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Abstract

This article introduces a 3D vehicle tracking system in a traffic surveillance environment devised for shadow tolling
applications. It has been specially designed to operate in real time with high correct detection and classification
rates. The system is capable of providing accurate and robust results in challenging road scenarios, with rain, traffic
jams, casted shadows in sunny days at sunrise and sunset times, etc. A Bayesian inference method has been
designed to generate estimates of multiple variable objects entering and exiting the scene. This framework allows
easily mixing different nature information, gathering in a single step observation models, calibration, motion priors
and interaction models. The inference of results is carried out with a novel optimization procedure that generates
estimates of the maxima of the posterior distribution combining concepts from Gibbs and slice sampling.
Experimental tests have shown excellent results for traffic-flow video surveillance applications that can be used to
classify vehicles according to their length, width, and height. Therefore, this vision-based system can be seen as a
good substitute to existing inductive loop detectors.
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1 Introduction
The advancements of the technology as well as the
reduction of costs of processing and communications
equipment are promoting the use of novel counting sys-
tems by road operators. A key target is to allow free
flow tolling services or shadow tolling to reduce traffic
congestion on toll roads.
This type of systems must meet a set of requirements

for its implementation. Namely, on the one hand, they
must operate real time, i.e. they must acquire the infor-
mation (through its corresponding sensing platform),
process it, and send it to a control center in time to
acquire, process, and submit new events. On the other
hand, these systems must have a high reliability in all
situations (day, night, adverse weather conditions).
Finally, if we focus on shadow tolling systems, then the
system is considered to be working if it is not only cap-
able of counting vehicles, but also classifying them
according to their dimensions or weight.

There are several existing technologies capable of
addressing some of these requirements, such as intrusive
systems like radar and laser, sonar volumetric estima-
tion, or counting and mass measurement by inductive
loop detectors (ILDs). The latter, being the most mature
technology, has been used extensively, providing good
detection and classification results. However, ILDs pre-
sent three significant drawbacks: (i) these systems
involve the excavation of the road to place the sensing
devices, which is an expensive task, and requires dis-
abling the lanes in which the ILDs are going to operate;
(ii) typically, an ILD sensor is installed per lane, so that
there are miss-detections and/or false positives when
vehicles travel between lanes; and (iii) ILD cannot cor-
rectly manage the count in situations of traffic conges-
tion, e.g. this technology cannot distinguish two small
vehicles circulating slowly or standing over an ILD sen-
sor from a large vehicle.
Technologies based on time-of-flight sensors represent

an alternative to ILD, since they can be installed with a
much lower cost, and can deliver similar counting and
classifying results. There are, however, as well, two main
aspects that make operators reluctance to use them: (i)
on the one hand, despite the existence of the technology
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for decades, applied for counting and classification in
traffic surveillance is relatively new, and there are no
solutions that represent real competition against ILD in
terms of count and classification results; and (ii) these
systems can be called intrusive with the electromagnetic
spectrum because they emit a certain amount of radia-
tion that is reflected on objects and returns to the sen-
sor. The emission of radiation is a contentious point,
since it requires to meet the local regulations in force,
as well as to overcome the reluctance of public opinion
regarding radiation emission.
Recently, a new trend is emerging based on the use of

video processing. The use of vision systems is becoming
an alternative to the mentioned technologies. Their main
advantage, as well as radar and laser systems one, is that
their cost is much lower than ILDs, while its ability to
count and classify is potentially the same. Moreover, as it
only implies image processing, no radiation is emitted to
the road, so they can be considered completely non-
intrusive. Nevertheless, vision-based systems should still
be considered as in a prototype stage until they are able
to achieve correct detection and classification rates high
enough for real implementation in free tolling or shadow
tolling systems. In this article, a new vision-based system
is introduced, which represents a real alternative to tradi-
tional intrusive sensing systems for shadow tolling appli-
cations, since it provides the required levels of accuracy
and robustness to the detection and classification tasks.
It uses a single camera and a processor that captures
images and processes them to generate estimates of the
vehicles circulating on a road stretch.
As a summary, the proposed method is based on a

Bayesian inference theory, which provides an unbeatable
framework to combine different nature information.
Hence, the method is able to track a variable number of
vehicles and classify them according to their estimated
dimensions. The proposed solution has been tested with
a set of long video sequences, captured under different
illumination conditions, traffic load, adverse weather
conditions, etc., where it has been proven to yield excel-
lent results.

