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Abstract

We present a framework for algorithm-based fault tolerance (ABFT) methods in the design of fault tolerant
computing systems. The ABFT error detection technique relies on the comparison of parity values computed in
two ways. The parallel processing of input parity values produce output parity values comparable with parity
values regenerated from the original processed outputs. Number data processing errors are detected by comparing
parity values associated with a convolution code. This article proposes a new computing paradigm to provide fault
tolerance for numerical algorithms. The data processing system is protected through parity values defined by a
high-rate real convolution code. Parity comparisons provide error detection, while output data correction is
affected by a decoding method that includes both round-off error and computer-induced errors. To use ABFT
methods efficiently, a systematic form is desirable. A class of burst-correcting convolution codes will be
investigated. The purpose is to describe new protection techniques that are easily combined with data processing
methods, leading to more effective fault tolerance.
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1. Introduction
Algorithm-based fault tolerance (ABFT) was first intro-
duced by Huang and Abraham [1] and was directed
toward detection of high-level errors because of internal
processing failures. ABFT techniques are most effective
when employing a systematic form [2-6]. The motiva-
tional model basic ABFT as applied to data processing of
blocks of real data is shown in Figures 1 and 2. The
ABFT philosophy leads directly to a model from which
error correction can be developed. The parity values are
determined according to a systematic real convolution
code. Detection relies on two sets of parity values which
are computed in two different ways, one set from the
input data but with a simplified combined processing
subsystem, and the other set directly from the output
processed data, employing the parity definitions directly.
These comparable sets will be very close numerically,
although not identical because of round-off error differ-
ences between the two parity generation processes. The
effects of internal failures and round-off error are mod-
eled by additive error sources located at the output of the

processing block and input at threshold detector. This
model combines the aggregate effects of errors and fail-
ures and applies them to the respective outputs. ABFT
for arithmetic and numerical processing operations is
based on linear codes. Bosilca et al. [7] proposed a new
ABFT method based on parity check coding for high-per-
formance computing. The application of low density par-
ity check (LDPC) based ABFT is compared and analyzed
in [8], as the use of LDPC to classical Reed-Solomon (RS)
codes with respect to different fault models. However,
Roche et al. [8] did not provide a method for construct-
ing LDPC codes algebraically and systematically, such as
RS and BCH codes are constructed, and LDPC encoding
is very complex because of the lack of appropriate struc-
ture. ABFT methodologies used in [9] present parity
values dictated by a real convolution code for protecting
linear processing systems.
A class of high rate burst-correcting convolution

codes is discussed in [10]. Convolution codes provide
error detection in a continuous manner using the same
computational resources as the algorithm progresses.
Redinbo [11] presented a method to wavelet codes into
systematic forms for ABFT applications. This method
applies high-rate, low-redundancy wavelet codes which
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use continuous checking attributes for detecting the
onset of errors. However, this technique is suited to
image processing and data compression applications. In
addition, there is a difficult analytical approach to accu-
rate the measures of the detection performances of the
ABFT technique using wavelet codes [11,12].
Figure 1, [13], shows the basic architecture of an

ABFT system. Existing techniques use various coding
schemes to provide information redundancy needed for
error detection and correction. The coding algorithm is
closely related to the running process and is often
defined by real number codes generally the block types
[14]. Systematic codes are of most interest because the
fault detection scheme can be superimposed on the

original process box with the least changes in the algo-
rithm and architecture. The goal is to describe new pro-
tection techniques that are easily combined with normal
data processing methods, leading to more effective fault
tolerance. The data processing system is protected
through parity sequences specified by a high rate real
convolution code. Parity comparisons provide error
detection, while output data correction are affected by a
decoding method that includes both round-off error and
computer-induced errors. The error detection structures
are developed and they not only detected subsystem
errors, but also corrected errors introduced in the data
processing system. Concurrent parity values’ techniques
are very useful in detecting numerical error in the data

Figure 1 General architecture of ABFT [13].

