). The
two-stage process used to derive the contourlet coeffi-
cients involves a multiscale transform and a local direc-
tional transform. First, a multiscale LP that detects

(a) GLP-SDM (b) Additive Wavelet

(c) Wavelet Additive IHS (d) Additive Contourlet

(e) Contourlet Additive IHS (f) Method in [102]

Figure 6 Results of some multiresolution pansharpening methods using SPOT five images.
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discontinuities is applied. Then, a local directional filter
bank is used to group these wavelet-like coefficients to
obtain a smooth contour. Contourlets provide 2l direc-
tions at each scale, where l is the number of required
orientations. This flexibility of having different numbers
of directions at each scale makes contourlets different
from other available multi-scale and directional image
representations [53]. Similarly to wavelets, contourlets
also have different implementations of the subsampled
and non-subsampled [43] transforms.
Algorithm 5 Wavelet/contourlet-based pansharpen-

ing

1. Forward transform the PAN and MS images using
a sub-band and directional decomposition such as
the subsampled or non-subsampled wavelet or con-
tourlet transform.
2. Apply a fusion rule onto the transform coefficients.
3. Obtain the pansharpened image by performing the
inverse transform.

A number of pansharpening methods using the wave-
let and, more recently, the contourlet transform have
been proposed. In general, all the transform-based pan-
sharpening methods follow the process in Algorithm 5.
In the wavelet/contourlet-based approach, the MS and
PAN images need to be decomposed multiple times in
step 1 of Algorithm 5.
Preliminary studies have shown that the quality of the

pansharpened images produced by the wavelet-based
techniques is a function of the number of decomposi-
tion levels. If few decomposition levels are applied, the
spatial quality of the pansharpened images is less satis-
factory. If an excessive number of levels is applied, the
spectral similarity between the original MS and the pan-
sharpened images decreases. Pradhan et al.[97] attempt
in their work to determine the optimal number of
decomposition levels for the wavelet-based pansharpen-
ing, producing the optimal spatial and spectral quality.
The fusion rules in step 2 of the algorithm comprise,

for instance, substituting the original MS coefficient
bands by the coefficients of the PAN image or adding
the coefficients of the PAN to the coefficients of the ori-
ginal MS bands, weighted sometimes by a factor depen-
dent on the contribution of the PAN image to each MS
band. It results in the different wavelet- and contourlet-
based pansharpening methods that will be described
next.
The additive wavelet/Contourlet method for fusing

MS and PAN images uses the wavelet [91]/contourlet
[44] transform in steps 1 and 3 in Algorithm 5, and for
the fusion rule in step 2, it adds the detail bands of the
MS image to those corresponding of the PAN image,

having previously matched the MS histogram to one of
the PAN image.
The Substitutive Wavelet/Contourlet methods are

quite similar to the additive ones, but instead of adding
the information of the PAN image to each band of the
MS image, these methods simply replace the MS detail
bands with the details obtained from the PAN image
(see [94] for wavelet and [98] for contourlet
decomposition).
A number of hybrid methods have been developed to

attempt to combine the best aspects of classical methods
and wavelet and contourlet transforms. Research has
mainly focused on incorporating the IHS, PCA and BT
into wavelet and contourlet methods.
As we have seen, some of the most popular image

pansharpening methods are based on the IHS transfor-
mation. The main drawback of these methods is the
high distortion of the original spectral information pre-
sent in the resulting MS images. To avoid this problem,
the IHS transformation is followed by the additive wave-
let or contourlet method in the so-called wavelet [91]
and contourlet [99,100]additive IHS pansharpening. If
the IHS transform is followed by the substitutive wavelet
method, the wavelet substitutive IHS [101] pansharpen-
ing method is obtained.
Similarly to the IHS wavelet/contourlet methods, the

PCA wavelet [68,91]/contourlet [53] methods are based
on applying substitutive wavelet/contourlet methods to
the first principal component (PC1) instead of applying
it to the bands of the MS image. Adaptive PCA has also
been applied in combination with contourlets [53].
The WiSpeR [102] method can be considered as a

generalization of different wavelet-based image fusion
methods. It uses a modification of the non-subsampled
additive wavelet algorithm where the contribution from
the PAN image to each of the fused bands depends on a
factor generated from both the sensor spectral response
and the physical properties of the observed object. A
new contourlet pan-sharpening method named CiSper
was proposed in [45] that, similarly to WiSper, weights
the contribution of the PAN image to each MS band,
but it uses a different method to calculate these weights
and uses the non-subsampling contourlet transform
instead of the wavelet transform. In order to take advan-
tage of multiresolution analysis, the use of pansharpen-
ing based on the statistics of the image on the wavelet/
contourlet domain has been suggested [103,104]. Pan-
sharpened images using wavelet- and contourlet-based
methods are shown in Figure 6b-f.
Some authors [41,42] state that multisensor image