2 Related work
Typically, the literature associated with traffic video sur-
veillance is focused on counting vehicles using basic
image processing techniques to obtain statistics about
lane usage. Nevertheless, there are many works that aim
to provide more complex estimates of vehicle dynamics
and dimensions to classify them as light or heavy. In
urban scenarios, typically at intersections, the relative
rotation of the vehicles is also of interest [1].
Among the difficulties that these methods face, sha-

dows casted by vehicles are the hardest one to tackle
robustly. Perceptually, shadows are moving objects that

differ from the background. This is a relatively critical
problem for single-camera setups. There are many
works that do not pay special attention to this issue,
which dramatically limits the impact of the proposed
solutions in real situations [2-4].
Regarding the camera view point, it is quite typical to

face the problem of tracking and counting vehicles with
a camera that is looking down on the road from a pole,
with a high angle [5]. In this situation, the problem is
simplified since the perspective effect is less pronounced
and vehicle dimensions do not vary significantly and the
problem of occlusion can be safely ignored. Neverthe-
less, real solutions shall consider as well the case of low
angle views of the road, since it is not always possible to
install the camera so high. Indeed, this issue has not
been explicitly tackled by many researchers, being of
particular relevance the work by [3], which is based on
a feature tracking strategy.
There are many methods that claim to track vehicles

for a traffic counting solution but without explicitly
using a model whose dimensions or dynamics are fitted
to the observations. In these works, the vehicle is simply
treated as a set of foreground pixels [4], or as a set of
feature points [2,3].
Works more focused on the tracking stage, typically

define a 3D model of the vehicles, which are somehow
parameterized and fitted using optimization procedures.
For instance, in [1], a detailed wireframe vehicle model
that is fitted to the observations is proposed. Improve-
ments on this line [6,7] comprise a variety of vehicle
models, including detailed wireframe corresponding to
trucks, cars, and other vehicle types, which provide
accurate representations of the shape, volume, and
orientation of vehicles. An intermediate approach is
based on the definition of a cuboid model of variable
size [8,9].
Regarding the tracking method, some works have just

used simple data association between detections in dif-
ferent time instants [2]. Nevertheless, it is much more
efficient and robust to use Bayesian approaches like the
Kalman filter [10], the extended Kalman filter [11], and,
as a generalization, particle filter methods [8,12]. The
work by [8] is particularly significant in this field, since
they are able to efficiently handle entering and exiting
vehicles in a single filter, being as well able to track
multiple objects in real time. For that purpose, they use
an MCMC-based particle filter. This type of filter has
been widely used since it was proven to yield stable and
reliable results for multiple object tracking [13]. One of
the main advantages of this type of filters is that the
required number of particles is a linear function of the
number of objects, in contrast to the exponentially
growing demand of traditional particle filters (like the
sequential importance resampling algorithm [14]).
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As described by [13], the MCMC-based particle filter
uses the Metropolis-Hastings algorithm to directly sam-
ple from the joint posterior distribution of the complete
state vector (containing the information of the objects
of the scene). Nevertheless, as happens with many other
sampling strategies, the use of this algorithm guarantees
the convergence only when using an infinite number of
samples. In real conditions, the number of particles shall
be determined experimentally. In traffic-flow surveil-
lance applications, the scene will typically contain from
none to 4 or 5 vehicles, and the required number of
particles should be around 1,000 (the need of as few as
200 particles was reported in [8]).
In the authors opinion, this load is still excessive, and

thus have motivated the proposal of a novel sampling
procedure devised as a combination of the Gibbs and
Slice sampling [15]. This method is more adapted to the
scene proposing moves on those dimensions that
require more change between consecutive time instants.
As it will be shown in next sections, this approach
requires an average between 10 and 70 samples to pro-
vide accurate estimates of several objects in the scene.
Besides, and as a general criticism, almost all of the

above-mentioned works have not been tested with large
enough datasets to provide realistic evaluations of its
performance. For that purpose, we have focused on pro-
viding a large set of tests that demonstrate how the pro-
posed system works in many different situations.