Figure 2 Block diagram of the ABFT technique.
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processing operations, where a single error can propa-
gate to many output errors.
The following contributions are made in this article: In

Section 2, the convolution codes are discussed briefly; in
Section 3, the architecture of ABFT (ABFT scheme) and
modeling errors are proposed and the method for detect-
ing errors using parity values is discussed; in Section 4, the
class of convolution codes: burst-error-correcting convolu-
tion codes is discussed; in Section 5, the decoding and cor-
rector system is discussed; in Section 6, the results and
evaluations and simulations are presented and finally in
Section 7, conclusions are presented.

2. Convolution codes
A convolution code is an error correcting code that pro-
cesses information serially or, continuously, in short
block lengths [15-21]. A convolution encoder has mem-
ory, in the sense that the output symbols depend not
only on the input symbols, but also on previous inputs
and/or outputs. In other words, the encoder is a sequen-
tial circuit [15,17,20]. A rate R = k/n convolution enco-
der with memory order m can be realized as a k-input,
n-output linear sequential circuit with input memory
order m; that is, inputs remain in the encoder for an
additional m time units after entering. Typically, n and k
are small integers, k < n, the information sequence is
divided into blocks of length k, and the codeword is
divided into blocks of length n. In the important special
case, when k = 1, the information sequence is not
divided into blocks and is processed continuously.
Unlike with block codes, large minimum distances and
low error probabilities are achieved not by increasing k
and n but by increasing the memory order m [16, Chap-
ter 11]. We consider only systematic forms of convolu-
tion codes because the normal operation of Process
block is not altered and there is no need to decoding
for obtaining true outputs. A systematic real convolution
code guarantees that faults representing errors in the
processed data will result in notable non-zero values in
syndrome sequence. Systematic encoding means that the
information bits always appear in the first k positions of
a code word, leftmost. The remaining n - k bits in a
code word are a function of the information bits, and
provide redundancy that can be used for error correc-
tion and/or detection purposes, rightmost. Real number
convolution codes may find applications in channel cod-
ing for communication systems and in fault-tolerant
data processing systems containing error correction.
Real-number codes can be constructed easily from
finite-field codes, viewing the field elements as corre-
sponding integers in the real number field, and as such
theoretically have as good if not better properties as the
original finite field structures [6].

3. Code usage for ABFT and ABFT scheme
3.1. Code usage for ABFT
A real convolution code in systematic form [16] is used
to compute parity values associated with the processing
outputs as shown in Figure 2. Certain classes of errors
occurring anywhere in the overall system including the
parity generation and regeneration subsystems are easily
detected. A convolution code with its encoding memory
can sense the onset of errors before they increase
beyond detection limits. For a rate k/n real convolution
code with constraint parameter, it is always possible by
simple linear operations to extract the parity generating
part. The (n - k) parity samples for each processed
block of samples are produced in block processing fash-
ion. Since processing resources are in close proximity, it
is easily demonstrated [9] that an efficient block proces-
sing structure can produce the (n - k) parity values
directly from the inputs. When these two comparable
parity values are subtracted, one from the outputs and
the others directly from the inputs, only the stochastic
effects remain, and the syndromes are produced as
shown in Figure 2.

3.2. Modeling errors
It is generally assumed that transient errors can occur in
the intermediate values at any time during the course of
data processing as shown in Figure 3. Furthermore, only
one error is permitted during a sequence of operations
to avoid complete overload. The proposed error model
implies that errors are described by adding a modeling
numerical value e to the calculated output: z = y + e.