fusion is a trade-off between the spectral information
from an MS sensor and the spatial information from a
PAN sensor and that wavelet transform fusion methods
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easily control this trade-off. The trade-off idea, however,
is just a convenient simplification, as discussed in [10],
and ideal fusion methods must be able to simulta-
neously reach both spectral and spatial quality, and not
one at the expense of the other. To do so, the physics of
the capture process have to be taken into account, and
the methods have to adapt to the local properties of the
images.

4 Quality assessment
In the previous section, a number of different panshar-
pening algorithms have been described to produce
images with both high spatial and spectral resolutions.
The suitability of these images for various applications
depends on the spectral and spatial quality of the pan-
sharpened images. Besides visual analysis, there is a
need to quantitatively assess the quality of different pan-
sharpened images. Quantitative assessment is not easy
as the images to be compared are at different spatial
and spectral resolutions. Wald et al.[67] formulated that
the pansharpened image should have the following
properties:
(1) Any pansharpened image once downsampled to its

original spatial resolution should be as similar as possi-
ble to the original image.
(2) Any pansharpened image should be as similar as

possible to the image that a corresponding sensor would
observe with the same high spatial resolution.
(3) The MS set of pansharpened images should be as

similar as possible to the MS set of images that a corre-
sponding sensor would observe with the same high spa-
tial resolution.
These three properties have been reduced to two

properties: consistency property and synthesis property
[105]. The consistency property is the same as the first
property, and the synthesis property combines the sec-
ond and third properties defined by [67]. The synthesis
property emphasizes the synthesis at an actual higher
spatial and spectral resolution. Note that the reference
image for the pansharpening process is the MS image at
the resolution of the PAN image. Since this image is not
available, Wald et al.[67] proposed a protocol for quality
assessment and several quantitative measures for testing
the three properties. The consistency property is verified
by downsampling the fused image from the higher spa-
tial resolution h to their original spatial resolution l
using suitable filters. To verify the synthesis properties,
the original PAN at resolution h and MS at resolution l
are downsampled to their lower resolutions l and v,
respectively. Then, PAN at resolution l and MS at reso-
lution v are fused to obtain fused MS at resolution l
that can be then compared with the original MS image.
The quality assessed at resolution l is assumed to be
close to the quality at resolution h. This reduces the

problem of reference images. However, we cannot pre-
dict the quality at higher resolution from the quality of
lower resolution [106]. Recently, a set of methods have
been proposed to assess the quality of the pansharpened
without the requirement of a reference image. Those
methods aim at providing reliable quality measures at
full scale following Wald’s protocol.

4.1 Visual analysis
Visual analysis is needed to check whether the objective
of pansharpening has been met. The general visual qual-
ity measures are the global image quality (geometric
shape, size of objects), the spatial details and the local
contrast. Some visual quality parameters for testing the
properties are [105]: (1) spectral preservation of features
in each MS band, where the appearance of the objects
in the pansharpened images is analyzed in each band
based on the appearance of the same objects in the ori-
ginal MS images; (2) multispectral synthesis in panshar-
pened images, where different color composites of the
fused images are analyzed and compared with that of
original images to verify that MS characteristics of
objects at higher spatial resolution are similar to those
of the original images; and (3) synthesis of images close
to actual images at high resolution as defined by the
synthesis property of pansharpened images, which cannot
be directly verified but can be analyzed from our knowl-
edge of the spectra of objects present in the lower spa-
tial resolutions.

4.2 Quantitative analysis
A set of measures have been proposed to quantitatively
assess the spectral and spatial quality of the images. In
this section, we will present the measures more com-
monly used for this purpose.
Spectral quality assessment
To measure the spectral distortion due to the panshar-
pening process, each merged image is compared to the
reference MS image, using one or more of the following
quantitative indicators:
(1) Spectral Angle Mapper (SAM): SAM denotes the

absolute value of the angle between two vectors, whose
elements are the values of the pixels for the different
bands of the HRMS image and the MS image at each
image location. A SAM value equal to zero denotes the
absence of spectral distortion, but radiometric distortion
may be present (the two pixel vectors are parallel but
have different lengths). SAM is measured either in
degrees or in radians and is usually averaged over the
whole image to yield a global measurement of spectral
distortion [107].
(2) Relative-shift mean (RM): The RM [108] of each