3 System overview
The steps of the proposed method are depicted in Fig-
ure 1, which shows a block diagram and example images
of several intermediate steps of the processing chain. As
shown, the first module corrects the radial distortion of
the images and applies a plane-to-plane homography
that generates a bird’s-eye view of the road. Although

the shape of the vehicles appear in this image distorted
by the perspective, their speed and position are not, so
that this domain helps to simplify prior models and the
computation of distances.
The first processing step extracts the background of

the scene, and thus generates a segmentation of the
moving objects. This procedure is based on the well-
known codewords approach, which generates an
updated background model through time according to
the observations [16].
The foreground image is used to generate blobs or

groups of connected pixels, which are described by their
bounding boxes (shown in Figure 1 as red rectangles).
At this point, the rest of the processing is carried out
only on the data structures that describe these bounding
boxes, so that no other image processing stage is
required. Therefore, the computational cost of the fol-
lowing steps is significantly reduced.
As the core of the system, the Bayesian inference step

takes as input the detected boxes, and generates esti-
mates of the position and dimensions of the vehicles in
the scene. As it will be described in next sections, this
module is a recursive scheme that takes into account pre-
vious estimates and current observations to generate
accurate and coherent results. The appearance and disap-
pearance of objects is controlled by an external module,
since, in this type of scenes, vehicles are assumed to
appear and disappear in pre-defined regions of the scene.

4 Camera calibration
The system has been designed to work, potentially, with
any point of view of the road. Nevertheless, some perspec-
tives are preferable, since the distortion of the projection
on the rectified view is less pronounced. Figure 2 illus-
trates the distortion effect obtained with different views of
the same road. As shown, to reduce the perspective

Correct and rectify Background 
update Blob extraction

Lane identifaction 
Perspective 
definition

Monitorization

Data Association

Bayesian 
InferenceI/O control

Figure 1 Block diagram of the vision-part of the system.
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distortion, it is better to work with sequences captured
with cameras installed at more height over the road,
although this is not always possible, so that the system
must cope also with these challenging situations.
In any case, the perspective of the input images must

be described, and it can be done obtaining the calibra-
tion of the camera. Although there are methods that
can retrieve the rectified views of the road without
knowing the camera calibration [5], we require it for the
tracking stage. Hence, we have used a simple method to
calibrate the camera that only requires the selection of
four points on the image that forms a rectangle on the
road plane, and two metric references.
First, the radial distortion of the lens must be cor-

rected, to make that imaged lines actually correspond to
lines in the road plane. We have applied the well-known
second order distortion model, which assumes that a set
of collinear points {xi} are radially distorted by the lens as

x′
i = xi(1 + K||xi||), (1)

where the value of the parameter K can be obtained
using five correspondences and applying the Levenberg-
Marquardt algorithm.
Next, the calibration of the camera is computed using

the road plane to image plane homography. This homo-
graphy is obtained selecting 4 points in the original
image such that these points form a rectangle in the
road plane, and applying the DLT algorithm [17]. The
resulting homography matrix H can be expressed as

H = K
[
r1 r2 t

]
, (2)

where r1 and r2 are the two rotation vectors that
define the rotation of the camera (the third rotation vec-
tor can be obtained as the cross product r3 = r1 × r2),

and t is the translation vector. If we left multiply Equa-
tion 2 by K-1 we obtain the rotation and translation
directly from the columns of H.
The calibration matrix K can be then found by apply-

ing a non-linear optimization procedure that minimizes
the reprojection error.

5 Background segmentation and blob extraction
The background segmentation stage extracts those
regions of the image that most likely correspond to
moving objects. The proposed approach is based on the
code-words approach [16] at pixel level.
Given the segmentation, the bounding boxes of blobs

with at least a certain area are detected using the
approach described in [18]. Then, a recursive process is
undertaken to join boxes into larger bounding boxes
which satisfy dx <tX, dy <tY, where dx and dy are the
minimal distances in X and Y from box to box, tX and
tY are the corresponding distance thresholds. The recur-
sive process stops when no larger rectangles can be
obtained that meet the conditions.
Figure 3 exemplifies the results of the segmentation

and blob extraction stages in an image showing two
vehicles of different sizes.