3.3. ABFT scheme
To achieve fault detection and correction properties of
convolution code in a linear process with the minimum
overhead computations, the architecture is proposed in
Figure 2. For error correction purposes, redundancy
must be inserted in some form and convolution parity
codes will be employed, using the ABFT. A systematic
form of convolution codes is especially profitable in the
ABFT detection plan because no redundant transforma-
tions are needed to achieve the processed data after the
detection operations. Figure 2 summarizes an ABFT
technique employing a systematic convolution code to

Figure 3 Modeling errors in data processing.
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define the parity values. The data processing operations
are combined with the parity generating function to
provide one set of parity values. The k is the basic block
size of the input data, and n is the block size of the out-
put data, new data samples are accepted and (n - k) new
parity values are produced.
The upper way, Figure 2, is the processed data flow

which passes through the process block (data processing
block) and then feeds the convolution encoder (parity
regeneration) to produce parity values. On the other
hand, the comparable parity values are generated effi-
ciently and directly from the inputs (parity and proces-
sing combined, see Figure 2), without producing the
original outputs. The difference in the comparable two
parity values, which are computed in different ways, is
called the syndrome; the syndrome sequence is a stream
of zero or near zero values. The convolution code’s
structure is designed to produce distinct syndromes for
a large class of errors appearing in the processing out-
puts. Figure 2 employs convolution code parity in
detecting and correcting processing errors.

3.4. Error detection
The method for detecting errors using parity values is
shown in Figure 2. Except for small round-off errors,
the two parity values p̄ui and p̄li should be equal in the
error-free case. The two parities are equal if an error
does not occur, ignoring any round-off errors in the
arithmetic computations. The comparator computes the
difference, S, between the two parity values and deter-
mines if its magnitude is smaller than a chosen thresh-
old determined by round-off error, S = p̄li - p̄ui if |S| <τ
then there is no error (τ is threshold). The difference
between the parity values, considering a round-off
threshold, τ, can be used to detect a error. This thresh-
old τ places a bound on the effects of errors appearing
at the output, modeled here as a vector e which is
added to the true output y to characterize the observed
output z = y + e, see Figure 3. A total self-checking
checker (comparator) for real number parities using a
detection threshold is described in [9,11]. Its role is to
indicate if an error has occurred in the process using
the parities p̄li and p̄ui . The comparator is constructed

by producing a 1-out-of-2 codeword at terminals (sign
threshold, banded thresholds) = (TSGN, Tτ) as shown in
Figure 4. Given that s truly represents p̄li - p̄ui , if either
|S| ≥ τ, the sign, or the value-characterize unit has failed
when valid parity inputs are applied, the output will not
be a valid 1-out-of-2 code. Otherwise, the comparator
and its checking parts give a 1-out-of-2 code indicating
that no error has occurred in the data processing unit
and its checking facilities. The precision required for the
two parity values, the value characterizations in Figure
4, only need to meet the separation by the threshold
value to be effective for detection.

4. Burst-error-correcting convolution codes
A burst of length d is defined as a vector and the non-
zero components are confined to d consecutive digit
positions, the first and last are non-zero [16,17]. A burst
refers to a group of possibly contiguous errors which is
characteristic of unforeseeable effects of errors in data
computation. Only systematic forms of convolution
codes are considered here because the normal operation
of Process block has not changed and there is no need
for decoding to obtain true outputs. Moreover, convolu-
tion codes have good correcting characteristics because
of memory in their encoding structure [17].

4.1. Bounds on burst-error-correcting convolution codes
Costello and Lin [16] have shown that a sequence of
error bits ed+1, ed+2 , ..., ed+a is called a burst of length a
relative to a guard space of length b if
1. ed+1 = ed+a = 1;
2. the b bits preceding ed+1 and the b bits following ed

+a are zero;
3. the a bits from ed+1 through ed+a contain no subse-

quence of b zero.
For any convolution code of rate R that corrects all

bursts of length a or less relative to a guard space of
length b,

b
a

≥ 1 + R
1 − R

. (1)

The bound of (1) is known as the bound on complete
burst-error correction [16]. Massey [20] has also shown