band of the fused image helps to visualize the change in
the histogram of fused image and is defined in [108] as
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the percentage of variation between the mean of the
reference image and the pansharpened image.
(3) Correlation coefficient (CC): The CC between each

band of the reference and the pansharpened image indi-
cates the spectral integrity of pansharpened image [62].
However, CC is insensitive to a constant gain and bias
between two images and does not allow for subtle dis-
crimination of possible pansharpening artifacts [14]. CC
should be as close to 1 as possible.
(4) Root mean square error (RMSE): The RMSE

between each band of the reference and the panshar-
pened image measures the changes in radiance of the
pixel values [67]. RMSE is a very good indicator of the
spectral quality when it considered along homogeneous
regions in the image [108]. RMSE should be as close to
0 as possible.
(5) Structure Similarity Index (SSIM): SSIM [109] is a

perceptual measure that combines several factors related
to the way humans perceive the quality of the images.
Beside luminosity and contrast distortions, structure dis-
tortion is considered in SSIM index and calculated
locally in 8 × 8 square windows. The value varies
between -1 and 1. Values close to 1 show the highest
correspondence with the original images.
The Universal Image Quality Index (UIQI) proposed

in [110] can be considered a special case for SSIM index
While these parameters only evaluate the difference in

spectral information between each band of the merged
and the reference image, in order to estimate the global
spectral quality of the merged images, the following
parameters are used:
(1) Erreur relative globale adimensionnelle de synthése

(ERGAS) index, whose English translation is relative
dimensionless global error in fusion [111], is a global
quality index sensitive to mean shifting and dynamic
range change [112]. The lower the ERGAS value, spe-
cially a value lower than the number of bands, the
higher the spectral quality of the merged images.
(2) Mean SSIM (MSSIM) index and the average qual-

ity index (Qavg): These indices [109,102] are used to
evaluate the overall image SSIM and UIQI quality, by
averaging these measures. The higher, closer to one, the
value, the higher the spectral and radiometric quality of
the merged images.
(3) Another global measure, Q4, proposed in [113]

depends on the individual UIQI of each band, but also
on spectral distortion, embodied by the spectral angle
SAM. The problem of this index is that it may not be
extended to images with a number of bands greater
than four.
Spatial Quality Assessment
To assess the spatial quality of a pansharpened image,
its spatial detail information must be compared to that
present in the reference HR MS image. Just a few

quantitative measures have been found in the literature
to evaluate the spatial quality of merged images. Zhou
[42] proposed the following procedure to estimate the
spatial quality of the merged images: to compare the
spatial information present in each band of these images
with the spatial information present in the PAN image.
First, a Laplacian filter is applied to the images under
comparison. Second, the correlation between these two
filtered images is calculated, thus obtaining the spatial
correlation coefficient (SCC). However, the use of the
PAN image as a reference is incorrect as demonstrated
in [10,114], and the HR MS image has to be used, as
done by Otazu et al.in [102]. A high SCC indicates that
many of the spatial detail information of one of the
images are present in the other one. The SCC ideal
value of each band of the merged image is 1.
Recently, a new spatial quality measure was suggested

in [97], related to quantitative edge analysis. The
authors claim that a good pansharpening technique
should retain all the edges present in the PAN image in
the sharpened image [97]. Thus, a Sobel edge operator
is applied on the image in order to detect its edges and
then compared with the edges of the PAN image. How-
ever, the concept behind this index is false since the
reference image is not the PAN but the HRMS [114].
Additionally, some spectral quality measures have

been adapted to spatial quality assessment. Pradhan et
al.[97] suggested the use of structural information in
SSIM measure between panchromatic and pansharpened
images as a spatial quality measure. Lillo-Saavedra et al.
[115] proposed to use the spatial ERGAS index that
includes in its definition the spatial RMSE calculated
between each fused spectral band and the image
obtained by adjusting the histogram of the original PAN
image to the histogram of the corresponding band of
the fused MS image.
Although an exhaustive comparison of all the afore-

mentioned pansharpening methods is out of the scope
of this paper, for the sake of reference, we have
included, in Table 1, the figures of merit for some of
the pansharpened images from the observed multispec-
tral image shown in Figure 2a already presented in this
paper. The two best values for each measure have been
highlighted in Table 1. From the obtained results, it is
clear that BT, HPF and Price methods, depicted in Fig-
ures 2c, d and 3a, respectively, suffer the highest spectral
distortions, with the lowest SSIM and MSSIM values
and the highest ERGAS value. In this case, the IHS
method (Figure 2b) and IHS-Wavelet (Figure 6c) pro-
duce good numerical results, but note that these results
have been obtained considering only the first three
bands, the ones involved in the IHS transform. Methods
based in multiresolution approaches, GLP (Figure 6a),
additive wavelets (Figure 6b), and the method described