6 3D tracking
The 3D tracking stage is fed with the set of observed 2D
boxes in the current instant, which we will denote as zt =
{zt, m}, with m = 1 ... M. Each box is parameterized as zt,
m = {zt, m, x, zt, m, y, zt, m, w, zt, m, h) in this domain, i.e. a
reference point and a width and height.
The result of the tracking process is the estimate of xt,

which is a vector containing the 3D information of all
the vehicles in the scene, i.e. xt = {xt, n}, with n = 1 ...
Nt, where N is the number of vehicles in the scene at
time t, and xt, n is a vector containing the position,
width, height, and length of the 3D box fitting vehicle n.
Using these observations and the predictions of the exist-

ing vehicles at the previous time instant, an association
data matrix is generated, and used within the observation
model and for the detection of entering and exiting
vehicles.
The proposed tracking method is based on the prob-

abilistic inference theory, which allows handling the
temporal evolution of the elements of the scene, taking
into account different types of information (observation,
interaction, dynamics, etc.). As a result, we will typically
get an estimation of the position and 3D volume of all
the vehicles that appear in the observation region of the
image (see Figure 4).

6.1 Bayesian inference
Bayesian inference methods provide an estimation of p
(xt|Z

t), the posterior density distribution of state xt,

(a) (b)
Figure 2 Two different viewpoints generate different perspective
distortion: (a) synthetic example of a vehicle and the road observed
with a camera installed in a pole; and (b) installed in a gate.
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which is the parameterization of the existing vehicles in
the scene, given all the estimations up to current time,
Zt.
The analytic expression of the posterior density can be

decomposed using the Bayes’ rule as

p(xt|Zt) = kp(zt|xt)p(xt|Zt−1), (3)

where p(zt|xt) is the likelihood function that models
how likely the measurement zt would be observed given
the system state vector xt, and p(xt|Z

t-1) is the predic-
tion information, since it provides all the information
we know about the current state before the new obser-
vation is available. The constant k is a scale factor that
ensures that the density integrates to one.

The prediction distribution is given by the Kolmo-
gorov-Chapman equation [14]

p(xt|Zt−1) =
∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1. (4)

If we hypothesize that the posterior can be expressed
as a set of samples

p(xt−1|Zt−1) ≈ 1
Ns

Ns∑
i=1

δ(xt−1 − x(i)t−1), (5)

then

p(xt|Zt−1) ≈ 1
Ns

Ns∑
i=1

p(xt|x(i)t−1). (6)

Figure 3 Vehicle tracking with a rectangular vehicle model. Dark boxes correspond to blob candidates, light to previous vehicle box and
white to the current vehicle box.

Figure 4 Tracking example: The upper row shows the rendering of the obtained 3D model of each vehicle. As shown, the appearance
and disappearance of vehicles is handled by means of an entering and exiting region, which limits the road stretch that is visualized in the
rectified domain (bottom row).
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Therefore, we can directly sample from the posterior
distribution since we have its approximate analytic
expression [13]:

p(xt|Zt) ∝ p(zt|xt)
Ns∑
i=1

p(xt|x(i)t−1). (7)

An MRF factor can be included to the computation of
the posterior to model the interaction between the dif-
ferent elements of the state vector. The MRF factors can
be easily inserted into the formulation of the posterior
density, since they do not depend on previous time
instants [13]. This way, the expression of the posterior
density shown in (7), is now rewritten as

p(xt|Zt) ∝ p(zt|xt)
∏
n,n′

Φ(xt,n, xt,n′)
Ns∑
i=1

p(xt|x(i)t−1), (8)

where F(·)is a function that governs the interaction
between two elements n and n’ of the state vector.
Particle filters are tools that generate this set of sam-

ples and the corresponding estimation of the posterior
distribution. Although there are many different alterna-
tives, MCMC-based particle filters have been shown to
obtain the more efficient estimations of the posterior for
high-dimensional problems [13] using the Metropolis-
Hastings sampling algorithm. Nevertheless, these meth-
ods rely on the definition of a Markov chain over the
space of states such that the stationary distribution of
the chain is equal to the target posterior distribution. In
general, a long chain must be used to reach the station-
ary distribution, which implies the computation of hun-
dreds or thousands of samples.
In this article, we will see that a much more efficient

approach can be used by substituting the Metropolis-
Hastings sampling strategy by a line search approach
inspired in the slice sampling technique [15].

