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Abstract

We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random
Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors)
over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an
estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation
policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit
power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters,
the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel
feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to
solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of
the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical
results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage
probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with
only 3-4 bits of channel feedback.
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1. Introduction
Wireless sensor network is a promising technology that
has applications across a wide range of fields such as in
environmental and wildlife habitat monitoring, in tracking
targets for defense applications, in aged healthcare and
many other areas of human life. Wireless sensor networks
are composed of sensor nodes (usually in large numbers)
that are distributed geographically to monitor certain phy-
sical phenomena (e.g. chemical concentration in a factory
or soil moisture in a nursery). Normally, there is a central
processing unit [often called a fusion center (FC)] that col-
lects all or parts of the noisy measurements from the sen-
sor nodes via wireless links and reconstructs the quantities
of interest by applying a suitable estimation algorithm.
Energy consumption is an important issue in wireless sen-
sor networks performing such distributed estimation tasks
because once the sensors are deployed, replacing the sen-
sor batteries is difficult and can be very expensive, if not

simply impossible due to access difficulties, etc. Due to
random fading in wireless channels, the quality of the esti-
mate at the FC, measured by a distortion measure (such as
a squared error criterion), becomes a random variable. In
delay-limited settings, instead of minimizing a long-term
average distortion (or expected distortion for ergodic
fading channels), it is more appropriate to minimize
the probability that the distortion for each estimate
exceeding a certain threshold, the so-called distortion out-
age probability. This is similar to the idea of minimizing
the information outage probability in block-fading wireless
communications channels in the information theoretic
context [1]. Optimal power allocation at the senor trans-
mitters for such outage minimization under various types
of transmit power constraints is an important problem
from the point of view of reducing energy consumption in
sensor networks, or equivalently, prolonging the lifetime
of the network.
The problem of distributed estimation and estimation

outage in wireless sensor networks has been studied in
[2] for additive white Gaussian noise (AWGN) orthogo-
nal channels and in [3] for AWGN multiaccess channels
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(MAC). The former solved the problem of minimizing
the distortion under power constraints and its dual
problem for estimating a scalar point Gaussian source,
introduced the concept of estimation outage and estima-
tion diversity when the orthogonal channels between the
sensors and the FC undergo independent and identically
distributed Rayleigh block fading. The work in [3] solved
the problem of minimizing the total power subject to a
distortion constraint in MAC channel. These power allo-
cation schemes assume that the channels are static and
do not take into account fading channels, for which
meeting a strict distortion constraint may not be always
possible. The optimal power control over fading channels
has been obtained in [1] in the context of information
outage probability, which is defined as the probability
that the instantaneous mutual information of the channel
falls below the transmitted code rate. The optimal power
allocation for distortion outage minimization over Ray-
leigh fading for a clustered wireless sensor network is
obtained in [4]. The works in [1,4] assume full instanta-
neous channel state information (CSI) at both the trans-
mitter and the receiver. Channel state information at
transmitter (CSIT) relies on perfect channel state feed-
back from FC to the transmitters, which can be expensive
or infeasible to implement in practice. Many works in the
literature have looked at power control in the field of
multiple input multiple output (MIMO) beamforming
systems with partial CSIT using limited feedback [5,6].
The optimal power allocation scheme for systems
employing limited feedback is in general complex and
hence difficult to obtain. In [7], the authors studied aver-
age reliable throughput minimization over slow fading
channels. They found properties of optimal power alloca-
tion policy that aid in the design of power allocation
algorithms. A suboptimal power allocation scheme is
proposed in [8] for a single user system with multiple
transmit antennas and single receive antenna with finite
rate feedback power control. These suboptimal power
allocation schemes, although not optimal, can provide
significant gains over no-CSIT even for small number of
feedback bits. A recent paper [9] studies the effect of par-
tial CSIT in a distributed estimation problem over a mul-
tiaccess channel where various forms of partial CSI are
assumed to be available at the sensor transmitters, and
their effect on minimization of distortion or estimation
error is investigated. Finally, a related performance criter-
ion in distributed estimation, called the distortion expo-
nent, measures the slope of the average end-to-end
distortion on a log-log scale at high signal-to-noise ratio
(SNR) [10]. This metric is similar to that of diversity gain
studied in this paper (also termed as estimation diversity
in [2]), which looks at the rate of diminishing of the dis-
tortion outage probability at high SNR rather than the
expected distortion.

The main novelty of this paper lies in finding efficient
power allocation schemes for distortion or estimation out-
age minimization in a clustered wireless sensor network
measuring a point Gaussian source, unlike the previous
papers where either distortion for static channels or an
average distortion (averaged over ergodic fading channels)
is minimized with respect to sensor transmit powers. The
other novel contribution in this paper lies in considering
partial channel information in the form of limited feed-
back from the FC, as opposed to the availability of full
CSIT at the sensor transmitters in our earlier work [4].
This work provides more general results than those in our
earlier work [11] where the clusterhead to FC channels
was assumed to undergo Rayleigh block-fading, in that we
consider a more general Nakagami-m fading model for
these channels of which Rayleigh fading is a particular
case (when m = 1). The idea behind the limited feedback-
based power allocation is that a quantized power code-
book of size L and a channel partition is computed at the
FC by solving the distortion/estimation outage minimiza-
tion problem purely on the basis of the statistics of the
fading channels, which are assumed to be known at the
FC and remain invariant during the estimation task. This
power codebook is then communicated a priori to the
sensor transmitters. Once the estimation task begins, the
FC, based on its knowledge of full CSI (obtained via trans-
mission of pilot tones from the sensors for example), deci-
des which element of the power codebook should be used
and multicasts the index of this codebook entry to the sen-
sor transmitters using a finite-rate delay-free error-free
feedback channel of rate R = log2 L bits. The sensors can
then use the appropriate transmit power for that particular
fading block. In general, the distortion outage optimization
problem that considers the joint optimization of the chan-
nel partitions and the quantized power codebook is a diffi-
cult non-convex problem. The absence of an analytical
expression for the distortion outage probability makes this
problem even harder. In this work, therefore, we adopt a
number of well-justified approximations according to var-
ious assumptions on the number of quantization levels (or
the number of feedback bits available) and the available
average power, based on some existing and some newly
derived results by us. After applying these approximations,
we design a number of power allocation algorithms by sol-
ving the necessary Karush-Kuhn-Tucker (KKT) optimality
conditions of the constrained approximate optimization
problems directly. For comparison purposes, we also
design a simulation-based stochastic optimization algo-
rithm for locally optimal power allocation for the original
distortion outage minimization problem using a simulta-
neous perturbation stochastic approximation (SPSA)
method. Numerical results show that these sub-optimal
but low-complexity algorithms perform very well com-
pared to the locally optimal algorithm based on SPSA,
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which requires a very high computational complexity. It is
also seen that a small number (3-4) of feedback bits can
close the gap between the distortion outage performance
with no CSIT and full CSIT substantially. We also study
the asymptotic behavior of the outage probability and
diversity gain as the available average power becomes
unlimited and obtain an approximate expression of the
diversity gain. The rest of the paper is organized as fol-
lows. In Section 2 {}, we provide the sensor network
model and problem formulation. Power allocation
schemes based on various CSI assumptions and approxi-
mations as well as the diversity gain for the limited-feed-
back network are presented in Section 3. Simulation
results are presented in Section 4 and concluding remarks
are given in Section 5.

