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Image denoising by a direct variational
minimization
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Abstract

In this article we introduce a novel method for the image de-noising which combines a mathematically well-
posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image
processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that
uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By
doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping
time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and
thus on the whole image) by adapting the Lagrange multiplier using the information on the level of
discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of
vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational
method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the
proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims
with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we
get significantly better denoising results specially on the oscillatory regions.

Keywords: Image denoising, Ritz method, calculus of variations, fractional gradient, anisotropic diffusion, Comple-
mentary Principle, saddle point, sparse frame, approximation error bound

1. Introduction
Since the work of Perona and Malik [1], PDE methods
have been used for image processing, especially for denois-
ing and stabilizing edges (see [1,2]). They were the first to
replace an isotropic diffusion expressed through a linear
heat equation with an anisotropic diffusion. Diffusion, in
generally, is associated with an energy dissipating process.
This process seeks the minima of an energy functional.
For example, the well known total variation (TV) minimi-
zation model [3,4] is obtained in the case when the energy
functional is equal to the TV norm of the image. Although
these methods have been demonstrated to be able to
achieve a good trade-off between the noise removal and
the edge preservation, the resulting image in the presence
of the noise often has a “blocky” look.
It is caused by the use of a second-order PDE modeling

methods. In order to reduce the “blocky effect”, while

preserving sharp jump discontinuities, many other non-
linear filters have been suggested in the literature (see
[5-9]). In [5], You and Kaveh proposed a class of fourth-
order PDEs that are obtained by the minimization of a
functional given as an increasing function of the edge
detector Δu . Since the second-order derivatives are zero
if the image intensity function is planar, the class of
fourth-order PDEs will evolve and settle down to a planar
image, if the image support is infinite. This is important,
since piecewise planar images look more natural than the
step images which are stationary points of the particular
nonconvex energy functional [5], whose minimization
(after the application of gradient descent) leads to the
second-order diffusion. The problem with the use of
fourth-order equations is that it tends to leave the image
with isolated black and white speckles (so called “speckle
effect”) which may be characterized as pixels whose
intensity values are either much larger or much smaller
than those of the neighboring pixels as it is explained in
[5]. Recently, fractional order PDEs have been studied
and applied to the problem of image denoising. Bai and
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Feng in [10] proposed the use of nonlinear anisotropic
fractional diffusion equation based on the Euler-Lagrange
(EL) equation of a cost functional which is an increasing
function of the absolute value of fractional gradient of
the image intensity function. They managed to interpo-
late between second- and fourth-order nonlinear aniso-
tropic diffusion equation to obtain a more natural
images.
Nevertheless, only in a very limited number of simple

cases, EL PDE that corresponds to the target energy func-
tional can be analytically solved [11,12]. Thus, in all related
works, the actual minimization is conducted by the transi-
tion from an elliptic EL PDE, to a parabolic PDE with the
artificial time. By doing so, a sort of low (in a general case
nonlinear) filtering process [13] on a particular image is
introduced. This process smoothes the image more and
more in time. As a consequence, the problem of obtaining
the optimal stopping time of a process emerges since the
filtering can easily over-smooth the useful image features
(edges, etc.). A similar problem appears with the choice of
the optimal time step. Actually, a parabolic PDE model is
obtained from the particular EL equation in the limiting
process (j-j0)/l ® 0 as l ® 0, where j0 is the noisy
image, and l is a Lagrange multiplier (see [11] or [13]).
The role of l, as the trade of between image smoothness
and preservation of image features is lost: it becomes just
a time step in the filtering process. The second problem
related to the conventional PDE approach is that it is
applied on a global image, so that the local image features
are not sufficiently taken into account. In recent times, in
the fields of Image Analysis, Processing and Synthesis,
patch-based techniques emerged and meet with success.
Defined as local square neighborhoods of image pixels,
patches are very simple objects to work with, but they
have the intrinsic ability to catch large-scale structures and
textures present in natural images. Some recent image
denoising methods are patch-based, such as “Non-Local
Means” algorithm [14], and some of its derivatives [15,16].
In this work, we present a novel variational, and at the

same time patch-based image smoothing method, which
combines a mathematically well-posdenes of the varia-
tional modeling with the efficiency of a patch-based
approach. More-over, the proposed method is based on
the direct variational minimization of the appropriate
energy functional, which (as in [10]) involves fractional
gradient. By doing so, we avoid problems of finding the
optimal stopping time and the optimal time step. The
role of l is sustained and the actual minimization is
conducted till it converges (with respect to the prede-
fined error bound of the particular optimization
method). We note that patch-based approach is also
convenient to make the proposed direct variational
method computationally feasible and applicable on real
images. Actually, if working with the whole image, one

needs a huge approximation bases1, which is not com-
putationally feasible. According to this, we proceed as
follows: The image is divided into relatively small over-
lap-ping patches, and the energy functional is minimized
on each particular patch independently by using a direct
variational minimization. As patches should not be to
small, in order to capture enough relevant image fea-
tures, the computational load would be still unaccepta-
ble for any real application if one calculates the
minimizer in the whole orthonormal basis of the parti-
cular patch. There-fore, we approximate the true mini-
mizer by using the Ritz variational method with a
specially chosen trial functions [17]. In the sequel we
call the set of those functions: the approximation gen-
erator. For that purpose, we derive the complementary
fractional variational principle (CFVP) [17] for the cor-
responding energy functional. The CFVP gives us the
explicit upper bound for the L2 norm of the approxima-
tion error. Next, we proceeded with spatial discretization
of the continuous model, i.e., we make transition from
the continuous image to pixels.
Every discrete patch is analyzed in the chosen discrete