6.2 Data association
The measurements we got are boxes, typically one per
object, although, in some situations, there might be a
large box that corresponds to several vehicles (due to
occlusions or an undesired merging process in the back-
ground subtraction and blob extraction stages), or also a
vehicle described by several independent boxes (in case
the segmentation suffers fragmentation). For that reason,
to define an observation model adapted to this behavior,
an additional data association stage is required to link
measurements with vehicles. The correspondences can
be expressed with a matrix, whose rows correspond to
measurements and columns to existing vehicles. Figure 5
illustrates an example data association matrix that will be
denoted as D, and Figure 6 shows some examples of D
matrices, corresponding to different typical situations.

The association between 2D boxes with 3D vehicles is
carried out by projecting the 3D box into the rectified
road domain, and then compute its rectangular hull,
that we will denote as x′

n (let us remove the time index t
from here on for the sake of clarity), i.e. the projected
version of vehicle xn. As a rectangular element, this hull
is characterized by a reference point and a width and
length: x′

n = (x′
x, x

′
y, x

′
w, x

′
h), analogously to observations

zm. An element Dm, n of matrix D is set to one if the
observation zm intersects with x′

n.

6.3 Observation model
The proposed likelihood model takes into account the
data association matrix D, and is defined as the product
of the likelihood function associated to each observation,
considered as independent:

p(z|x) =
M∏
m=1

p(zm|x). (9)

M
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m
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Clutter Merged

Multiple Unobserved

Figure 5 Association of measurements zt, mwith existing
objects xt-1,n, and the corresponding data association matrix D
(measurements correspond to the row of D and objects to the
columns).

Figure 6 Different simple configurations of the data
association matrix and their corresponding synthetic vehicles
projections (in blue), and measurements (in red).
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Each one of these functions corresponds to a row of
matrix D, and is computed as the product of two differ-
ent types of information:

p(zm|x) = pa(zm|x)pd(zm|x), (10)

where pa(·) is a function relative to the intersection of
areas of the 2D observation zm and the set of hulls of
the projected 3D boxes x = {xn} with n = 1 ... N. The
second function, pd(·), is related to the distances
between the boxes. Figure 7 illustrates, with several
examples, the values of each of these factors and how
can they evaluate different x′

n hypotheses. Figure 8 illus-
trates these concepts with a simple example of a single
observation and a single vehicle hypothesis.
The first function is defined as

pa(zm|x) ∝ exp

(∑N
n=1 am,n

am

∑N
n=1 am,n

Nm
∑N

n=1 ωm,nan

)
, (11)

where am,n is the intersection between the 2D box, zm,
and the hull of the projected 3D box, x′

n; am and an are,
respectively, the areas of zm and x′

n, and Nm is the num-
ber of objects that are associated with observation m
according to D. The value ωm, n is used to weight the
contribution of each vehicle:

ωm,n =
an∑N
n=1 an

(12)

such that ωm, n ranges between 0 and 1 (it is 0 if
object n does actually not intersect with observation m,
and 1 if object n is the only object associated to obser-
vation m).
The first ratio of Equation 11 represents how much

area of observation m intersects with its associated
objects. The second ratio expresses how much area of
the associated objects intersects with the given observa-
tion. Since objects might be as well associated to other
observations, the sum of their areas is weighted according
to the amount of intersection they have with other obser-
vations. After the application of the exponential, this fac-
tor tends to return low values if the match between the
observation and its objects is not accurate, and high if
the fit is correct. Some examples of the behavior of these
ratios are depicted in Figure 7. For instance, the first case
(two upper rows) represents a single observation, and
two different hypothesized x′

n. It is clear from the figure
that the upper-most case is a better hypothesis, and that
the area of the observation covered by the hypothesis is
larger. Therefore, the first ratio of Equation 11 is 0.86
and 0.72 for the second hypothesis. Analogously, it can
be observed that the second ratio indeed represents how
much area of the hypothesis is covered by the observa-
tion. In this case, the first hypothesis gets 0.77 and the
second 0.48. As a result, the value of pa(·) represents well
how the 2D boxes zm and x′

m coincide. The other exam-
ples of Figure 7 show the same behavior for this factor in
different configurations.