2. Sensor network model and problem
formulation
A schematic diagram of the wireless sensor network stu-
died in this paper is shown in Figure 1. The network
consists of N clusters where the n-th cluster has Mn

sensors and a clusterhead (CH), n = 1, ..., N. The sen-
sors measure a single point source denoted by θ[k] over
discrete time instants k = 0, 1, 2... and send the mea-
surements to their corresponding CH. θ[k] is assumed
to be an independent and identically distributed (i.i.d.)
band-limited Gaussian random process of zero mean
and variance σ 2

θ . The mth sensor measurement within
the n-th cluster at time k is xnm[k] = θ[k] +Nn

m[k]. The
measurement noise Nn

m[k] of the mth sensor within the
n-th cluster is assumed to be i.i.d. Gaussian distributed
of zero mean and variance (σ n

m)
2. We assume that the

sensors within a cluster simultaneously amplify-and-

forward their observations to the CH via a non-orthogo-
nal multi-access scheme such that the received sensor
signals at the CH add up coherently. Note that this can
be achieved by distributed beamforming, a technique
that synchronizes all sensor transmissions within a given
cluster. Hence, the signal received by the n-th CH is

yn[k] =
∑Mn

m=1 αn
m

√
gnmx

n
m[k] +Nn

C1[k] where αn
m is the

amplifier gain,
√
gnm and Nn

C1[k] are the channel power
gain and the channel noise for transmissions from mth
sensor of n-th cluster to n-th CH, respectively. We
assume that the channels between sensors and CHs are
static (for example, due to shorter distances and a
strong direct line of sight component), which implies
that the channel gains

√
gnm are time-invariant and can

be easily pre-determined. We assume that Nn
C1[k] is

AWGN of zero mean and variance (σ n
C1)

2. We also
assume that signals received at a given CH are not inter-
fered by any signals from other clusters (which can be
easily accomplished by using time division multiple
access for scheduling intra-cluster sensor transmissions).
We assume that CHs, being more powerful devices that
are capable of transmitting with larger power than sen-
sors, amplify-and-forward yn[k] to FC using orthogonal
multi-access [e.g. frequency division multi-access
(FDMA)]. The FC receives a vector of signals whose n-
th signal is zn[k] = βn

√
hnyn[k] +Nn

C2[k] where bn is the
amplifier gain at the n-th CH transmitter, hn and Nn

C2[k]
are the channel power gain and the channel noise for
transmissions from n-th CH to FC respectively. We
assume that Nn

C2[k] is AWGN of zero mean and var-
iance (σ n

C2)
2. We assume that the channels between CHs

and FC are stationary ergodic and subject to

Figure 1 Schematic diagram of a wireless sensor network for distributed estimation.

Wang and Dey EURASIP Journal on Advances in Signal Processing 2011, 2011:92
http://asp.eurasipjournals.com/content/2011/1/92

Page 3 of 16



independent Nakagami-m block-fading, and hence, the
channel power gain hn Î ℜ+ is distributed according to
a gamma distribution with a mean equal to the inverse
of the square of the transmission distance. In other
words, the probability density function (p.d.f.) of hi, i =
1, 2, ..., N, is given as

fi(hi) =
(miλi)

mihmi−1
i

�(mi)
e−miλihi , i = 1, . . . ,N (1)

where 1
λi

is the mean channel power gain and mi ≥ 0.5

is a real parameter that indicates the severity of the fad-
ing. Γ(·) is the Gamma function defined as
�(m) =

∫∞
0 tm−1e−tdt. We include a subscript i in fi (·)

because the distributions are independent but not neces-
sarily identical. For the special case of Rayleigh-fading,
the channel power gain is exponentially distributed
given by fi(hi) = λie−λihi which can be easily obtained by
substituting mi = 1 into (1). In our work, we will assume
either full CSI knowledge at both the FC receiver (CSIR)
and the CH transmitters (CSIT) or CSIR and partial
CSIT. The type of partial CSIT considered in this paper
is in the form of quantized (or rate-limited) feedback.
We can write the received signal at the FC in vector
form given as z = sθ + v where

z =
[
z1[k], . . . , zN[k]

]T
s =

[
β1

√
h1

M1∑
m=1

α1
m

√
g1m, . . . ,βN

√
hN

MN∑
m=1

αN
m

√
gNm

]T

v =

[
β1

√
h1

(
M1∑
m=1

α1
m

√
g1mN

1
m[k] +N1

C1[k]

)
+N1

C2[k],

. . . ,βN

√
hN

(
MN∑
m=1

αN
m

√
gNmN

N
m[k] +NN

C1[k]

)
+NN

C2[k]

]T

where [·]T denotes matrix transposition.
In what follows, we suppress the time index k for sim-

plicity (due to assumed stationarity of the fading chan-
nels and i.i.d. nature of the source). The fusion center
uses a linear minimum mean square error (MMSE) esti-
mator to reconstruct the source θ, given by

θ̂ = sTC−1z
1
σ 2

θ

+sTC−1s where C is a diagonal matrix with its n-th

diagonal element given as

Cnn = β2
nhn

(∑Mn
m=1 (α

n
m)

2gnm(σ
n
m)

2 + (σ n
C1)

2
)
+ (σ n

C2)
2. The

variance of θ̂ is given by var(θ̂) =
[

1
σ 2

θ

+ sTC−1s
]−1

.

Denote by qn the total power of sensors in the n-th
cluster and Pn the transmit power of the n-th CH. Fol-
lowing the assumption made in [4] that all sensors
within a cluster transmit with equal power (qn/Mn), we
obtain the expressions for the sensor amplify and

forward power gain within the n-th cluster, the n-th CH
transmission power and the distortion at the FC as
Pn = β2

nCn, Pn = β2
nCn and

var[θ̂] = σ 2
θ

(
1 +
∑N

n=1
β2
n hnUn

β2
n hnVn+(σ n

C2)
2

)−1
respectively, where

Un = (qn/Mn)
(∑Mn

m=1

√
gnm/(1 + (γ n

m)
−1)
)2

,

Vn = (qn/Mn)
∑Mn

m=1 (g
n
m(γ

n
m)

−1)/(1 + (γ n
m)

−1) + (σ n
C1)2,

Vn = (qn/Mn)
∑Mn

m=1 (g
n
m(γ

n
m)

−1)/(1 + (γ n
m)

−1) + (σ n
C1)2

and γ n
m = σ 2

θ /(σ
n
m)

2. Note that Un, Vn, Cn are parameters
available at CH and contain information about the
topology of each cluster.
With this sensor network configuration and model-

ing assumptions, we first present the optimum power
allocation problem assuming CSIR and full CSIT in
Section 2-A and then formulate the problem assuming
partial CSIT using quantized channel feedback in Sec-
tion 2-B. Note that power allocation here refers to the
power control of CH transmitters for transmission
over a single fading block as a function of CSIT, and
long-term average power refers to the transmit power
averaged over infinitely many fading blocks and over
the number of CH transmitters. The performance
metric used in this paper is distortion outage, or distor-
tion outage probability, which is defined as the prob-
ability that the instantaneous distortion D at the FC
(which, for a given fading block is a random variable)
exceeds a maximum allowable distortion threshold
Dmax, or in mathematical notation, Poutage = Pr (D
>Dmax), where Pr(A) denotes the probability of the
event A occurring.

A. Power allocation with CSIR and full CSIT
In this section, we simply re-state the power allocation
problem with CSIR and CSIT studied in [4] for block-
fading channels. The aim is to obtain the optimal power
allocation scheme that minimizes distortion outage
probability subject to a long-term average power con-
straint Pav, formally given as

min Pr (D(P(h),h) > Dmax)
s.t. E[〈P(h)〉] ≤ Pav

P(h) ≥ 0.
(2)

where P(h) ≜ [P1(h), ..., PN (h)]T, h ≜ [h1, ..., hN]
T,

〈x〉 � 1
M

∑M
i=1 xi where M is the dimension of the vector

x, and

D(P(h),h) = σ 2
θ

(
1 +

N∑
n=1

Pn(h)hnUn

Pn(h)hnVn + Cn(σ n
C2)

2

)−1

(3)

is the distortion achieved at the FC for a given fading
block, as a function of the channel gains and CH
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transmission powers, which are also functions of the
channel gains due to the availability of full CSIT.