Figure 4 Comparator using threshold τ [11].
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that if we allow a small fraction of the bursts of length a to
be decoded incorrectly, the guard space requirements can
be reduced significantly. In particular, for a convolution
code of rate R that corrects all but a fraction ψ of bursts of
length a or less relative to a guard space of length b

b

a
≥ R + [log2(1 − ψ)]/a

1 − R
≈ R

1 − R
(2)

for small ψ. The bound of (2) is known as the bound
on almost all burst-error correction. Burst-correcting
convolution codes at structure of the convolution codes
are appropriate and efficient in detecting and correcting
errors from internal computing failures. Burst-correcting
convolution codes need guard bands (error-free regions)
before and after bursts of errors, particularly if error
correction is needed [16]. One class of burst-correcting
codes is the Berlekamp-Preparata (BP) codes [16-20]
that have many appropriate characteristic with regard to
failure error-detecting. Their design properties guarantee
for detecting the onset of errors because of failures,
regardless of any error-free region following the begin-
ning of a burst of errors. Consider designing an (n, k =
n - 1, m) systematic convolution encoder to correct a
phased burst error confined to a single block of n bits
relative to a guard space of m error-free blocks. To
design such a code, we must assure that each correct-
able error value [E]m = [e0, e1, ..., em] results in a distinct
syndrome [S]m = [s0, s1, ..., sm]. This implies that each
error value with e0 ≠ 0 and ed = 0, d = 1, 2, ..., m must
yield a distinct syndrome and that each of these syn-
dromes must be distinct from the syndrome caused by
any error value with e0 = 0 and a single block ed ≠ 0, d
= 1, 2, ..., m. Therefore, the first error block e0 can cor-
rectly be decoded if first (m + 1) blocks of e contain at
most one non-zero block, and assuming feedback
decoding, each successive error block can be decoded in
the same way. An (n, k = n - 1, m) systematic code is
depicted by the set of generator polynomials g1

(n-1)(D),

g2
(n-1)(D), ..., g (n−1)

n−1 (D). The generator matrix of a sys-

tematic convolution code, G, is a semi-finite matrix
evolving m finite sub-matrixes as

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

IP0 0P1 0P2 ... 0Pm
IP0 0P1 ... 0Pm−1 0Pm

IP0 ... 0Pm−2 0Pm−1 0Pm
. .

. .
.

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where I and 0 are identity and all zero k × k matrixes,
respectively, and Pi with i = 0 to m is a k × (n - k)
matrix [18]. The parity-check matrix is constructed
from a basic binary matrix, labeled H0, a 2n × n binary

matrix containing the skew-identity matrix in its top n
rows (4).

Hm = [H0,H1, ...,Hm] (4)

where H0 is an n × (m + 1) matrix (5):

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(n−1)
1,0 g(n−1)

1,1 ... g(n−1)
1,m

.

.

.

.

.

.

.

.

.

.

.

.

g(n−1)
n−1,0 g(n−1)

n−1,1 g(n−1)
n−1,m

1 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

For 0 <d ≤ m, we obtain Hd from Hd-1 by shifting Hd-1

one column to the right and deleting the last column.
Mathematically, this operation can be expressed as

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ... 0
0 0 1 ... 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 ... 1
0 0 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hd−1T (6)

where T is an (m + 1) × (m + 1) shifting matrix.
Another important parity check type of matrix is put
together using H0 and its d successive downward shifted
versions [19]. However, all necessary information for
forming the systematic parity check matrix HT is con-
tained in the basis matrix H0. The lower triangular part
of this matrix, (n - 1) rows, (n - 1) columns, hold binary
values selected by a construction method to produce
desirable detection and correction properties [19]. For
systematic codes, the parity check matrix submatrices
Hm in (4) have special forms that control how these
equations are formed.

HT
0 =

[
P0|In−k

]
, HT

i =
[
Pi|0n−k

]
i = 1, 2, ...L. (7)

where In-k and 0n-k are identity and all zero k × k
matrixes, respectively, and Pi is an (n - 1) × k matrix.
However, in an alternate view, the respective rows of H0

contain the parity submatrices Pi needed in
HT, (4) and (7):

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0 | I1
P1 | 0
P2 | 0
. . .
. . .
. . .