Amro et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:79
http://asp.eurasipjournals.com/content/2011/1/79

Page 17 of 22



in [103] (Figure 6f) provide the best results with lower
spectral distortion and higher SCC values. These results
are consistent with the ones reported in [116] where the
multiresolution methods perform better than other
methods. Note that the lower values of SSIM for the
GLP and AW methods are due to the ratio between
band 4, which has a spatial resolution of 20 m per pixel,
and the PAN image, which covers 5 m per pixel, while
the three first bands have a spatial resolution of 10 m
per pixel.
For a comparison between some of the reported

methods, the reader is referred, for instance, to the
results of the 2006 GRS-S Data-Fusion Contest [116]
where a set of eight methods, mainly CS and MRA
based, were tested on a common set of images or [10]
where the authors discuss from a theoretical point of
view the strengths and weakness of CS, RSC and ARSIS
concept implementations (which includes HFI and

multiresolution families) and perform a comparison
based on the fusion rule and the effect of this rule on
the spectral and spatial distortion. Another comparative
analysis was developed in [14], where a general image
fusion (GIF) framework for pansharpening IKONOS
images is proposed and the performance of several
image fusion method is analyzed based on the way they
compute, from the LR MS image, an LR approximation
of the PAN image, and how the modulation coefficients
for the detail information are defined. This work has
been extended in [15] to consider also context adaptive
methods in the so-called extended GIF protocol.
Recently, a comparison of pansharpening methods was
carried out in [117] based on their performance on
automatic classification and visual interpretation
applications.

4.3 Quality assessment without a reference
Quantitative quality of data fusion methods can be pro-
vided when using reference images, usually obtained by
degrading all available data to a coarser resolution and
carrying out fusion from such data. A set of global
indices capable of measuring the quality of panshar-
pened MS images and working at full scale without per-
forming any preliminary degradation of the data have
been recently proposed.
The Quality with No Reference (QNR) index [118]

comprises two indices, one pertaining to spectral distor-
tion and the other to spatial distortion. As proposed in
[118] and [119], the two distortions may be combined
to yield a unique global quality measure. While the
QNR measure proposed in [118] is based on the UIQI
index, the one proposed in [119] is based on the mea-
sure of the mutual information (MI) between the differ-
ent images. The spectral distortion index defined in
[118] can be derived from the difference of inter-band
UIQI values calculated among all the fused MS bands
and the resampled LR MS bands. The spatial distortion
index defined in [118] is based on differences between
the UIQI of each band of the fused image and the PAN
image and the UIQI of each band of the LR MS image
with a low-resolution version of the PAN image. This
LR image is obtained by filtering the PAN image with a
low-pass filter with normalized frequency cutoff at the
resolution ratio between MS and PAN images, followed
by decimation. The QNR index is obtained by the com-
bination of the spectral and spatial distortion indices
into one single measure varying from zero to one. The
maximum value is only obtained when there is no spec-
tral and spatial distortion between the images. The main
advantage of the proposed index is that, in spite of lack
of a reference data set, the global quality of a fused
image can be assessed at the full scale of the PAN
image.

Table 1 Numerical results with the presented
pansharpened methods utilizing the multispectral image
in Figure 2a

Method Band SCC SSIM MSSIM ERGAS

B1 0.97 0.91

IHS [14] B2 0.96 0.87 0.89 5.02

B3 0.97 0.90

B1 0.77 0.79

BT [32] B2 0.78 0.72 0.76 6.40

B3 0.79 0.78

B1 0.99 0.82

HPF [31] B2 0.98 0.90 0.85 10.04

B3 0.99 0.87

B4 0.96 0.82

B1 0.60 0.73

Price [71] B2 0.64 0.66 0.71 6.59

B3 0.62 0.71

B4 0.58 0.74

B1 0.98 0.92

GLP [40] B2 0.99 0.94 0.89 3.88

B3 0.98 0.93

B4 0.98 0.76

B1 0.96 0.91

Add-Wavelet [91] B2 0.97 0.93 0.89 4.00

B3 0.97 0.91

B4 0.96 0.80

B1 0.96 0.90

IHS-Wavelet [91] B2 0.95 0.88 0.90 4.21

B3 0.97 0.91

B1 0.98 0.90

Method in [103] B2 0.96 0.93 0.91 2.76

B3 0.94 0.93

B4 0.94 0.90

The two best values for each measure have been highlighted.
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The QNR method proposed in [119] is based on the
MI measure instead of UIQI. The mutual information
between resampled original and fused MS bands is used
to measure the spectral quality, while the mutual infor-
mation between the PAN image and the fused bands
yields a measure of spatial quality.
Another protocol was proposed by Khan et al.[69] to