over-complete dictionary (same for every patch) that has
the sparsity property in the class of discrete images of
interest. In this work, we use a simple discrete cosine
transform (DCT) over-complete dictionary which possess
a sparsity property in the class of images (see [18]). The
elements of the actual approximation generator for a par-
ticular patch, are chosen to be those with the largest K ≪
N projections 〈j0, ψn〉, where N is size of the orthonormal
basis and j0 is observed noisy image, so that the upper
error bound obtained by a spatially discretized CFVP is
below the predefined threshold. Thus, the computational
load is additionally rapidly reduced, making the method
applicable for practical purposes. Moreover, as we con-
duct the minimization of the target functional on each
patch separately, we use different values for the Lagrange
multiplier for each patch. The choice is based on the
measure of nonsmoothness of the signal present on that
particular patch which is obtained by an appropriate pre-
processing. Thus, we obtain additional stronger regulari-
zation on the uniform and weaker regularization on the
oscillatory patches, which significantly improves resulting
image quality. It is an additional adaptive feature of the
proposed method which is not applicable to anisotropic
diffusion PDE modeling. Actually, for that purpose aniso-
tropic diffusion uses only an appropriate edge stopping
function (in our case “mini-mal surface”), which is also
included in the proposed model. We also note that we
use the functional that contains gradient of a fractional
order, in order to gain all benefits of fractional approach
(see [10]), in comparison to the classical gradient method
or the methods of higher order, as it is previously
explained.
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The article is organized as follows: In Sect. 2, the basic
facts about the fractional order anisotropic [1,10] diffu-
sion, for image smoothing are mentioned. We empha-
sise the link between the energy functional and the
actual parabolic PDE derived from its EL equation. In
Sects. 3.1 and 3.2, we derive the CFVP for the energy
functional with the fractional “minimal surface” regulari-
zer. In Sect. 3.3, we use the spatially discretized model
to obtain denoising on a single image patch, while in
Sect. 3.4 we generalize this approach to obtain denoising
of the whole image. In Sect. 4, we present experimental
results and compare the proposed method with several
anisotropic diffusion methods, and show that the pro-
posed method better preserves image features, especially
oscillatory regions. The conclusions are given in Sect. 5.

2. Fractional order anisotropic diffusion
In order to give an insight in the PDE approach to ani-
sotropic image smoothing, which we tend to improve,
we recall the derivation of the PDE used in [10]. We
consider the following energy functional

J(φ) =
∫
R2

L(φ,∇γ

l φ) dxdy, (2:1)

with the Lagrangian

L(φ,∇γ

l φ) =
1
2
(φ − φ0)2 + λϑ(|∇γ

l φ|2), φ ∈ Hγ (R2), (2:2)

where j0 is the initial noisy image. We assume that ϑ is
the “minimal surface” edge stoping function ϑ (s) = (1 +
s2)1/2 (see [13]) and l is the Lagrange multiplier, i.e., a
regularization weight. For the sake of simplicity, the
image is defined to be the function on the whole space
ℝ2 (as, for example in [19]). Thus, (2.2) is the functional
which we will minimize by a patch-based direct varia-
tional minimization (PBDVM).
Denote by ∇γ

l φ = (Dγ
x φ,Dγ

y φ) the fractional gradient
of order g >0 acting on an admissible scalar field j: The
partial fractional derivative operators Dγ

x and Dγ
y of

order g act as

Dγ
x φ = F−1((iξ1)γ φ̂(ξ)), Dγ

y φ = F−1((iξ2)γ φ̂(ξ)),(2:3)

where ξ = (ξ1, ξ2), and F : L2(R2) → L2(R2) is the
Fourier-Plancherel transform operator. For the set of
admissible functions j, we chose Hg (ℝ2), g >0. It is
defined as

Hγ (R2) = {φ ∈ L2(R2)|(1 + |ξ |2)γ /2φ̂ ∈ L2(R2)}.
Note that Dγ

x φ and Dγ
y φ exist for every j Î Hg(ℝ2) and

belong to L2(ℝ2) due to (2.3) and the fact that

(1 + |ξ |2)γ /2φ̂ ∈ L2(R2) ⇔ |ξ |γ φ̂ ∈ L2(R2). We also recall

that the space Hg(ℝ2), g >0 is dense in L2(ℝ2). This follows
from the fact that C∞

0 (R2) is dense in L2(ℝ2). The density
implies the existence of the adjoint operators (Dγ

x )∗ and
(Dγ

y )∗, for Dγ
x and Dγ

y , defined on Hg(ℝ2). This can be
easily shown by using the property F−1 = F∗ implying
that (Dγ

x )∗ = (−1)γDγ
x (and similarly for (Dγ

y )∗). Conse-
quently, the fractional divergence

∇γ
r u

def= ((Dγ
x )∗u1, (D

γ
y )∗u2) is well defined for u = (u1, u2)

Î (Hg(ℝ2))2.
The Gateaux derivative of a functional J at j in the

direction h is defined as J′(φ, η) =
d
dε

∣∣∣∣
ε=0

J(φ + εη). Con-

dition J’(j, h) = 0, for admissible functions h, gives the
EL equation for (2.1). This is written as

∇γ
r

(
ϑ ′(|∇γ

l φ|)
|∇γ

l φ| ∇γ

l φ

)
=

φ0 − φ

λ
. (2:4)

As it is almost always infeasible to solve (2.4) directly
[11,12], the problem is solving by the introduction of the
artificial time t ≥ 0. Let j (·, 0) = j0 and consider the
right hand side of (2.4) as the discretization of jt. Using
the time step l in the limiting process (j - j0)/l ® 0 as
l ® 0, it follows that (2.4) becomes a fractional order
anisotropic diffusion proposed in [10],

φt = ∇γ
r

(
ϑ ′(|∇γ

l φ|)
|∇γ

l φ| ∇γ

l φ

)
, φ(·, 0) = φ0. (2:5)

As it is mentioned in Sect. 1, one is able to smooth
the homogenous regions of the image and leave the
most of the useful features, due to the anisotropic prop-
erty of the edge stopping function (see [13]). Moreover,
the use of the fractional gradient provides a natural
interpolation between the second- and the fourth-order
diffusion equations [5,10].