PL−1 | 0
PL | 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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The n columns of H0 are designed as an n-dimen-
sional subspace of a full (2n)-dimensional space compar-
able with the size of the row space. Using this notation,
the syndrome

[S]m = [E]m
[
HT]

m = e0H0 + e1H1 + ... + emHm = e0H0 + e1H0T + ... + emH0T
m =

⎡
⎢⎢⎢⎢⎢⎢⎣

Si
Si+1
.
.
.
Si+n

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

[S]m is a syndrome vector with (l+1) values, in this
class of codes (n - k) equal 1. The design properties of
this class of codes assure any contribution of errors in
one observed vector, [E]m, appearing in syndrome vector
[S]m is linearly independent of syndromes caused by
ensuing error vectors [E]i+1, [E]i+2, ..., [E]i+l in adjacent
observed vectors. At any time, a single burst of errors is
limited to set [E]m, correction is possible by separating
the error effects. These errors in [E]m are recognized
with the top n items in [S]m.

[E]m =

⎡
⎢⎢⎢⎢⎢⎢⎣

ei,1
ei,2
.
.
.
ei,n

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

then error values recognition

ei,n = Si, ei,n−1 = Si+1, ..., ei,1 = Si+n+1 (11)

If there are non-zero error bursts in [E]i+1, [E]i+2, ...,
[E]i+l, their accumulate contribution is in a separate sub-
space never permitting the syndrome vector [S]m to be
all zeros. The beginning of errors, even if they over-
whelm the correcting capability of the code, can be
detected. This distinction between correctable and only
detectable error bursts is achieved by applying an anni-
hilating matrix, denoted FT0 , which is n × 2n and has a

defining property, FT0H0 = 0n . Hence, it is possible to
check whether a syndrome vector [S]m represents cor-
rectable errors, FT0 . [S]m = 0, then [S]m obtain correct-
able model. From (1) for an optimum burst-error
correcting code, b/a = (1 + R)/(1 - R). For the preceding
case with R = (n - 1)/n and b = m.n = m.a, this implies
that

b
a
= m = 2n − 1 (12)

i.e., H0 is an n × 2n matrix. We must choose H0 such
that the conditions for burst-error correction are satis-
fied. If we choose the first n columns of H0 to be the
skewed n×n identity matrix, then (9) implies that each
error sequence with e0 ≠ 0 and ed = 0, d = 1, 2, ..., m

will yield a distinct syndrome. In this case, we obtain
the estimate of simply by reversing the first n bits in the
2n-bit syndrome. In addition, for each e0 ≠ 0, the condi-
tion

e0H0 �= edH0T
d, d = 1, 2, ...,m, (13)

must be satisfied for ed ≠ 0. This ensures that an error
in some other blocks will not be confused for an error
in block zero. For any ed ≠ 0 and d ≥ n, the first n posi-
tions in the vector ed H0T

d must be zero, since Td shifts
H0 such that H0T

d has all zero in its first d columns;
however, for any ed ≠ 0, the vector cannot have all zeros
in its first positions. Hence, condition (13) is automati-
cally satisfied for n ≤ d ≤ m, m = 2n -1, and we replace
(13) with the condition that for each e0 ≠ 0,

e0H0 �= edH0T
d, d = 1, 2, ...,n − 1 (14)

5. Decoding and corrector system
The BP codes can be decoded using a general decoding
technique for burst-error-correcting convolution codes
according to Massey [20]. We recall from (9) that the
set of possible syndromes for a burst confined to block
0 is simply the row space of the n×2n matrix H0. Hence,
e0 ≠ 0 and ed = 0, d = 1, 2, ..., m [S]m are codeword in
the (2n, n) block code generated by H0; however, if e0 =
0 and a single block ed ≠ 0 for some d, 1 ≤ d ≤ m , con-
dition (13) ensures that [S]m is not a codeword in the
block code generated by H0. Therefore, e0 contains a
correctable error pattern if and only if [S]m is a code-
word in the block code generated by H0. This requires
determining if [S]m. HT