Figure 7 Example likelihood for three different scenes (grouped as pairs of rows). For each one, two x hypotheses are proposed and the
associated likelihood computed. In red, the observed 2D box, and in blue, the projected 3D boxes of the vehicles contained in x.
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The factor related to the distances between boxes, pd
(·), computes how aligned is the projection of the 3D
objects with their associated observations:

pd(zm|x) ∝ exp(−λ(dm,x + dm,y)), (13)

where dm, x and dm, y are, respectively, the reference
distances between the boxes. According to the situation
of the vehicle in the scene, these distances are computed
in a different manner. For instance, when the vehicle is
completely observable in the scene (i.e. it is not entering
or leaving), the distance dm, x is computed as

dm,x =

∑N
n=1 Dm,n

∣∣x′
n,x − zm,x

∣∣∑N
n=1 Dm,n

. (14)

The distance in y is defined analogously. This way, the
object hypotheses that are more centered on the asso-
ciated observation obtain higher values of pd(·). In case
the vehicle is leaving, the observation of the vehicle in
the rectified view is only partial, and thus this factor is
adapted to return high values if the visible end of the
vehicle fits well with the observation. In this case, dm, x

is redefined as

dm,x =

∑N
n=1 Dm,n

∣∣(x′
n,x + x′

n,w) − (zm,x + zm,w)
∣∣∑N

n=1 Dm,n
. (15)

Figure 7 depicts as well some examples of the values
retrieved by function pd(·) in some illustrative examples.
For instance, consider again the first example (two
upper rows): the alignment in x of the first hypothesis is
much better, since the centers of the boxes are very
close, while the second hypothesis is not well aligned in
this dimension. As a consequence, the values of dx are,
respectively, 0.04 and 1.12, which imply that the first
hypothesis obtains a higher value of pd(·). The other
examples show some other cases in which the alignment
makes the difference between the hypotheses.

The combined effect of these two factors is that the
hypotheses whose 2D projections best fit to the existing
observations obtain higher likelihood values, taking into
account both that the area of the intersection is large,
and that the boxes are aligned in the two dimensions of
the plane.

6.4 Prior model
The information that we have at time t prior to the arri-
val of a new observation is related to two different
issues: on the one hand, there are some physical restric-
tions on the speed and trajectory of the vehicles, and,
on the other hand, there are some width-length-height
configurations more probable than others.
6.4.1 Motion prior
For the motion prior model, we will use a lineal con-
stant-velocity model [19], such that we can perform pre-
dictions of the position of the vehicles from t-1 to t
according to their estimated velocities (at each spatial
dimension, x and y).
Specifically, p(xt|xt−1) = N (Axt−1|�), where matrix A

is a linear matrix that propagates state xt-1 to xt with a
constant-velocity model [19], and N (·) represents a
multivariate normal distribution.
In general terms, we have observed that within this

type of scenarios, this model predicts correctly the
movement of vehicles observed from the camera’s view
point, and is as well able to absorb small to medium
instantaneous variations of speed.
6.4.2 Model prior
Since what we want to model are vehicles, the possible
values of the tuple WHL (width, height, and length)
must satisfy some restrictions imposed by the typical
vehicle designs. For instance, it is very unlikely to have a
vehicle with width and length equal to 0.5 and 3 m high.
Nevertheless, there is a wide enough variety of possi-

ble configurations of WHL such that it is not reasonable
to fit the observations to a discrete number of fixed

(a) (b) (c)
Figure 8 Likelihood example: (a) a single observation (2D bounding box); (b) a single vehicle hypothesis, where the 3D vehicle is projected
into the rectified view (in solid lines), and its associated 2D bounding box is shown in dashed lines; (c) the relative distance between the 2D
boxes (dm, x, dm, y), and the intersection area am, n.
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configurations. For that reason, we have defined a flex-
ible procedure that uses a discrete number of models as
a reference to evaluate how realistic a hypothesis is. Spe-
cifically, we will test how close is a hypothesis to the
closest model in the WHL space. If it is close, then the
model prior will be high, and low otherwise.
Provided the set of models X = {xc}, with c = 1 ... C,

the expression of the prior is p(xt|X ) = p(xt|xc′), where
xc′ is the model that is closer to xt. Hence,
p(xt|xc′) = N (xc|�) is the function that describes the
probability of a hypothesis to correspond to model xc′.
The covariance Σ can be chosen to define how much
restrictive is the prior term. If it is set too high, then the
impact of p(xt|Xc) on p(xt|zt) could be negligible, while
a too low value could make that p(xt|zt) is excessively
peaked so that sampling could be biased.
In practice, we have used the set of models illustrated in

Figure 9. The number of models and the differences
between them depends on how much restrictive we would
like to be with the type of vehicles to detect. If we define
just a couple of vehicles, or a single static vehicle, then
detection and tracking results will be less accurate.