B. Power allocation with CSIR and quantized CSIT
In wireless sensor networks with rate-limited feedback
links, only a finite set of power values can be trans-
mitted from the receiver (FC) to the transmitters (CHs).
We denote the collection of this finite set of power
values as a power codebook P (N,L) where N and L are
the number of CH transmitters and the number of
power levels, respectively. It is often more practical to
convert L into R binary bits using the relationship L =
2R and refer to the unit of feedback resolution in terms
of bits. For an R-bit broadcast feedback channel and N
clusters in the network, we quantize the vector channel

space �N
+ into L regions. Denote the regions as R(N)

j

and the power codeword associated with the j-th quan-

tized region as P (N)
j ∈ P (N,L), j = 1, ..., L. Furthermore,

the j-th region power codeword P (N)
j = [P1,j, . . . ,PN,j]T

contains a set of N power values specifying the CH
transmit powers. We assume that CHs and FC know
this (pre-computed) power codebook, since this power
codebook can be computed offline, purely based on the
channel statistics and the available average power. We
will first present the single-cluster network problem for-
mulation as it is simple and provides some useful intui-
tions and properties that will be useful later in
formulating the multi-cluster problem.
1) Power allocation with quantized CSIT for a single

cluster (N = 1): Suppose we have an arbitrary power
codebook P (1,L) = [P1,1, . . . ,P1,L]T assigned deterministi-
cally to L quantization regions in h1 Î ℜ+, that is when-
ever h1 belongs to the j-th quantization region, the CH
uses the transmission power P1, j with probability one.
Without loss of generality, we assume that P1,1 > ... >P1,
L ≥ 0. Before we define the quantization regions, we
need to first state a property that the optimal quantizer
(one that minimizes the outage probability) possesses.
Note that when N = 1 it can be easily shown that the
distortion and the outage probability are monotonically
decreasing functions of power. These two properties are
the same as the problems studied in [12-14], and hence,
it can be easily shown in a similar fashion that the opti-
mal (deterministic) index mapping achieving minimum
outage probability also has a circular structure (one that
wraps around) as in [12-14]. It is straightforward to
show that, for a given fading block, in the case of non-
outage, the index is assigned to the minimum power
that can meet the distortion threshold, and in the case
of outage, which occurs when none of the power in the
power codebook can meet the distortion threshold, the
index is assigned to the smallest power. We now

introduce a set of channel thresholds defining the
boundaries of the quantized channel regions as an alter-
native for defining the problem instead of power simply
because it is easier to define the cumulative distribution
function (c.d.f.) for the fading distribution and the out-
age probability in terms of the channel thresholds. How-
ever, throughout this paper, we may use channel
thresholds and power levels interchangeably, depending
on whichever is more convenient in the given context.
The channel thresholds are one-to-one functions of the
quantized power values, given as s1,j = j1/P1,j where
φ1 = C1(σ 1

C2)
2γth/(U1 − V1γth) and γth = σ 2

θ /Dmax − 1.
For notational completeness we denote

S(1,L) = {s1,1, . . . , s1,L} (the superscript ‘1’ denotes N = 1
and L denotes that there are L power feedback levels or

quantization regions). Denote the regions as R(1)
j , j = 1,

..., L (the superscript indicates N = 1). The circular
index mapping allows us to naturally define

R(1)
j = [s1,j, s1,j+1), j = 1, ..., L - 1,

R(1)
L = {[0, s1,1), [s1,L,∞)} and the outage region

R(1)
out = [0, s1,1). Note that R(1)

out ⊆ R(1)
L
. Let F1(x) ≜ Pr{0

<h1 ≤ x} denote the cumulative distribution function (c.
d.f) of the channel gain for N = 1. Note that the outage
probability is then simply given by F1(s1,1). The problem
of minimizing the outage probability subject to a long-
term average power constraint can then be formulated
as

min F1(s1,1)

s.t.
L−1∑
j=1

P1,j[F1(s1,j+1) − F1(s1,j)] + P1,L(1 − F1(s1,L) + F1(s1,1)) ≤ Pav

0 < s1,j < s1,j+1 ∀j = 1, 2, . . . , L − 1

(4)

2) Power allocation with quantized CSIT when N ≥ 2:
We begin by first illustrating the complexity in the
structure of quantization regions for N ≥ 2 through an
example. Figure 2 shows the quantization regions of a
suboptimal solution for N = 2 and L = 4 obtained by
using iterative Lloyd’s algorithm incorporating a

Figure 2 Quantization regions when N = 2, L = 4, using Lloyd’s
algorithm with SPSA.
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simulation-based randomized optimization method
called SPSA (simultaneous perturbation stochastic
approximation [15]), where the first step of the algo-
rithm finds the optimal channel partitions for a given
set of quantized power values, and the second step uses
SPSA to find a locally optimal set of quantized power
values for these channel partitions. These two steps are
iterated until a satisfactory convergence criterion is met.
For more details on this algorithm and SPSA as a sto-
chastic optimization tool, see Section 3-B1 where we
provide this SPSA-based algorithm that has a superior
performance compared to our quantized power alloca-
tion algorithms, but at the cost of a high computational
complexity. We can see from Figure 2 the irregularity in
the way the regions can be formed already for N = 2
and L = 4. In the general case with N ≥ 2 cluster net-
work with L-level power feedback, the optimal quantizer
is unknown. Hence in order to make the quantized
power allocation problem for distortion outage minimi-
zation analytically tractable, we impose a restriction on
the ordering of the powers. This restriction gives the
quantization regions a certain structure that can be
exploited for analytical tractability, at the cost of a small
performance loss.
Recall that the power codewords of a (N, L) power

codebook are given by P (N)
j = [P1,j, . . . ,PN,j]T, j = 1, ...,

L. We assume the restriction in ordering of the power

codeword given as P (N)
1 � . . . � P (N)

L
where ≻ denotes

component-wise inequality. We first show, in a similar
way to [14], that the optimal (deterministic) index map-
ping that achieves the minimum outage probability for
N ≥ 2 also has a circular structure. The component-wise
inequality of the power codeword implies that Λ1 > ... >
ΛL where 
j =

∑N
i=1 Pi,j, j = 1, ..., L. Note also that dis-

tortion and the outage probability are monotonically
decreasing functions of Pi, j. We are interested in finding
an index mapping scheme that achieves the minimum
outage probability subject to a long-term average power
constraint. We first consider the set of channel gains
that are not in outage with a non-zero probability mea-
sure: S = {h : D(P (N)

1 ,h) ≤ Dmax}. The optimal index
mapping strategy for a channel h in this set is for the
receiver to feed back an index i such that

D(P (N)
i ,h) ≤ Dmax and D(P (N)

i+1 ,h) > Dmax. Denote by I
the set of channel realizations that get assigned to the
index i. Now assume the contrary, that it is optimal to
feed back some j ≠ i for h ∈ H ⊆ I where H has a non-
zero probability measure. If j <i, construct a new scheme
that maps all elements of H to i instead. The newly con-
structed scheme clearly uses less average power since Λi

< Λj while the outage probability remains the same. If j
>i, we see that an outage also occurs for h ∈ H. Thus,

the corresponding outage has increased, which is a con-
tradiction to the assumption that j ≠ i is optimal. Now
consider the set of channels in outage, namely

{h : D(P (N)
1 ,h) > Dmax} with a non-zero probability

measure. It is easy to see that the optimal feedback
index should be L since it is the one that results in the
smallest average power consumption while achieving the
same outage probability, since ΛL < Λj ∀j <L.
To illustrate the structure of the quantization regions

under the above-mentioned restriction on the quantized
power values, we give an example of an N = 2 network
with R = log2 L-bit feedback in Figure 3. Similar to the
N = 1 case, we quantize the channel space into L
regions according to a circular quantization structure.
The regions are defined as

R(N)
j = {h : D(P (N)

j ,h) ≤ Dmax ∩ D(P (N)
j+1 ,h) > Dmax} for

j = 1, ..., L -1 and

R(N)
L = {h : D(P (N)

1 ,h) > Dmax ∪ D(P (N)
L ,h) ≤ Dmax}.