3. Patch-based direct variational minimization
Fractional anisotropic diffusion, as well as all other diffu-
sion PDE models, has a problem of finding the optimal
stopping time, as well as the optimal time step (for more
details, see for example [11]). Moreover, as it is designed to
be applied on a global image, it does not possess the bene-
fits of the patch-based approach. It means that it can not
model the local image features such as textures and oscilla-
tory regions of the image such efficiently as the patch-
based methods. We propose the novel PBDVM of the
energy functional (2.1), which deals with those problems,
as it is mentioned in Sect. 1. For that purpose, we divide
image into overlapping patches, perform discretization of
the continuous model and use a Ritz variational method
for finding the minimizer of (2.1) on every particular patch
of the image. Ritz variational method (we consider
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discretized version) for the particular discretized patch of
the image of format N = M × M is based on representing
the minimizer of the functional (2.1) in some fixed basis
{ψi}N1 of ℝN . Minimizer is represented in the form

φ̂ =
∑N

1 αiψi, replaced in (2.1). Thus, one has to find

α∗ = argminαJ(φ̂), a = (a1,..., aN ). Our intention is to find
as small as possible approximation generator and still
obtain satisfactory approximation. For that purposes, we
use the generator {ψi}D1 of the space ℝN , with the size D
much larger (at least several times) than N (D ≫ N), which
additionally possess the sparsity property in the space of
image patches of the particular class of images under con-
sideration. It means that any patch which belongs to an
image from that particular class, can be represented in
{ψi}D1 with a small number of nonzero coefficient α∗

i , i.e.,
that ||a* ||0 ≪ N, where || · ||0 stands for l0 norm (see [18]
for more details). In the sequel we call the approximation
generator that possess sparsity property “over-complete
dictionary” and its elements “atoms”. It is common in the
literature (see [18]). As a particular over-complete diction-
ary in our experiment in Section 4, we use DCT over-com-
plete dictionary which has the sparsity property for a broad
class of images (we can say almost all used in real applica-
tions). Note that the representation in the over-complete
dictionary is not unique. In addition, we deliver the CFVP
for the functional (2.1). This gives the L2 upper bound of
the approximation error. In applications, in Sect. 3.3, we
use the discretized version of that estimate (which gives
the l2 approximation error bound) in order to find as small
as possible approximation generator with sufficiently small
approximation error for every patch. The procedure of
finding the desired approximation generator, and the usage
of CFVP for that purpose are explained in details in Sect.
3.3. Applying the proposed procedure, we significantly
reduce the number of parameters for which we search the
minimum of the target functional using the Ritz method
and thus significantly reduce the computational complex-
ity. The computational complexity is of order O(PN3) for
minimization in the whole orthonormal bases of size N,
which is not computationally feasible in real applications. It
is reduced to O(PK̄3) when using the proposed CFVP,
where K̄ 	 N is the average size of the approximation
generator (averaged for all patches) and P is the overall
number of overlapped patches. It is the consequence of the
fact that Newton-based optimization methods that we use
to obtain a*, uses the inversion of the Hessian of the target
function and the order of complexity for the inversion of
n × n matrix is O(n3).

3.1. Existence of the CFVP for the target energy functional
To formulate CFVP, we proceed by derivation of the
canonical Hamiltonian equations. We introduce a new
variable (generalized impulse) as

u =
∂L

∂∇γ

l φ
=

ϑ ′(|∇γ

l φ|)
|∇γ

l φ| ∇γ

l φ. (3:1)

Now from the EL equation (2.4), we have the first
canonical equation

∇γ
r u =

φ0 − φ

λ
. (3:2)

As ϑ ′(s)/s = 1/
√
1 + s2, it follows

u =
∇γ

l φ√
1 + |∇γ

l φ|2 (3:3)

and consequently

u · u =
|∇γ

l φ|2
1 + |∇γ

l φ|2 ⇒ 1 + |∇γ

l φ|2 =
1

1 − |u|2 . (3:4)

From (3.3) and (3.4) now follows the second canonical
equation

∇γ

l φ =
u√

1 − |u|2
, (3:5)

where |u| < 1 is satisfied by definition (see (3.3)).
We briefly introduce some terms which will be used

in the sequel. We denote T = ∇γ

l , and its adjoint opera-
tor T∗ = ∇γ

r , so that

〈u,Tφ〉L2(R2) = 〈T∗u,φ〉L2(R2) (3:6)

for admissible j Î Hg (ℝ2) and u Î (Hg (ℝ2))2.
We define the potential I (u, j) as

I(u,φ)
def= 〈u,Tφ〉L2(R2) − W(u,φ) = 〈T∗u,φ〉L2(R2) − W(u,φ), (3:7)

where we use (3.6)2. The functional W is defined as

W(u,φ) =
∫
R2

H(u,φ)dxdy, (3:8)

where H (u, j) = u · Tj - L (j, Tj) is Hamiltonian.
Now, we have
Proposition 1. Assuming the existence and the unique-

ness of the minimizer for the functional (2.1), there exists
a complementary variational principal for (2.1).
Proof:
In terms of the theory presented in [17] (see [17], p. 94),

the canonical equations for the boundary value problem
(for which we seek the complementary principle) can be
derived using (3.2) and (3.5) as