6.5 MRF interaction model
Provided our method considers multiple vehicles within
the state vector xt, we can introduce models that govern
the interaction between vehicles in the same scene. The
use of such information gives more reliability and robust-
ness to the system estimates, since it better models the
reality.
Specifically, we use a simple model that avoids esti-

mated vehicles to overlap in space. For that purpose we
define an MRF factor, as in Equation 8. The function F
(·) can be defined as a function that penalizes hypoth-
eses in which there is a 3D overlap between two or
more vehicles.
The MRF factor can then be defined as

�(xn, xn′) =
{
0 if ∩ (xn, xn′) = 0
1 otherwise

(16)

between any pair of vehicles characterized by xn and
xn′, where ∩(·) is a function that returns the volume of
intersection between two 3D boxes.

6.6 Input/output control
Appearing and disappearing vehicle control is done
through the analysis of the data association matrix, D. If
an observed 2D box, zm, is not associated with any
existing object xn, then a new object event is triggered.
If this event is repeated in a determined number of con-
secutive instants, then the state vector is augmented
with the parameters of a new vehicle.
Analogously, if an existing object is not associated

with any observation according to D, then a delete
object event is triggered. If the event is as well repeated
in a number of instants, then the corresponding compo-
nent xn of the state vector is removed from the set.

7 Optimization procedure
Particle filters infer a point-estimate as a statistic (typi-
cally, the mean) of a set of samples. Consequently, the
posterior distribution has to be evaluated at least once
per sample. For high-dimensional problems as ours,
MCMC-based methods typically require the use of thou-
sands of samples to reach a stationary distribution. This
drawback is compounded for importance sampling
methods, since the number of required samples
increases exponentially with the problem dimension. In
this work, we propose a new optimization scheme that
directly finds the point-estimate of the posterior distri-
bution. This way, we avoid the step of sample genera-
tion and evaluation, and thus the processing load is
dramatically decreased. For this purpose we define a
technique that combines concepts of the Gibbs sampler
and the slice sampler [20]. Given the previous point-

estimate x(∗)t−1, an optimization procedure is initialized

that generates a movement in the space to regions with
higher values of the target function (the posterior distri-
bution). The movement is done by the slice sampling
algorithm, by defining a slice that delimits the regions
with higher function values around the starting point.
The generation of the slice for a single dimension is
exemplified in Figure 10. The granularity is given by the
step size Δx.
Figure 11 illustrates this method in a 2D example

function. This procedure is inspired by the Gibbs sam-
pler since a single dimension is selected at a time to
perform the movement. Once the slice is defined, a new
start point is selected randomly within the slice, and the
process is repeated for the next dimension. In Figure 11,

we can see how the first movement moves x(∗)t−1 in the x-

direction using a slice of width 3Δx. The second step
generates the slice in the y-direction and selects x(0)t

medium and long trucks buses

carsmoto

trailers

small trucksSUV

Figure 9 Example set of 3D box models, X , comprising small
vehicles like cars or motorbikes, and long vehicles like buses
and trucks.
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randomly within the slice. Two more steps lead to the
new best estimation of the posterior maximum at time t.
This technique performs as many iterations as neces-

sary to find a stationary point such that its slice is of
size zero. As expected, the choice of the step size is cri-
tical because too small values would require evaluating
the target function too many times to generate the
slices, while too high values could potentially lead the
search far away from the targeted maximum.
We have designed this method since it provides fast

results, typically stopping at the second iteration. Other
known methods, like gradient-descent or second-order
optimization procedures, have been tested in this con-
text, being much more unstable. The reason is that they
greatly depend on the quality of the Jacobian approxi-
mation, which, in our problem, introduces too much
error and makes the system tend to lose the track.
For a better visualization, let us study how this proce-

dure behaves to optimize the position and volume of a
3D box for a single vehicle. Figure 12 represents two
consecutive frames: the initial state vector at the left

image, and the result after the optimization procedure
at the right image.
Since the vehicle is quite well modeled in the initial