Denote the boundaries that divide the channel space

into L regions as Bj(s
(N)
j ) for j = 1, ..., L, where

s(N)
j = {s1,j, . . . , sN,j} ∈ S(N,L). The circular quantizer

structure implies that there should only exist a single
outage region given by

R(N)
out = {h : D(h,P (N)

1 ) > Dmax} ⊆ R(N)
L

. It also implies

that si, j = ji/Pi, j where φi = Ci(σ i
C2)

2γth/(Ui − Viγth). In

order to ensure no outage exists outside the set R(N)
out

defined above, the distortion must be constant and
equal to Dmax on all the boundaries between any two
quantized regions. This allows us to easily write down
the expressions that define the boundaries

Bj(P (N)
j ) : Dmax = σ 2

θ

(
1 +
∑N

i=1
Pi,jhiUi

Pi,jhiVi+ Ci(σ i
C2)

2

)−1

after

substituting Pi,j = Ciβ
2
i,j. We also call the boundaries as

distortion curves for this reason.

Figure 3 Vector channel quantization regions formed by a
series of distortion curves for a 2-cluster network.
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With this quantizer structure, we are interested in
minimizing the distortion outage probability subject to a
long-term average power constraint in the vector chan-

nel quantization space. Defined FN(s
(N)
j ) � Pr(h ≺ Bj)

where the set {h ≺ Bj} � {h : D(h,P (N)
j ) > Dmax}. The

quantized power allocation problem for outage minimi-
zation for this quantizer structure for N-clusters and R-
bit feedback is given by

min FN(s
(N)
1 )

s.t.
L−1∑
j=1


j

[
FN(s

(N)
j+1 ) − FN(s

(N)
j )

]
+ 
L

[
1 − FN(s

(N)
L ) + FN(s

(N)
1 )

]
≤ NPav

0 ≤ si,j ≤ si,j+1 ∀i, j.
(5)

where 
j =
∑N

i=1 Pi,j denotes the elementwise sum of

the power codeword P (N)
j .

3. Power allocation schemes and solutions
A. CSIR and full CSIT
Problem (2) is solved in [4] for block-fading channels
with CSIR and full CSIT. Before we state the result first
we need to introduce some notations and definitions.
Define the regions R(u) and R̄(u), and the boundary
surface B(u) for some non-negativ u as
R(u) = {h ∈ �N

+ : 〈P(h)〉 ≤ u},
R(u) = {h ∈ �N

+ : 〈P(h)〉 ≤ u} and

B(u) = {h ∈ �N
+ : 〈P(h)〉 = u}. In order to obtain u*, we

need to define the two average power sums as
P(u) =

∫
R(u) 〈P(h)〉dF(h) and P(u) =

∫
R(u) 〈P(h)〉dF(h),

where F (h) denotes the c.d.f of h. Finally, the power
sum threshold u* and the weight w* are given as u* =

sup{u : P(u) <Pav} and w∗ = Pav−P(u∗)
P(u∗)−P(u∗), respectively.

The optimal power allocation

P̂(h) �
(
P̂1(h), . . . , P̂N(h)

)
is

P̂(h) =
{
P*(h), if h ∈ R(u∗)
0, if h /∈ R(u∗)

(6)

while if h ∈ B(u∗), P̂(h) = P∗(h) with probability w*

and P̂(h) = 0 with probability 1 - w*. 0 denotes the

zero-power vector, P*(h) �
(
P∗
1(h), . . . ,P

∗
N(h)

)
and the

ith power is

P∗
i (h) =

CiGi

H̄i

[ √
η̄i

ρ̄0(h,N1)
− 1
]+

, i = 1, . . . ,N (7)

where N1 is a unique integer in {1, ..., N} required to
evaluate ρ̄0 (h,N1). Gi = Ui/Vi, H̄i = hiUi/(σ i

C2)
2,

η̄i = H̄i/Ci and ρ̄0 = D(N1)/C̄(N1). Variables with a bar
on top indicate that they depend on h.
D(i) =

∑n
j=1 Gj − (σ 2

θ /Dmax − 1) and C̄(i) =
∑i

j=1 Gj/
√

η̄j.

N1 is given by ordering η̄1 ≥ . . . ≥ η̄N and finding

ḡ(i) = 1 − D(i)/
(√

η̄iC̄(i)
)

and ḡ(N1 + 1) ≤ 0, where

ḡ(i) = 1 − D(i)/
(√

η̄iC̄(i)
)
, i = 1, ..., N. Also note that

[x]+ denotes max(x,0).

B. CSIR and partial CSIT
Problem (5) is non-convex in general, but we can find a
locally optimal solution using the standard Lagrange
multiplier-based optimization technique and the asso-
ciated KKT necessary optimality conditions. Note that it
can be easily shown that the second constraint in (5) is
satisfied with a strict inequality. We therefore discard
this constraint in what follows as it will not affect the
result. The Lagrangian is given by

FN(s
(N)
1 ) + μ

⎡
⎣L−1∑

j=1


j(FN(s
(N)
j+1 ) − FN(s

(N)
j )) + 
L(1 − FN(s

(N)
L ) + FN(s

(N)
1 )) − NPav

⎤
⎦ (8)

where μ is the Lagrange multiplier. For ease of view-

ing, we write the partial derivatives of the c.d.f FN(s
(N)
j )

and the sum power function Λj with respect to any of

its variables in s(N)
j or P (N)

j as ∂FN(s
(N)
j )/∂s(N)

j ,

∂FN(P (N)
j )/∂P (N)

j , ∂FN(P (N)
j )/∂P (N)

j and ∂
j/∂P (N)
j

Single-cluster network (N = 1)
In this case, the c.d.f F1(s1,j) can be obtained by integrat-
ing (1) from 0 to s1,j. For Nakagami-m fading, the c.d.f
is given by the regularized lower incomplete Gamma
function defined as F1(s1,j) = g(mls1,j, m)/Γ(m) where
γ (x,m) =

∫ x
0 tm−1e−tdt is the incomplete Gamma

function.
For Rayleigh fading channels, the c.d.f has a simple

closed form expression given as F1(s1,j) = 1 − e−λs1,j and
the KKT conditions for Problem (4) for m = 1 and P1,j
> 0 are given as

λe−λs1,i+1

s1,i
− e−λs1,i+1 − e−λs1,i+2

s21,i+1
− λe−λs1,i+1

s1,i+1
= 0, i = 1, . . . , L − 2,

λe−λs1,L

s1,L−1
− 1 − e−λs1,1 + e−λs1,L

s21,L
− λe−λs1,L

s1,L
= 0

L−1∑
i=1

e−λs1,i − e−λs1,i+1

s1,i
+
1 − e−λs1,1 + e−λs1,L

s1,L
=
Pav
φ1

.