Tφ = Wu(u,φ) = f1(u), T∗u = Wφ(u,φ) = f2(φ), (3:9)

where

f1 (u) =
u√

1 − |u|2
, f2(φ) =

φ0 − φ

λ
. (3:10)
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Theorem 5.3.1, p. 95. [17] states that sufficient condi-
tions for I (u, j) to be a convex-concave saddle functional
(equivalently for a complementary principle) are that W is
strictly convex in u and is concave in j. Since W is differ-
entiable on its domain, it is equivalent to say that Wu = f1
(u) is strictly monotone and that Wj = f2 (j) is anti-mono-
tone. It is clear that f2 is anti-monotone, as

〈φ1 − φ2, f2(φ1) − f2(φ2)〉L2(R2) =
〈
φ1 − φ2,

φ0 − φ1

λ
−φ0 − φ2

λ

〉
L2(R2)

= −1
λ

〈φ1 − φ2, φ1 − φ2〉L2(R2)

≤ 0..

(3:11)

Next, we show that f1 (u) is strictly monotone. By the
mean value theorem, there holds

F1
def= 〈u − v, f1(u) − f1(v)〉L2(R2) = 〈δu, f ′

1(w)δu〉L2(R2),(3:12)

where δ u = u - v, and w = v + εδ u, for some ε Î (0,
1).
Since

f ′
1(w) =

1

(1 − |w|2)3/2
> 0, |w| < 1, (3:13)

it follows that

F1 =

〈
δu,

1

(1 − |w|2)3/2
δu

〉
L2(R2)

=
∫
R2

1

(1 − |w|2)3/2
(δu · δu) dxdy > 0,

(3:14)

for all |w| < 1 and δ u ≠ 0. This implies that f1 (u) is
strictly monotone. The proof is completed. □

3.2. The L2 bound of the approximation error
From the fact that W (u, j.) = F1 (u) + F2 (j.), where
F′
1 = f1 and F′

2 = f2
3, and (3.10), it follows that

W(u,φ) = −
∫
R2

√
1 − |u|2 dxdy − 1

2λ

∫
R2

(φ0 − φ)2 dxdy.(3:15)

Now, (3.7) and (3.15) imply that

I(u,φ) =
∫
R2

u · ∇γ

l φ dxdy +
∫
R2

√
1 − |u|2 dxdy

+
1
2λ

∫
R2

(φ − φ0)
2 dxdy

=
∫
R2

φ ∇γ
r u dxdy +

∫
R2

√
1 − |u|2 dxdy

+
1
2λ

∫
R2

(φ − φ0)
2 dxdy.

(3:16)

We denote

J(φ1) = I(u1,φ1), G(u2) = I(u2,φ2). (3:17)

in which the terms J and G are primal and dual func-
tionals, respectively, and


1 = {(u1,φ1) : Iu = 0}, 
2 = {(u2,φ2) : Iφ = 0}.(3:18)
Note that Iu = 0 and Ij = 0 are equivalent to Tj = Wu

(u, j) = f1(u) and T * u = Wj (u, j) = f2 (j), respec-
tively, i.e., (3.5) or (3.2) are satisfied, respectively.
Let (u1, j1) Î Ω1. Then

|∇γ

l φ1|2 =
|u1|2

1 − |u1|2 ⇒ |u1|2 =
|∇γ

l φ1|2
1 + |∇γ

l φ1|2
. (3:19)

From (3.16) and (u1, j1) Î Ω1 (i.e., (3.5) is satisfied)
we have

I(u1,φ1) =
∫
R2

|u1|2√
1 − |u1|2

dxdy +
∫
R2

√
1 − |u1|2 dxdy

+
1
2λ

∫
R2

(φ0 − φ1)
2 dxdy.

(3:20)

By substituting (3.19) into (3.20), we get

J(φ1) =
∫
R2

√
1 + |∇γ

l φ1|2 dxdy +
1
2λ

∫
R2

(φ0 − φ1)
2 dxdy.(3:21)

Note that E (j) = lJ (j) and that the minimizer j* for
J (j) is also the minimizer for E (j), so that J is actually
a primal functional.
We also derive the relation for the dual functional. As

(u2, j2) Î Ω2 implies (3.2), i.e., φ2 = φ0 − λ∇γ
r u2, repla-

cing into (3.16), we get

G(u2) =
∫
R2

φ0∇γ
r u2 dxdy − λ

2

∫
R2

(∇γ
r u2)

2 dxdy

+
∫
R2

√
1 − |u2|2 dxdy.

(3:22)

Next we derive a bound on the L2 norm of the
approximation error of (2.1). We state it as:
Proposition 2. The L2 norm of the approximation

error δφ = φ̂ − φ, where φ̂is approximate, and j true
minimizer of the functional J (j) given by (3.21), has an
upper bound:

||δφ||2L2 ≤ λ(J(φ1) − G(u2)). (3:23)

Proof:
Proposition (1) actually states that I(u, j) has a saddle

point, i.e., that for (u1, j1) Î Ω1 and (u2, j2) Î Ω2, so
we have
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G(u2) ≤ G(u) = I(u,φ) = J(φ) ≤ J(φ1). (3:24)

Next we determine the second variation for J. The
second partial derivatives are

∂2L
∂2φ

=
1
λ
and

∂2L

∂2(∇γ

l φ)
=

1

(1 + |∇γ

l φ|2)3/2
, (3:25)

so it holds that

δ2J(φ) =
∫
R2

[
1
λ
(δφ)2 +

|δ(∇γ

l φ)|2
(1 + |∇γ

l φ|2)3/2
]

dxdy. (3:26)

This implies

δ2J(φ) ≥ 1
λ

||δφ||2L2 . (3:27)

Now, for ξ = j + t(j1 - j), for some t Î (0, 1), from
(3.24) and (3.27) we have

J(φ1) − G(u2) ≥ J(φ1) − J(φ)

= δJ(φ) + δ2J(φ)|ξ
= δ2J(φ)|ξ
≥ 1

λ
||δφ||2L2 .