0 = 0 is the n×2n block code par-

ity check matrix corresponding to H0. If [S]m HT
0 = 0,

the decoder must then find the correctable error pattern
that produced the syndrome [S]m. Because in this case
[S]m = e0H0, we obtain the estimate of simply by rever-
sing the first n bits in [S]m. For a feedback decoder, the
syndrome must then be modified to remove the effect
of e0. But, for a correctable error pattern, [S]m = e0H0

depends only on e0, and hence when the effect of e0 is
removed the syndrome will be reset to all zeros. Error
correction system provides a more detailed view of
some subassemblies in Figure 2 (see Figure 5). The pro-
cessed data d̄i can include errors ēi and the error cor-

rection system will subtract their estimates ē′i as
indicated in the corrected data output of the error cor-
rection system. If one of the computed parity values, p̄ui
or p̄li in Figure 5, comes from a failed subsystem, the
error correction system’s inputs may be incorrect. Since
the data are correct under the single failed subsystem
assumption, the data contain no errors and the error
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correction system is operating correctly. The error cor-
rection system will observe the errors in the syndromes
and properly estimate them as limited to other posi-
tions. In addition, an excessive number of error esti-
mates { ē′i } could be deducted from correct data, yielding

{ d̄i - ē′i } values at the Error Correction System’s output,

which the regeneration of parity values produces { p̄′
ui }.

There are several indicators that will detect errors in the
error correction system’s input syndromes { s̄i }.

6. Simulations and results
6.1. Design evaluation
The methods discussed in this article are programmed
using the MATLAB programming tool. The MATLAB
code forms the basis for a simulation program that
explores the role of the threshold τ , S = p̄li - p̄ui if∣∣p̄li − p̄ui

∣∣ < τ then there are no errors. If the threshold

τ is set too low, even occasional round-off errors will
exceed it, indicating failures leading to recomputation
unnecessarily. It is generally permissible to accept a few
small errors that are in the range of round-off levels.
Nevertheless, the simulations examine how the thresh-
old choice impacts undetected errors. Errors are
detected by examining the magnitude of the respective
syndromes and comparing against thresholds five times
the standard deviation of syndrome values when only
low levels of round-off error appear. The simulation
program randomly selects the line in a magnitude error
is superimposed. The magnitude of each error is chosen
from a Gaussian population with zero mean and fixed
variance. For small thresholds, large errors always lead
to detection, whereas large thresholds increase the
undetected error performance. The threshold was varied

over a wide range so as to see the transition between
low detected errors and high levels of missed errors.
However, for a simulation, the error-detecting capabil-
ities are interrelated with the variance of the simulated
computer-induced errors. The probability of undetected
errors when errors are present is evaluated as the ratio
of threshold to error variance is varied over several
orders of magnitude. The results are shown in Figure 6.
The input data size is k = 100 samples. The error mag-
nitude variance is taken as 10-3 so that, probabilistically,
only small errors are superimposed. At very low thresh-
olds, the experimental probability of undetected errors
is zero. The values are not displayed on the smallest
part of the abscissa. The curves shown in Figure 6 never
have any undetected error until the threshold 5, when
the first undetected probability is 1.1 × 10-4. Two longer
simulations using 106 samples are performed for two
low thresholds of 2 × 10-3 and 2 × 10-5. The undetected
error rate is 4.86 × 10-7 when the threshold is 2 × 10-5.
For the slightly higher threshold of 2 × 10-3 this error
rate is 4.724 × 10-5.
By comparing the differences between the two parity

values p̄ui and p̄li , we can show the checking system
responding to error.
Figure 7 shows how the errors are reflected at the

checker output (comparator). The top figure shows a
very small difference between the two parity values p̄ui
and p̄li . The reason for the non-zero differences is
round off errors because of the finite answer of comput-
ing system. In the bottom figure, the values of | p̄li -

p̄ui | reflect errors occurred. If the error threshold is
setup low enough, then most of the errors can be
detected by the comparator; however, if we set the

Figure 5 Block diagram of the ABFT technique along with error correction system.
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Figure 6 Undetected error probabilities versus threshold choices.