(9)

Note that the last KKT condition relates to the long-
term average power constraint which must be met
with equality as implied by the optimality condition.
Problem (9) then can be solved by fixed point iterative
methods for solving nonlinear equations or any other
suitable nonlinear equation solver. The corresponding
equations for Nakagami-m fading can be also solved
similarly, we do not include them here to avoid
repetition.
Multi-cluster network (N ≥ 2)
The KKT conditions of (5) for N ≥ 2 and P1,j > 0 are
given as
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∂
j

∂si,j

/
∂FN(s

(N)
j )

∂si,j
=

∂
j

∂sk,j

/
∂FN(s

(N)
j )

∂sk,j
∀i, k ∈ {1, . . . ,N},∀j = 1, . . . , L

L−1∑
j=1


j(FN(s
(N)
j+1 ) − FN(s

(N)
j )) + 
L(1 − FN(s

(N)
L ) + FN(s

(N)
1 )) = NPav

0 ≺ s1 ≺ s2 ≺ . . . ≺ sL.

(10)

In general, computing the c.d.fs, namely FN(s
(N)
j ) for

N > 1, involves evaluating multi-dimensional integrals as
a function of the distortion curves and cannot be
expressed in closed form. We can, however, approxi-
mate the distortion curve by a straight line (or a hyper-
plane if N > 2) that passes through the same points as
the distortion curve does at the axes, shown as the
straight line above the distortion curve in Figure 4. We
call this approximation the outer-straight-line approxi-
mation and denote the ith plane as B̄i. We can also con-
struct another straight line/hyperplane that is parallel to
B̄i and is tangential to Bi, shown by the straight line
below the distortion curve in Figure 4. We call this the
inner-straight-line approximation and denote the ith
plane as Bi. Simulation results show that these two
approximations give very comparable outage perfor-
mances; hence, the rest of the paper will be based on
the outer-straight-line approximation [referred in this
paper simply as the straight-line approximation (SLA)].
A visual illustration comparing the actual outage region
and the SLA approximation for N = 3 is shown in Fig-
ure 5. However, it is difficult to illustrate what the
regions would look like for N > 3.
The approximated c.d.f function obtained by SLA is

now defined as F̄N(sj) � Pr(h ≺ B̄j). In the literature, a
number of different expressions of the same c.d.f func-
tion exists for Nakagami-m fading. In [16,17], the c.d.f is
expressed in the form of iterative equations. Reig and
Cardona[18] provide an expression that approximates
the multivariate c.d.f by an equivalent scalar lower regu-
larized incomplete Gamma function. In [19], the c.d.f is
expressed in an integral form. In [20], the c.d.f is given
in the form of an ‘infinite-sum-series’ representation

F̄N(Pj,m) =

N∏
i=1

(
mi
μ̃i

)mi

�

(
1 +

N∑
i=1

mi

) ∞∑
n1=0

· · ·
∞∑

nN=0

[
N∏
i=1

(mi)ni

(
−mi

μ̃i

)ni 1
ni!

]
(
1 +

N∑
i=1

mi

)
nT

(11)

Where (α)k =
�(α+k)
�(α) , nT =

N∑
i=1

ni, μ̃i =
Pi,j
φiλi

and Pi, j > 0

∀i, j. The partial derivative of the c.d.f is given as

∂F̄N
∂Pi,j

=
1

φiλi

⎛
⎜⎜⎜⎝− mi

μ̃i,j
F̄N −

N∏
k=1

(
mkγth

μ̃k,j

)mk ∞∑
n1=0

· · ·
∞∑

nN=0

ni
μ̃i

N∏
k=1

[
(mk)nk

(
−mkγth

μ̃k

)nk 1
nk!

]
(
1 +

N∑
k=1

mk

)
nT

⎞
⎟⎟⎟⎠ (12)

The KKT conditions shown in (10) constitute a set of
nonlinear equations, where the number of equations
grows exponentially as the number of feedback bits
increases. In this section, we develop a number of sub-
optimal algorithms by combining some existing and
some newly derived (by us) approximations for special
cases of high and low average power, respectively. For
moderate to large number of feedback bits, we use an
existing approximation called equal average power per
region (EPPR) derived in [5,8] using the Mean Value
Theorem of real analysis. However, before we can write
down the problem formulation using this EPPR approxi-
mation, we must deal with the issue of whether we
should allocate power in the outage region or not. It
seems counter-intuitive to allocate power in the outage
region and indeed when full channel information is
available, the optimal solution is to not allocate any
power in the outage region. This is not true however
when quantized channel information is available, as
shown in [8,13], and it is optimal to use the smallest
power from the power codebook in the outage region.
With a nonzero power in the outage region (NZPOR),
the channel space is quantized into L regions including
L - 1 non-outage regions and the Lth region containing
a non-outage region as well as an outage region due to
the circular nature mentioned earlier. It may be near-
optimal however to allocate zero power in the outage
region (ZPOR), in the case of very low average power asFigure 4 Inner and outer straight-line approximations.
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Figure 5 Exact outage region and SLA approximation in �3
+.
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also noted in [14]. In this case, there would be L regions
with L - 1 non-outage regions and the Lth region con-
taining only the outage region. Numerical results indeed
confirm that combined with the EPPR approximation,
ZPOR performs nearly optimally when the available
average power is very low. Note that the actual thresh-
old below which ZPOR performs near-optimally
depends on N, m and R. See the Section on Simulation
Results for further details on these threshold values for
Pav. This algorithm with EPPR + ZPOR has the added
advantage of low complexity of implementation, as will
be evident below. We now provide the problem formu-
lations using EPPR approximation for NZPOR and
ZPOR respectively given as

min F̄N(s1)
s.t. 
j(F̄N(s

(N)
j+1 ) − F̄N(s

(N)
j )) = NPav

L , j = 1, . . . , L − 1

L(1 − F̄N(sL) + F̄N(s1)) = NPav

L
0 ≺ s1 ≺ s2 ≺ . . . ≺ sL.

(13)

min F̄N(s1)
s.t. 
j(F̄N(s

(N)
j+1 ) − F̄N(s

(N)
j )) = NPav

L−1 , j = 1, . . . , L − 2


L−1(1 − F̄N(s
(N)
L−1)) =

NPav
L−1

0 ≺ s1 ≺ s2 ≺ . . . ≺ sL−1.

(14)

The following lemma shows that at high average
power and using SLA, one can further simplify the opti-
mal power allocation scheme.
Lemma 3.1: Based on SLA, for Nakagami-m fading

with m =[m1, ..., mN]
T being the fading parameter of

each channel, as Pav ® ∞, it is asymptotically optimal to
transmit with Pi,j =

mi
mk
Pk,j, i, k Î {1, ..., N}, j = 1, ..., L. If

all the fading parameters are identical, it is asymptoti-
cally optimal to transmit with equal transmit power per
CH for every quantization region, i.e., Pi, j = Pk, j ∀i, k Î
{1, ..., N}, j = 1, ..., L.
This proof, as well as proofs of other lemmas and the-

orems, can be found in the Appendix. Hence, Problems
(13) and (14) can be further simplified at high average
power by letting all CHs transmit with equal power in
the case where all mi are identical. Note again that the
exact value of Pav that would qualify as ‘’high average
power’’ will depend on the values of N, m and R for a
given sensor network configuration. See Section 4 for
further details. In what follows, we will abbreviate equal
power per CH as EPPC. Each region boundary can now
be expressed as a function of a single scalar variable.
For simplicity, we use P1,j as the variable. Since si, j = ji/
P1,j, we can also express channel thresholds belonging to
the same boundary as a function of si, j given as si, j =
(ji/j1) si, j. When all channels from the CHs to the FC
are independent and identically distributed, using SLA,
EPPR and EPPC, Problem (13) becomes

min F̄N(s1,1)
s.t. Pj(F̄N(s1,j+1) − F̄N(s1,j)) =

Pav
L , j = 1, . . . , L − 1

PL(1 − F̄N(s1,L) + F̄N(s1,1)) =
Pav
L

0 < s1,1 < s1,2 < . . . < s1,L.