(3:28)

which completes the proof. □

3.3. Spatial discretization of the continuous model and
the single patch denoising procedure
We proceed with the spatial discretization of the contin-
uous model. It involves discretization of the primal and
the dual energy functionals given by (3.21) and (3.22),
respectively, and the inequality (3.23). We consider the
discretized patch j obtained from the fixed continuous
L × L patch (which is cropped from the original image)
by using the uniform M × M greed as j (p, l) = j (pΔx,
lΔy), for p, l Î {0, 1,..., M - 1} = I, where Δx = Δy = L/
M. In order to apply DFT transform, we actually impose
a periodicity assumption, i.e., the continuous patch is
defined on the rectangular domain Π ⊂ ℝ2, where Π =
[a, b]2, b-a = L, and it is periodically prolonged on the
whole ℝ2. For the spatial discretization (and thus
approximation) of Dγ

x φ and Dγ
y φ, the fractional central

differences [10] are used as follows:

D̃γ
x u = F−1

⎡⎣⎛⎝1 − e

−2π iω1

M

⎞⎠γ

e

iπγω1

M F[φ(p, l)]

⎤⎦ (3:29)

D̃γ
y u = F−1

⎡⎣⎛⎝1 − e

−2π iω2

M

⎞⎠γ

e

iπγω2

M F[φ(p, l)]

⎤⎦ ,(3:30)

where ω1, ω2 Î {0, 1, ..., M - 1} are DFT frequencies
that correspond to the spatial coordinate x and y,
respectively, and F is DFT operator.
Operator D̃γ

x has the form D̃γ
x = F−1 ◦ K1 ◦ F, where

K1 = diag

⎧⎨⎩
⎛⎝1 − e

−2π iω1

M

⎞⎠γ

e

iπγω1

M

⎫⎬⎭ (3:31)

is a diagonal matrix.

The adjoint operator (D̃γ
x )∗ of D̃

γ
x is expressed [10] by

(D̃γ
x )∗ = (F−1 ◦ K1 ◦ F)∗ = F−1 ◦ K∗

1 ◦ F. (3:32)

Similarly,

D̃γ
y = F−1 ◦ K2 ◦ F, (D̃γ

y )∗ = F−1 ◦ K∗
2 ◦ F, (3:33)

where

K2 = diag

⎧⎨⎩
(
1 − e

−2π iω2

M

)γ

e

iπγω2

M

⎫⎬⎭ . (3:34)

The relations (3.29)-(3.34) are used for the actual spa-
tial discretization of the whole problem described by
(3.21), (3.22), and (3.23). We thus get the following spa-
tially discretized relations:

J̃(φ1) =
∑
p,l∈I

√
1 + (D̃γ

x φ1(p, l))
2
+ (D̃γ

y φ1(p, l))
2

+
1
2λ

∑
p,l∈I

(φ1(p, l) − φ0(p, l))
2,

(3:35)

G̃(u2) =
∑
p,l∈I

φ0(p, l)((D̃
γ
x )

∗
u(1)2 (p, l) + (D̃γ

y )
∗
u(2)2 (p, l))

− λ

2

∑
p,l∈I

((D̃γ
x )

∗
u(1)2 (p, l) + (D̃γ

y )
∗
u(2)2 (p, l))

2

+
∑
p,l∈I

√
1 − u(1)2 (p, l)2 − u(2)2 (p, l)2

(3:36)

where u2 = (u(1),2 u(2)2 ), including the estimate

||δφ||22 ≤ λ(J̃(φ1) − G̃(u2)) (3:37)

which correspond to the continuous relations (3.21),
(3.22), and (3.23), respectively.
In the actual denoising procedure, we will also use the

discretized version of the relation (3.1):

u = (u(1)
,
u(2)) =

(D̃γ
x φ(p, l), D̃γ

y φ (p, l))√
1 + (D̃γ

x φ(p, l))
2
+ (D̃γ

y φ(p, l))
2
. (3:38)
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For a particular discretized M × M patch j, we proceed
with the single patch denoising procedure as follows. We
chose the over-complete dictionary {ψn}D1 as the fixed
approximation generator (see [18]), where D ≫ N, for N =
M 2. (We use the DFT over-complete dictionary in our
experiments.) We analyze observed noisy patch j0 in
{ψn}D1 . As noisy patch j0 and atoms ψn are M × M
matrices, when we analyze j0 by making the projections
〈j0, ψn〉, we use the classical l2 scalar product in ℝN. Here
we present real matrices j0 and ψn as vectors of length N.
Then we take the predefined K number (K ≪ N) of those
atoms ψi from {ψn}D1 with the largest projections |〈j0, ψi〉|,
thus fixing the subspace where the approximation belongs.
Next, we proceed with the Ritz method. We minimize
(3.35) with respect to a = (a1,..., aK), Where we impose
the approximate solution as φ̂ =

∑K
i=1 αiψi. Actually, as

D̃γ
x φ̂ =

∑K
i=1 αiD̃

γ
x ψi and the terms D̃γ

x ψi can be calculated

a priori (the same holds for D̃γ
y φ̂), the functional (3.35)

becomes the function J̃(α) of α ∈ RK. In this way we get
the unconstrained nonlinear optimization problem. As
both, the gradient ∇α J̃(α) and the Hessian ∇2