Figure 7 The responding to errors (computer-induced errors): (a) no errors, (b) errors and the difference between the two parity
values p̄ui and p̄li .
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threshold too low, the comparator may pick up the
round-off errors and consider those to be the errors
because of the computer-induced errors. Thus, we need
to find a good threshold, which separates the errors
because of computer analysis limited and the computer-
induced errors.
Figure 8 gives the error detection performance versus

the setup threshold. At the small setup threshold, the
checker picks up most the errors occurred. The perfor-
mance is getting worse when the threshold is getting
larger.

6.2. Mean square error performance
The correction procedures are governed by a minimum
mean square error (MSE) criterion. This section exam-
ines the MSE performance through MATLAB simula-
tions. Errors are inserted additively, both in the code
symbols and syndrome values to model failures. Simula-
tion runs for the code (4, 3), rate 3/4 is performed for

each standard deviation of the inserted errors, 10-3 to
10-8. The insertion error rate is p = 5 × 10-3. The aver-
age MSE plots shown in Figure 9 display the values for
input errors as well as those for corrected code. The
input mean-squared values for input errors are very
similar by statistical regularity while the corrected MSEs
are much lower since large errors have been eliminated.
Furthermore, the code seems quite capable of correcting
all errors. The differences between input error mean-
squared values and its corrected version can be evalu-
ated by taking a ratio of their mean-squared levels.

6.3. Examples and simulations
A BP burst-correcting convolution code (6, 5, 11) is
constructed [16] for use with a fault-tolerant processing
situation. A rate 1/3 (3, 1, 10) code is chosen from a
standard text [16] which have a constraint parameter m
= 10. Long simulations involving 250, 000 blocks of data
over a wide range of variances are performed. For the

Figure 8 Detection performance of the comparator versus threshold.
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rate 1/3 code, this represented 750, 000 samples, while
for the rate 5/6 code case it implied 1.5 million samples.
Burst and errors within each block are permitted. A
burst in this context means that the standard deviations
of all components in a block are raised to 10% of the
maximum standard deviation. On the other hand, when
a burst is not active, errors are allowed with positions
within a block chosen independently at random, and
those selected had their standard deviations raised to
10% of their maxima. The probability of a burst is 5 ×
10-3, while intra block errors have probability 10-3. For
long simulations, the basic parameter s2 (variance of
error) is changed from 10-9 up to 3.2.
The mean-square error performance for the rate 1/3

example is shown in Figure 10a, while that for the

processing system protected by the rate 5/6 BP code is
displayed in Figure 10b. These plots show consistent
improvement for the coded situations over the wide
range of modeling error variances. The corrective
actions for both cases are displayed in Figure 11. The
input errors and correction values are displayed as
labeled, but the important plots represent the absolute
value of correction differences.

7. Conclusions
This article addresses new methods for performing error
correction when real convolution codes are involved.
Real convolution codes can provide effective protection
for data processing operations at the data-parity level.
Data processing implementations are protected against

Figure 9 Average MSE values versus standard deviation.
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both hard and soft errors. The data processing system is
protected through parity sequences specified by a high
rate real convolution code. Parity comparisons provide
error detection, while output data correction is affected
by a decoding method that includes both round-off
error and computer-induced errors. The error detection
structures are developed and they not only detected
subsystem errors, but also corrected errors introduced
in the data processing system. Concurrent parity values
techniques are very useful in detecting numerical error

in the data processing operations, where a single error
can propagate to many output errors. Parity values are
the most effective tools used to detect burst errors
occurring in the code stream. The detection perfor-
mance in the data processing system depends on the
detection threshold, which is determined by round-off
tolerances. The structures have been tested using
MATLAB programs and compute error detecting per-
formance of the concurrent parity values method and
simulation results are presented.

Figure 10 MSE versus error variance: (a) rate 1/3, (b) rate 5/6 BP code.

Figure 11 Correction values and differences: (a) rate 1/3, (b) rate 5/6 BP code.

Hamidi et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:90
http://asp.eurasipjournals.com/content/2011/1/90

Page 11 of 12



Abbreviations
ABFT: algorithm-based fault tolerance; BP: Berlekamp-Preparata; LDPC: low
density parity check; MSE: mean square error; RS: Reed-Solomon.
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