assess spectral and spatial quality at full scale. For asses-
sing spectral quality, the MTF of each spectral channel
is used to low-pass filter the fused image. This filtered
image, once it has been decimated, will give a degraded
LR MS image. For comparing the degraded and original
low-resolution MS images, the Q4 index [113] is used.
Note that the MTF filters for each sensor are different
and the exact filter response is not usually provided by
the instrument manufacturers. However, the filter gain
at Nyquist cutoff frequency may be derived from on-
orbit measurements. Using this information and assum-
ing that the frequency response of each filter is approxi-
mately Gaussian shaped, MTF filters for each sensor of
each satellite can be estimated. To assess the spatial
quality of the fused image, the high-pass complement of
the MTF filters is used to extract the high-frequency
information from the MS images at both high (fused)
and low (original) resolutions. In addition, the PAN
image is downscaled to the resolution of the original
MS image, and high-frequency information is extracted
from high- and low-resolution PAN images. The UIQI
value is calculated between the details of the each MS
band and the details of the PAN image at the two reso-
lutions. The average of the absolute differences in the
UIQI values across scale of each band produces the spa-
tial index.

5 Conclusion
In this paper, we have provided a complete overview of
the different methods proposed in the literature to
tackle the pansharpening problem and classified them
into different categories according to the main techni-
que they use. As previously described in Sections 3.1
and 3.2, the classical CS and RSC methods provide pan-
sharpened images of adequate quality for some applica-
tions but usually they introduce high spectral distortion.
Their results highly depend on the correlation between
each spectral band and the PAN image. A clear trend in
the CS family, as we explained in Section 3.1, is to use
transformations of the MS image, so that the trans-
formed image mimics the PAN image. In this sense, a
linear combination of the MS image is usually used by
weighting each MS band with weights obtained either
from the spectral response of the sensor or by minimiz-
ing, in the MMSE sense, the difference between the
PAN and this linear combination. By using this techni-
que, the spectral distortion can be significantly reduced.

Another already mentioned important research area is
the local analysis of the images, producing methods that
inject structures in the pansharpened image depending
on the local properties of the image.
The high-frequency injection family, described in Sec-

tion 3.3, can be considered the predecessor of the meth-
ods based on the ARSIS concept. HFI methods low-pass
filter the image using different filters. As we have seen,
the use of the MTF of the sensor as the low-pass filter
is preferable since, in our opinion, introducing sensor
characteristics into the fusion rule will make the method
more realistic.
The described methods based on the statistics of the

image provide a flexible and powerful way to model the
image capture system as well as incorporating the
knowledge available about the HR MS image. Those
methods allow, as explained in Section 3.4, to accurately
model the relationship between the HR MS image and
the MS and PAN images incorporating the physics of
the sensors (MTF, spectral response, or noise properties,
for instance) and the conditions in which the images
were taken. Still, the models used are not very sophisti-
cated, thus presenting an open research area in this
family.
The multiresolution analysis, as already mentioned, is

one of the most successful approaches for the panshar-
pening problem. Most of those techniques have been
previously classified into techniques relevant to the
ARSIS concept. Decomposing the images at different
resolution levels allows to inject the details of the PAN
image into the MS one depending on the context.
From the methods described in Section 3.5, we can see
that the generalized Laplacian pyramid and redundant
shift-invariant wavelet and contourlet transforms are
the most popular multiresolution techniques applied to
this fusion problem. From our point of view, the com-
bination of multiresolution analysis with techniques
that take into account the physics of the capture pro-
cess will provide prominent methods in the near
future.
Finally, we want to stress, again, the importance of a

good protocol to assess the quality of the pansharpened
image. In this sense, Wald’s protocol, described in Sec-
tion 4, is the most suitable assessment algorithm if no
reference image is available. Besides visual inspection,
numerical indices give a way to rank different methods
and give an idea of their performance. Recent advances
in full-scale quality measures as the ones presented in
Section 4.3 set the trend for new measures specific for
pansharpening that have to be considered.
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