α J̃(α) are
defined and bounded, we apply classical Newton line
search nonlinear optimization method to obtain the
numerical solution for the minimizer a* of J̃(α). We start
from the initial a0 = (〈j0, ψ1〉...〈j0, ψK〉), in order to be
initially as close as possible to a*. This is reasonable since
the assumption is that the additive Gaussian noise, super-
posed with the image, has a not so big variance. When we
find φ̂, we calculate û using the relation (3.38). Using the
estimate (3.37), we obtain the l2 upper bound for the
approximation error induced by the simple shrinkage pro-
cedure4. If it is above the predefined threshold ε, the
approximation error could be greater than ε. So we add
next m ≤ K vectors {ψ}K+mK+1 , with the next m largest values
of |〈j0, ψi〉| in the approximation generator of that parti-
cular patch. Then we set φ̂new = φ̂old +

∑K+m
i=K+1 αiψi, where we

obtained jold in the previous step. We optimize

J̃(α) = J̃(φ̂new) with respect to (aK+1, ..., aK+m) and get
new, suboptimal, approximate φ̂new

5. We continue with
adding vectors as previously explained, until l2 upper
bound for the approximation error becomes lower than ε.
Experimental results presented in the next section show
that the introduction of CFVP makes the method compu-
tationally feasible as the average number of coefficients K̄
(by averaging on all patches) that we have to optimize, for
the satisfactory approximation error obtained for every
patch, is much (several times) smaller then N.

3.4. Generalization from a single patch to the whole
image denoising
In order to effectively apply patch-based approach to the
whole image denoising, but also eliminate the border

effects that would emerge, we formulate the overlapped
patch approach. We actually consider the generalized
minimization task

αij∗,φ∗ = argmin
αij,φ

{
μ||φ − φ0||22 +

∑
ij

λijϑ(|∇̃γ

l φ̂ij|) +
∑
ij

||φ̂ij − Rijφ0||22,
}
(3:39)

where φ̂ij = �αij is reconstructed patch of size N = M ×
M with coordinates i and j, with coefficients aij, and lij are
Lagrange multipliers for ijth patch. The terms j0 and j
represent the noisy and the target image, respectively, and
Ψ is some fixed basis for ℝN, or over-complete dictionary
for space of patches of size M × M We denote

∇̃γ

l = (D̃γ
x , D̃

γ
y ). So it holds that ∇̃γ

l φ̂ij =
∑K

l=1 α
(l)
ij ∇̃γ

l ψl,

where ∇̃γ

l ψl are fixed. The operator Rij presents the matrix

that crops the ijth patch from the image. The third and
the second term in (3.39) correspond to the sum of the
patch square errors and the regularization terms, respec-

tively. For fixed ijth patch, λijϑ(|∇̃γ

l φ̂ij|) + ||φ̂ij − Rijφ||22
actually corresponds to the discretized version of the pri-
mal functional (2.1), and thus to (3.35), defined on the ijth
patch. The first term in (3.39) is the log-likelihood global
force, that does not allow the target image (i.e., minimizer)
to differ substantially from the original noisy image. The
level of that proximity can be controlled using μ ≥ 0.
Instead of minimizing (3.39) simultaneously for all aij

and j, we perform two step modal approach, thus
obtaining the suboptimal solution. First, we optimize aij

for fixed j = j0, and then optimize j for previously
determine aij. In the first step we obtain

αij
∗ = argmin

αij

λijϑ(|∇̃γ

l φ̂ij|) + ||φ̂ij − Rijφ0||22 (3:40)

for all ijth patches separately. Thus, we proceed with
the single patch de-noising procedure, where we fix
over-complete dictionary Ψ, obtaining
αij∗ = argminαij J̃(αij) for each ijth patch independently,
where J̃ is defined by (3.35), and it is described in details
in the previous section. In the second step, by set-ting
aij = aij*, we obtain

φ∗ = argmin
φ

⎧⎨⎩μ||φ − φ0||22 +
∑
ij

||φ̂ij − Rijφ||22

⎫⎬⎭(3:41)
which we solve for j and obtain the close form solu-

tion [18]:

φ∗ =

⎛⎝μI +
∑
ij

RT
ijRij

⎞⎠−1⎛⎝μφ0 +
∑
ij

RT
ij�αij

⎞⎠ . (3:42)

which is the final denoising result. Our additional goal
is to use different values of l for every patch, based on
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information on the level of its smoothness, in order to
obtain better edge preservation. We extract that infor-
mation by performing the synthesis of the auxiliary
patch jpp in the subspace of ℝN , generated by
(ψ1, . . . ,ψK̃) obtained by taking first K̃ atoms ψi with
largest 〈j0, ψj〉, where j0 is original noisy patch and

K̃ 	 Nis fixed. If we denote cj =〈j0, ψj〉, for j = 1, . . . , K̃ ,
the synthesized auxiliary patch jpp is given using the
pseudo inverse of the matrix �K̄ = [ψ1, . . . ,ψK̃] contain-
ing the elements ψi, i = 1, . . . , K̃ as the column vectors:

φpp = �
†
K̃
c = (�∗

K̃
�K̃)

−1�K̃ c. (3:43)

This pre-processing can be interpreted as a simple
shrinkage of the noisy patch, which “cuts off” some
amount of noise, but without significant degradation of
important image features. Next we calculate the modu-
lus of gradient |∇jpp| of the auxiliary patch jpp using
(3.29) and (3.30). If it is below the predefined, empiri-
cally chosen threshold T1, we consider the region predo-
minantly homogeneous, and set l = l1, where
predefined l1 is large. If it is between T1 and T2, we set
l = l2 for some medium l2. Finally, if it is above T2, we
set l = l3 for some small l3. By doing so, we smooth
more intensively homogeneous, and less intensively
oscillatory regions of the target image.