(15)

For low values of the long-term average power, we
solve Problem (14) by using the nonlinear optimization
toolbox ‘fmincon’ in MATLAB. and for high values
long-term average power, we solve Problem (15) using a
simple binary search algorithm. The results are then
combined and only the best are selected on the basis of
the outage performance obtained from these two pro-
blems. Note that the constraint on the component-wise
ordering of the powers in Problem (15) is automatically
satisfied due to EPPC and EPPR approximations. In Pro-
blem (14), we can preserve the power-ordering con-
straint by breaking down the problem into a series of
nested sub-problems where we first solve for sL-1 and
then solve for sL-2 and by following the same steps we
can eventually solve for s1. Note that sL has all its ele-
ments equal to positive infinity. The sub-problems are

given as min F̄N(sL−1)s.t. 
L−1(1 − F̄N(s
(N)
L−1)) =

NPav
L−1

and

s.t. 
j(F̄N(s
(N)
j+1 ) − F̄N(s

(N)
j )) = NPav

L−1-

s.t. 
j(F̄N(s
(N)
j+1 ) − F̄N(s

(N)
j )) = NPav

L−1 , j = 1, ..., L - 2. One

can easily show that solving this series of sub-problems
is the same as solving Problem (14) by verifying the
KKT conditions. At each sub-problem, once sj+1 is
obtained, we can solve for sj by making sure that sj ≺ sj
+1, j = 1, ..., L - 2.
1) Power allocation for quantized CSI using a simulta-

neous perturbation stochastic approximation (SPSA)
algorithm: The vector channel quantization problem can
be formulated as the classical vector quantization pro-
blem with a modified distortion measure, and the solu-
tion can be found by using an iterative Lloyd’s
algorithm incorporating SPSA [21]. Since results
obtained using this method do not use any approxima-
tions, they can provide benchmarks for performance
comparison. Lloyd’s algorithm with SPSA can find a
locally optimal power codebook that minimizes the out-
age probability subject to a long-term average power
constraint. The Lloyd iteration for codebook improve-
ment involves two steps. In the first step, given the
power codebook P (N,L), one finds the optimal partition
for the quantization cells using the nearest neighbor
condition by solving the following optimization problem

argmin
P(N)

j


j s.t. D
(
h,P (N)

j

)
≤ Dmax (16)

Problem (16) can be solved numerically using Monte
Carlo simulation for a given P (N,L). Its solution contains

a set of L regions or cells R(N)
j , j = 1, ..., L in the vector
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channel space as well as the outage region R(N)
out ⊆ R(N)

L
,

where none of the power vectors in the power codebook
can achieve the distortion constraint.
In the second step, we find the improved power code-

book. This involves solving the optimization problem

min E
[
1(D

(
h,P (N)

1

)
> Dmax)|h ∈ R(N)

out

]
× Pr(h ∈ R(N)

out )

s.t.
L∑
j=1

(

jPr(h ∈ R(N)

j )
)

≤ NPav
(17)

where 1(·) is the indicator function. Because we do not
have an explicit outage probability expression, we resort
to using SPSA, a type of stochastic optimization algo-
rithm, to numerically search for the new power code-
book [22]. SPSA randomly chooses the search direction
and iterates toward a locally optimal solution. Denote

P̃ = [P (N)T

1 , · · · ,P (N)T

L ]T as the NL by 1 column vector.

Define a loss function

J(P̃) = Pr(h ∈ R(N)
out ) + λ̄

L∑
j=1

(

jPr(h ∈ R(N)

j )
)

where λ̄

is the Lagrangian multiplier. Since the loss function can
be viewed as the objective function of an unconstrained
optimization problem, we will have to obtain Pav

numerically as a function of λ̄. Once the new power
codebook is found, we repeat step 1 and step 2 until the
stopping criterion is met. The 2-sided SPSA algorithm
used in this paper can be summarized by the following
steps [15]:

(1) Initialization and coefficient selection: Set counter
index k = 0. Use a random initial power codebook

P̃0 and set non-negative coefficients a, c, A, a and g
in the SPSA gain sequences as ak = a/(A + k +1)a

and ck = c/(k+1)g. For additional guidelines on
choosing these coefficients, see [15].
(2) Generation of simultaneous perturbation: Gener-
ate a NM-dimensional random perturbation column
vector Δk. Each component of Δk are i.i.d. Bernoulli
± 1 distributed with probability of 0.5 for each ± 1
outcome.
(3) Loss function evaluations: Obtain two measure-
ments of the loss function based on the simulta-
neous perturbations around the current power
codebook P̃k : J(P̃k + ck�k) and J(P̃k − ck�k) with ck
and Δk as defined in Steps 1 and 2.
(4) Gradient approximation: Generate the simulta-
neous perturbation approximation to the unknown
gradient given as

ĝk(P̃k) =
J(P̃k+ck�k)−J(P̃k−ck�k)

2ck

[
�−1

k,1 ,�
−1
k,2 , . . . ,�

−1
k,NL

]T
where Δk, i is the ith component of the Δk vector.
(5) Updating power codebook: Use the standard sto-
chastic approximation form P̃k+1 = P̃k − akĝk(P̃k).

(6) Iteration or termination: Return to Step 2 with k
+ 1 replacing k. Terminate the algorithm if there is
little change in several successive iterations or the
maximum allowable number of iterations has been
reached.

Remark 1: SPSA is computationally intensive and
requires tuning λ̄ and all the coefficients whenever net-
work parameters change, such as any changes in the
average power constraint or the number of feedback
bits. Convergence can be slow and may settle to differ-
ent local minima depending on the initial points chosen.
Hence in the next section, we will only provide limited
SPSA results (up to 4 bits of feedback) as a performance
benchmark for our various approximate distortion out-
age minimization algorithms.

C. Asymptotic behavior of outage probability and
diversity gain in quantized feedback
In this section, we briefly present some results on the
asymptotic behavior of the distortion outage probability
as the available long-term average power Pav goes to
infinity. We also provide an approximation for the
diversity gain (see definition below) which essentially
indicates how fast the outage probability decays with
increasing Pav. The asymptotic behavior of outage prob-
ability as Pav ® ∞ is given in the following Lemma.
Lemma 3.2: Suppose the fading channels between the

clusterheads and the FC undergo independent Naka-
gami-m fading with the i-th clusterhead having a fading
parameter of mi. As Pav ® ∞, the asymptotic distortion
outage probability achieved by the SLA-based power
allocation algorithm with quantized channel feedback of
R = log2L bits is given by

lim
Pav→∞

Poutage ≈

⎛
⎜⎜⎜⎝

N∏
i=1

(λiφi)
mi

�(1 +Q)

⎞
⎟⎟⎟⎠

QL−1+···+Q+1

×
(

LQ
NPav

)QL+···+Q2+Q

(18)

where Q =
∑N

i=1 mi. Note that Poutage ≈ F̃N(s1,1) is
given by (30) in the Appendix.
The diversity gain d is defined as

d � − lim
Pav→∞

log Poutage
log Pav

(19)

Theorem 1: Under the same conditions as in Lemma
3.2, the diversity gain achieved by the SLA-based power
allocation algorithm with quantized channel feedback of
R = log2L bits is given by d ≈ QL+ ... +Q2 + Q, where

Q =
∑N

i=1 mi.
Remark 2: Note that there are a number of approxi-

mations (all of them analytically justified) that are used
to derive the above results as can be seen in their proofs
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in the Appendix. We would like to remark here that it is
because of this reason we express the asymptotic
expressions as approximate relationships. Whether or
not these limiting values hold exactly with equality is
left open for future research.