4. Experimental results
Experimental results of this section are obtained by
applying the proposed method on real images. All test
images of size 512 × 512, were corrupted with the white
Gaussian additive white noise of various standard devia-
tion s. We compare the proposed method with the sev-
eral anisotropic diffusion methods. One is the classical
Perona-Malik [1] anisotropic diffusion, on which we
refer as baseline algorithm 1. The second one is the
method proposed by Bai and Feng (also mentioned in
Sect. 1) which is reported to give good results in pre-
serving edges. We refer to it as the baseline algorithm 2.
The third one is the method proposed by Cao and Yin
[20], which belongs to the class of parabolic-hyperbolic
equations applied to image smoothing. It is also
reported to have very good edge preservation results.
We refer to it as the baseline algorithm 3. The fourth
one is the recent nonlocal diffusion proposed by Gui-
dotti and Lambers [21]. For the first three baseline algo-
rithms, the edge stoping function was set to ϑ(s) = (1+
s2)1/2, as it is also used in the proposed model. We use
the PSNR as the objective measure of the denoising
quality, as it is widespread throughout the image proces-
sing community. As PSNR is proved to be inconsistent
with the human eye perception, we also use more pro-
found structural similarity index measure (SSIM) [22]
to additionally validate the proposed method, in

comparison to the baseline algorithms. The resulting
images for the baseline algorithms was chosen so that
the best PSNR is reached, as it is usually done in the lit-
erature. Results presented show that the proposed
method significantly outperform all baseline methods in
the means of both, the PSNR and the SSIM measure.
We have to mention that in the actual exploitation the
referent, i.e., original image is not available. Thus, one
has to fix the number of iterations of the used diffusion
algorithm. This possibly causes the stronger over-
smoothing effect on the target image. So the actual
result would be even more in favor of the proposed
method.
In Figure 1a,b,c, original test images are presented,

while the corresponding noisy images are presented in
Figure 2a,b,c, for s = 20. We tested the proposed algo-
rithm on “Barbara”, “Fishing boat”, and “Bicycle” test
images, with three different values of Gaussian white
noise standard deviation s.
In Figure 3, processing results on the “Barbara” test

image are presented for s = 20. Results for the baseline
algorithms 1, 2, 3, and 4 are presented in Figure 3a,b,c,
d, respectively, while the processing result of the pro-
posed method is presented in Figure 3e. The same algo-
rithm order and settings, but for different test images is
presented on Figures 4 ("Fishing boat”) and 5 ("Bicycle”).
For all the experiments, the order of the fractional gra-
dient in the baseline method 2 and the proposed algo-
rithm was set to be g = 1.8, as it is the best reported in
[10]. For all the experiments, parameter l for the base-
line algorithm 3 was set to l = 20 which is the best
reported in [20], while the parameter τ was set to τ =
0:1. Also, for all the experiments, for the baseline
method 4, parameters c and “where set to c = 1.0, and ε
= 0.6, respectively, which are the best reported in [21].
It can be seen visually (Figures 3, 4, and 5), that the pro-
posed method gives much better edge preservation on
the oscillatory regions compared to the baseline meth-
ods. At the same time, on the homogeneous region,
noise is also better removed. The values of PSNR and
SSIM are consistent with the visual results, as it can be
seen from Tables 1, 2, and 3.
In Table 1, processing results are given for the pro-

posed, and the baseline methods obtained on the “Bar-
bara” test image for three different values of s. Similar
results are given in Tables 2 and 3, for “Fishing boat”
and “Bicycle” test images, respectively. It can be seen
that the values of PSNR and SSIM are consistent with
the visual results, and that the proposed method signifi-
cantly outperforms all baseline methods in the means of
PSNR and specially SSIM measure. In Tables 2 and 3,
similar results are given for “Fishing boat” and “Bicycle”
test images, respectively. The same can be concluded as
for the “Barbara” test image.
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Figure 1 Original test images: (a) “Barbara”, (b) “Fishing boat”, and (c) “Bicycle”.

Figure 2 Noisy test images corrupted with the white Gaussian additive noise of s = 20: (a) “Barbara”, (b) “Fishing boat”, and (c)
“Bicycle”.
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The upper l2 bound for the patch approximation error
for all experiments was set to ε = 0.05. The patch size
was fixed to n × n = 8 × 8 = 64, so it was the size of
the orthonormal DCT basis. For all the experiments, we

use 1/4 overlapped patches. We denote by K̄ the average
size of the approximation generators chosen from the
atoms of the overcomplicate DCT dictionary, so that ||δ
j||2 <ε. As explained in the previous section, for the fix

Figure 3 Processing results on the “Barbara” test image. Results for the baseline algorithms 1, 2, 3, and 4 are presented in (a), (b), (c), and
(d), respectively, while the processing result of the proposed method is presented in (e).
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patch, we first take some predefined initial number of
atoms K. In all experiments we set K = 5. If the upper
bound (obtained by (3.37)) for ||δj||2 is greater than ε,
we add additional m = 3 atoms, optimize coefficients,

and continue until we obtain ||δ j||2 <ε, as it is
explained in the previous section. For all experiments, K̄
was obtained several times smaller then the size of the
orthonormal DCT basis. For the “Barbara” test image,

Figure 4 Processing results on the “Fishing boat” test image. Results for the baseline algorithms 1, 2, 3, and 4 are presented in (a), (b), (c),
and (d), respectively, while the processing result of the proposed method is presented in (e).
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Figure 5 Processing results on the “Bicycle” test image. Results for the baseline algorithms 1, 2, 3, and 4 are presented in (a), (b), (c), and
(d), respectively, while the processing result of the proposed method is presented in (e).
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we obtain
⌈
K̃
⌉
= 10. For the “Fishing boat” test image,

we obtain
⌈
K̃
⌉
= 8, and for the “Bicycle” test image,⌈

K̃
⌉
= 9. This makes the proposed method considerably

faster and thus computationally much more efficient,
than it would be the case if one uses the whole ortho-
normal DCT basis. For all experiments, K̃ used for
obtaining the ancillary patch was fixed on K̃ = 10. Also,
for all experiments, we set the thresholds and the corre-
sponding Lagrange multipliers (explained in the pre-
vious section) on the following values:T1 = 0.003 and T2

= 0.01, and ¸ l1 = 3.7, ¸l2 = 2.3, and ¸l2 = 0.8,
respectively.
In Figure 6, enlargements of the processing results for

the “Barbara” test image are presented. The enlarge-
ments for the baseline algorithms 1, 2, 3, and 4 are pre-
sented in Figure 6a,b,c,d, respectively, while the
enlargement for the proposed method is presented in
Figure 6e. As it can be seen, the proposed method has
saved stripes on Barbaras kerchief, much more effi-
ciently than the baseline algorithms. The similar can be
concluded for Figure 7, where the enlargements of the
processing results for the “Bicycle” test image are pre-
sented in the same order as in Figure 6. Again, it can be
seen that the highly oscillatory regions (strips of the var-
ious thickness in the right upper corner) are much bet-
ter preserved in the case of the proposed algorithm,
than in the case of baseline algorithms.

5. Conclusion
In this article we introduce a novel patch-based method
for image denoising. It is based on a direct minimization
of the appropriate energy functional containing a “mini-
mal surface” regularizer with the fractional gradient. We
use the Ritz variational method to approximate the true
minimizer of the target energy functional on a particular
patch. In order to reduce the average number of vectors
in the approximation generator, we deliver the CFVP for
the target functional. After the spatial discretization, we
obtain the l2 upper bound for the approximation error
introduced by a simple shrinkage procedure, where we
take the generator vectors from the DCT over-complete
dictionary. Thus, we manage to significantly reduce
computational load and make the method applicable.
Moreover, we control the level of image smoothing on
each patch (and thus on the whole image) by adapting
the Lagrange multiplier using the information on the
level of discontinuities present on a particular patch,
which we obtain by pre-processing. We have compared
the proposed method with the several anisotropic diffu-
sion methods, and obtained significantly better results in
the means of the objective PSNR, SSIM measures, as
well as the subjective, visual results. In the future work,
as we have manage to minimize the energy functional
directly, we will try to introduce a group symmetry
approach directly into the variational problem, similarly
as it was done in the geometric PDE approach [12].

End notes
1. For example, for 512 × 512 images it would be of

size 5122 = 262144.
2. In the framework of theory presented in [17], it

holds that s = 0, for all values of g >0.
3. In the means of Gateaux derivatives (see [17]).
4. By a simple shrinkage procedure, we consider dis-

posing in synthesis all the other N - K elements of the
frame {ψn}N1 , with lower values for 〈j0, ψn〉.
5. It is suboptimal, as it is not obtained by simulta-

neous minimization for all ai in the representation.

Table 1 Processing results for the proposed PBDVM
method in comparison to the baseline methods, on
“Barbara” test image, given for three different values of
the standard deviation ¾ of the additive Gaussian white
noise

Barbara s PSNR SIMM s PSNR SIMM s PSNR SIMM

Baseline 1 15 32.5 0.71 20 30.7 0.67 25 28.8 0.59

Baseline 2 15 32.7 0.69 20 31.2 0.69 25 28.9 0.60

Baseline 3 15 32.9 0.70 20 31.7 0.71 25 30.0 0.62

Baseline 4 15 32.8 0.70 20 31.5 0.70 25 28.9 0.60

PBDVM 15 34.0 0.73 20 33.6 0.79 25 31.3 0.63

Table 2 Processing results for the proposed PBDVM
method in comparison to the baseline methods, on
“Fishing boat” test image, given for three different
values of the standard deviation s of the additive
Gaussian white noise

Fishing boat s PSNR SIMM s PSNR SIMM s PSNR SIMM

Baseline 1 15 33.4 0.69 20 31.6 0.69 25 28.4 0.57

Baseline 2 15 33.7 0.70 20 32.1 0.70 25 28.5 0.58

Baseline 3 15 33.8 0.70 20 32.3 0.72 25 29.0 0.59

Baseline 4 15 33.6 0.69 20 32.1 0.71 25 28.7 0.58

PBDVM 15 36.3 0.73 20 33.2 0.77 25 31.1 0.67

Table 3 Processing results for the proposed PBDVM
method in comparison to the baseline methods, on
“Bicycle” test image, given for three different values of
the standard deviation s of the additive Gaussian white
noise

Bicycle s PSNR SIMM s PSNR SIMM s PSNR SIMM

Baseline 1 15 33.2 0.68 20 31.4 0.66 25 28.2 0.54

Baseline 2 15 33.6 0.69 20 31.7 0.69 25 28.3 0.56

Baseline 3 15 34.2 0.70 20 32.1 0.70 25 28.7 0.59

Baseline 4 15 33.9 0.69 20 32.0 0.68 25 28.5 0.57

PBDVM 15 36.1 0.72 20 33.8 0.78 25 30.2 0.65
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Figure 6 Enlargements for the “Barbara” test image. Enlargements for the baseline algorithms 1, 2, 3, and 4 are presented in (a), (b), (c), and
(d), respectively, while the enlargement for the proposed method is presented in (e).
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Figure 7 Enlargements for the “Bicycle” test image. Enlargements for the baseline algorithms 1, 2, 3, and 4 are presented in (a), (b), (c), and
(d), respectively, while the enlargement for the proposed method is presented in (e).
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Abbreviations
CFVP: complementary fractional variational principle; DCT: discrete cosine
transform; PBDVM: patch-based direct variational minimization; SSIM:
structural similarity index measure.
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