4. Simulation results
Our simulation results are based on the topology given
in Figure 6. The topology for N = 1 (one cluster) is
obtained by discarding all the clusters except the one on
the top left. For N = 2, we keep the top left and the bot-
tom right clusters. For N = 6, the topology is given as it
is in Figure 6. The sensors in each cluster are placed in
four equally spaced concentric circles, and the number
of sensors in each circle are 6, 12, 18 and 24 from the
smallest to the biggest circle, respectively. All clusters
have a radius of 40 m. All sensors transmit with a
power of qn/Mn = 1mW. The clusterheads are located at
the center of each cluster for simplicity. CHs are 100 m
apart from the next closest CH (for the 6-cluster net-
work). The FC is located 500 m away from the source.
The channel noise variances are set to (σ n

C1)
2= 10−12

Watt and (σ n
C2)

2= 10−10 Watt ∀n. The source variance is
set to σ 2

θ = 1Watt. The maximum distortion threshold
Dmax is set to 0.0043 (10% of the minimum achievable
distortion of the 6-cluster network). Recall that there
are no expressions of the outage probability for N ≥ 2 in
closed form; hence, we obtain the outage probability via
Monte Carlo simulation over 1,000,000 channel realiza-
tions using the locally optimum power allocation (for N
= 1 and the SPSA algorithm) and the strictly sub-opti-
mal power allocation obtained via SLA combined with
various other approximations such as EPPC and EPPR
etc. For very low average power values, the outage per-
formance is obtained using the ZPOR algorithm. As
mentioned before, note that the actual threshold values
below which the ZPOR-based algorithm performs near-
optimally depend on the specific values of N, m and R.

For example, when N = 2, m = 0.5, the threshold values
for low Pav are -41.0 dBW, -38.7 dBW and -32.7 dBW
for 1-bit, 2-bits and 4-bits of feedback, respectively. The
exact analytical characterization of this Pav threshold is
beyond the scope of the current paper.
The first simulation result comparing the outage per-

formances of the inner SLA and outer SLA is provided
in Figure 7 for the 6-cluster network for the Rayleigh
fading case (m = 1). These simulation results are com-
puted using EPPR and EPPC approximations and show
a close match between the two SLA methods. Similar
results were seen for other choices of m. From here
onwards, for the rest of the simulation results, SLA
refers to the outer SLA.
We now present the simulation results for N = 1,2,6,

based on three different Nakagami-m fading parameters,
namely, m = 0.5 (severe fading), m = 1 (Rayleigh fading)
and m = 2 (less severe fading). We assume that fading
channels between CHs and FC have identical fading
parameters (mi = mk ∀i, k). The outage performance of
the single cluster limited-feedback problem is obtained
using the solutions to the KKT conditions for Problem
(4) for 1 bit feedback and the EPPR approximation for
2, 4 or 6 bits of feedback. The corresponding results
with Nakagami fading parameter m = 0.5 are shown in
Figure 8. Although in the single cluster network we are
only quantizing a scalar channel space, its performance
studies allow us to obtain some fundamental but impor-
tant insights into the results for quantizing the multi-
dimensional vector channel space. The outage perfor-
mance using equal power allocation (EPA), allocating all
CHs with the same powers, and optimal power alloca-
tion scheme for full CSI using (6) are also shown in the
figure to provide performance benchmarks. Figure 8
shows a progression of performance improvement from
EPA which has no knowledge of CSIT, to partial CSIT
with increase in feedback resolution from 1 bit to 6 bits,
to full CSI (complete knowledge of CSIT). At Poutage =

Figure 6 Wireless sensor network topology.
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Figure 7 Inner SLA versus outer SLA of the 6-cluster network
with m = 1.
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0.1, a 1-bit feedback can achieve roughly half the power
gain (in dB) than that of EPA relative to full-CSI. With
R = 6, the outage performance is already very close to
full CSI.
Figure 9 gives some indications of how good the

approximation methods (SLA and SLA + EPPR) are for
N = 2, R = 1 and m = 0.5,1,2. The benchmark here is
the optimal outage performance obtained using an
exhaustive search (ES) method. The exhaustive search is
used due to difficulties in obtaining the closed-form out-
age expressions for N > 1. ES is carried out over 100,000
search points in �2

+. Figure 9 shows both SLA and SLA
+ EPPR are good approximations at least under this
topology setting as both give results that are closely
matched to the optimal outage performance.
Figures 10 and 11 show the outage performance

obtained by SPSA algorithm and EPA, SLA + EPPR and
full CSI for N = 2 and R = 1,2,4 for m = 0.5 and 2,
respectively. Comparing these two figures, we find that
larger average power is required in Figure 10 to achieve

the same outage probability due to more severe fading.
We can also observe that as the number of CH
increases from one to two, less average power is
required to achieve the same outage probability due to
diversity gain. For example, for m = 0.5, R = 4 and N =
2, the long-term average power required to achieve an
outage performance of 0.1 is -39 dBW, 7.4 dB less than
N = 1 with the same settings. Note also that the power
gain gap between the 4-bit feedback and the full CSI
has widened. This gap will become more prominent in
the case N = 6. Also note that SPSA gives very similar
results as to SLA + EPPR. The coefficients used in
SPSA algorithm are set to c = 10-5, A = 80, a = 0.602, g
= 0.101 and a = 10-6. (A + 1)a/(mean magnitude of

ĝ0(P̃0)), where ĝ0(P̃0) is computed via step 4 of SPSA,
and the mean is computed by averaging over Δk. In step
2 of the Lloyd’s algorithm outlined in section 3-B1, the
probabilities are calculated by Monte Carlo simulation
over 100,000 vector channel realizations.
The near-optimality of the EPPC-based algorithm at

high average power is illustrated through Figure 12.
This figure shows how the EPPC-based algorithm (SLA
combined with EPPR and EPPC) approaches the perfor-
mance of the SLA-based algorithm (without any further
approximations) as the average power increases for the
2-cluster network with 1-bit feedback for m = 0.5,1 and
2. For m = 2, the region that belongs to the high aver-
age power is roughly Pav > -40 dBW, as shown in Figure
12. Similar results (not included in order to avoid repe-
tition) were seen for other values of N, m and R, albeit
with different thresholds for Pav above, for which the
EPPC-based approximations perform close to the SLA-
based algorithm.
The outage performance for N = 6, R = 1, 2, 4

obtained by using EPA, SLA, SPSA and full CSI for m =
0.5 and m = 2 is shown in Figures 13 and 14 respec-
tively. The parameters used in SPSA here are the same
as for N = 2. Observe again the effect of diversity gain
with the increased number of clusters. The gap between
the 4-bit feedback and the full-CSI has widened. This
may be due to the fact that the feedback resolution per
CH decreases as N increases with a fixed R. Simulation
results show that at Poutage = 0.1, having a 4-bit feedback
can achieve half the power gain (in dB) than that of EPA
relative to full CSI.
The diversity gains are also shown in Figures 11 and 13

as solid straight lines just above the outage probability
curves. From the definition of the diversity gain, we can
see that it is simply given by the gradient of the outage
probability as Pav ® ∞. Note that the straight lines are
inserted in these figures to provide a visual description of
the diversity gains by showing the gradients; they do not
represent the actual outage performance. These straight
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1 bit
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full CSI

Figure 8 Outage performance of a single-cluster network
employing EPA, 1, 2, 4 and 6 feedback bits and optimal full-
CSI power allocation for m = 0.5.
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Figure 9 Comparison of the outage probability of a 2-cluster
network 1-bit feedback. Figure shows optimal, SLA and SLA +
EPPR for different Nakagami-m fading parameters.
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lines indicate the constant slopes at which the outage
curves should decrease as Pav gets very large.

5. Conclusions
In this paper, we present power allocation algorithms
for minimizing distortion outage probability in a

clustered wireless sensor network for estimating a
single point Gaussian source over Nakagami-m fad-
ing channels. In limited feedback settings where FC
can only broadcast a fixed number of bits to CHs,
we propose a number of low-complexity power con-
trol schemes that minimizes the outage probability
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Figure 10 Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of the 2-cluster network for m = 0.5.
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Figure 11 Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of the 2-cluster network for m = 2.
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by using various levels of useful approximations. An
extensive set of numerical results are presented to
demonstrate the performance of these algorithms for
different fading conditions (including Rayleigh fad-
ing) in Nakagami-m fading. The diversity gain of
such network is also studied which demonstrates
how the distortion outage probability decreases as a
function of the long-term average power and the
number of feedback bits when long-term average
power becomes arbitrarily large.
Future extensions of this work may look at generaliz-

ing the point Gaussian source to a dynamical system
where the distribution of the source changes with time

in some fashion. Another direction is to extend the pro-
blem formulation to estimate a random field where the
data collected by the sensors are spatially correlated,
and/or the fading channels from the clusterheads to the
FC are correlated instead of being statistically
independent.

6. Appendix
Proof of Lemma 3.1 Recall the c.d.f expressed in the
‘infinite-sum-series’ form given in (11). Note that when j
= 1, the expression corresponds to the outage probabil-

ity, i.e.,F̄N(s
(N)
1 ) ≡ Poutage. As Pav ® ∞, si, j ® 0, and (11)

can be simplified as,

F̄N(s
(N)
j ) =

N∏
i=1

(miλisi,j)
mi

�

(
1 +

N∑
i=1

mi

) ×
∞∑

n1=0
· · ·

∞∑
nN=0

[
N∏
i=1

(mi)ni(−miλisi,j)
ni 1

ni!

]
(
1 +

N∑
i=1

mi

)
nT

(20)

≈

N∏
i=1

(miλisi,j)
mi

�

(
1 +

N∑
i=1

mi

) � F̃N(s
(N)
j ) (21)

The partial derivative of F̃N(s
(N)
j ) w.r.t. si, j is given as

∂F̃N(s
(N)
j )

∂si,j
= F̃N(s

(N)
j ) · mi

si,j
(22)
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Figure 12 SLA versus SLA + EPPR + EPPC, N = 2, 1-bit
feedback.
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Figure 13 Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of the 6-cluster network for m = 0.5.
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Substituting (22) into the KKT conditions (10) gives

∂
j

∂si,j

/
∂F̃N(sj)

∂si,j
=

∂
j

∂sk,j

/
∂F̃N(sj)

∂sk,j

⇒ − φi

s2i,j

/
F̃N(sj)mi

si,j
= − φk

s2k,j

/
F̃N(sj)mk

sk,j

⇒ Pk,j =
mk

mi
Pi,j ∀i, k ∈ {1, . . . ,N}, j ∈ {1, . . . , L}

(23)

If all mi = mk ∀i, k, then Pi, j = Pk, j, ∀i, j, k. This com-
pletes the proof. □
Proof of Lemma 3.2 In Lemma 3.1, we obtained

F̃N(s
(N)
j ) and showed that as Pav ® ∞ it is asymptoti-

cally optimal to transmit with Pi,j =
mi
mk
Pk,j. We can use

this result to express any Pi , j in terms of P1,j ∀i, j.
Hence instead of dealing with a vector space, we can
reduce the problem down to a scalar problem by
expressing (21) as a function of Pi, j given as

F̃N(Pj) =

N∏
i=1

(λiφi)
mi

� (1 +Q)
· m

Q
1

PQ
1,j

(24)

where Q =
∑N

i=1 mi. The quantity 
j =
∑N

i=1 Pi,j can
also be written as a function of P1,j given as


j =
Q
m1

P1,j (25)

As Pav ® ∞ the channel thresholds become small, si, j
® 0 ∀i, j. Hence the long-term average power in each
quantized region can be approximated to be the same
(EPPR), as shown in [8]. Applying (24) and (25) to the
constraints in Problem (13), we can derive the outage
probability as a function of Pav, N and L. This expres-
sion is also used to obtain the diversity gain of the net-
work. Starting from the last equation in (13), as Pav ®
∞, si, j ® 0,


L

(
1 − F̃N(PL)

)
≈ NPav

L

⇒ Qφ1

m1s1,L

⎛
⎜⎜⎜⎝1 −

(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)
sQ1,L

⎞
⎟⎟⎟⎠ ≈ NPav

L

⇒ 1 −
(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)
sQ1,L ≈ m1NPav

φ1QL
s1,L

(26)

Since s1,L is small, sQ1,L << s1,L and we can discard the

term with sQ1,L in (26). After rearranging we obtain an

expression of s1,L given as

s1,L ≈ φ1QL
m1NPav

(27)
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Figure 14 Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of the 6-cluster network for m = 2.
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Applying (24) and (25) to the constraint with j = L - 1
in Problem (13) gives

φ1Q
m1s1,L−1

⎡
⎢⎢⎢⎣
(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)
sQ1,L −

(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)
sQ1,L−1

⎤
⎥⎥⎥⎦ =

NPav
L

⇒
(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)
sQ1,L =

⎛
⎜⎜⎜⎝m1NPav

φ1LQ
+
(
m1

φ1

)Q

N∏
i=1

(λiφi)mi

� (1 +Q)
sQ−1
1,L−1

⎞
⎟⎟⎟⎠ s1,L−1

⇒
(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)
sQ1,L ≈ m1NPav

φ1LQ
s1,L−1

⇒ s1,L−1 ≈
(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

� (1 +Q)

(
φ1LQ
m1NPav

)Q+1

(28)

where the last line is obtained after substituting (27).
Repeating the above steps for the remaining constraints
in (13), we can obtain

s1,1 ≈

⎛
⎜⎜⎜⎝
(
m1

φ1

)Q

N∏
i=1

(φiλi)
m1

�(1 +Q)

⎞
⎟⎟⎟⎠

QL−2+···+Q+1

×
(

φ1LQ
m1NPav

)QL − 1+···+Q+1

(29)

and the outage probability is

F̃N(s1,1) ≈
(
m1

φ1

)Q

N∏
i=1

(λiφi)
mi

�(1 +Q)
sQ1,1

≈

⎛
⎜⎜⎜⎝

N∏
i=1

(λiφi)
mi

�(1 +Q)

⎞
⎟⎟⎟⎠

QL−1+···+Q+1

×
(

LQ
NPav

)QL+···+Q
(30)

□
Proof of Theorem 1 Let J(Q) = QL + ... + Q2 + Q. The

diversity gain for the limited-feedback system can be
obtained by substituting (30) to (19) and is given as

d ≈ − lim
Pav→∞

log

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

N∏
i=1

(λiφi)
mi

�(1 +Q)

⎞
⎟⎟⎟⎠

J(Q)/Q(
LQ
NPav

)J(Q)

⎞
⎟⎟⎟⎟⎠

log Pav

= − lim
Pav→∞

⎛
⎜⎜⎜⎝

J(Q)
Q

[
log

N∏
i=1

(λiφi)
mi − log�(1 +Q)

]
logPav

+
J(Q)

[
log L + logQ − logN − log Pav

]
log Pav

⎞
⎟⎟⎟⎠

= J(Q)

(31)

□
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