state, we can guess that the optimization process will
generate movements in the direction of the movement
of the vehicle, while making no modifications on the
estimation of the width, length, or height. This is illu-
strated in Figure 13. As shown, the slice sampling, in
the x-dimension finds that the posterior values around
the previous estimate are lower. The reason is that the
vehicle is moving, in this example, in a straight trajec-
tory without significantly varying its transversal position
inside its lane. The movement of the vehicle is therefore
more significant in the y-dimension. Hence, the proce-
dure finds a slice around the previous value for which
the posterior value is higher. The algorithm then selects
the best evaluated point in the slice, which, in the figure,
correspond to four positive movements of width Δy. The
rest of dimensions (width, height, and length) get as well
no movement since there is no better posterior values
around the current estimates.
To exemplify the movement in the y-direction, Figure 14

shows some of the evaluated hypothesis, which increase
the y position of the vehicle. As shown, the slice sampling
allows evaluating several points in the slice, and selecting
as new point-estimate the one with highest posterior
value, which is indeed the hypothesis that best fit to the
vehicle.

8 Tests and discussion
There are two different types of tests that identify the per-
formance of the proposed system. On the one hand, detec-
tion and classification rates, which illustrates how many

Slice

Figure 10 This illustration depicts a single movement from a
start point x(i) to a new position x(i+1) in a single dimension by
creating a slice.

Figure 11 Example execution of the proposed optimization procedure on a 2D synthetic example, showing three iterations.
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miss-detections and false alarms the system suffers. On
the other hand, efficiency tests of the proposed sampling
algorithm, which depicts the number of evaluations of the
posterior distribution p(xt|zt) are required to reach the tar-
get detection and classification rates.

8.1 Detection and classification results
Tests have been carried out using six long sequences (1
h in average each one, over 10,000 vehicles in total),
four of them obtained from a low-height camera, and
the two others from two different perspectives with
higher cameras. These sequences have been selected to
evaluate the performance of the proposed method in
challenging situations, including illumination variation,
heavy traffic situations, shadows, rain, etc.

Considering the detection rates, we have counted the
number of vehicles that drive through the scene and are
undetected by the system (miss-detections or false nega-
tive FN), the number of non-existing detections (false
alarms or false positive, FP), and the ground truth num-
ber of vehicles (N). Moreover, we will consider two
vehicle categories: light and heavy vehicles. Although
images cannot be used to obtain weight information, we
deduce it using the length of the vehicles, i.e. a vehicle
is considered as light if its length is lower than 6 m, and
heavy otherwise. This approximation is motivated by the
fact that road operators typically require that vehicles
are classified according to their weight. Hence, we will
define pairs of statistics for each type of vehicle, i.e. false
positive and negative values and total number of light

Figure 12 Example optimization procedure between two frames.

Figure 13 Movement at each dimension for example case shown in Figure 12. As shown, only the slice in the y dimension shows
movements that increase the value of p(xt|zt). For simplicity, the step size is the same for all dimensions (since all of them represent the same
magnitude: meters).
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vehicles (FPL, FNL, NL), and analogous variables for heavy
vehicles (FPH, FNH, NH).
The results of the tests are shown in Table 1. These

results show simultaneously the detection quality, and
the classification errors. ECL is the number of light vehi-
cles classified as heavy, and ECP is the number of heavy
vehicles classified as light. For a better understanding and
comparison of the results, we have computed the asso-
ciated recall and precision values of each sequence and
type of vehicle. Hence, we obtain pairs (RL, PL) and (RH,
PH) for each sequence. These values are computed as

Recall =
NL − FNL − FPL − ECL

NL
, (17)

Precision =
NL − FNL − FPL − ECL
NL − FNL + FPL + ECL

(18)

and an analogous expression for heavy vehicles. Recall
is related to the number of miss-detections, while preci-
sion is related to the number of false alarms.
Figure 15 shows the obtained results. Besides, an

example image of each sequence is shown in Figure 16.
As shown, the recall and precision values are all

comprised between 80 and 99%, corresponding in all
cases the worsen values to the heavy vehicle category.
This is due to the wider variety of heavy vehicle sizes,
which also causes more problems to the system due to
their projected shadows, or the occlusions they generate.
For the low-height camera sequences, large vehicles
sometimes occupy a very significant part of the image,
making that the camera adjust its internal illumination
parameters, which causes subsequent detection
distortions.
Nevertheless, we have obtained good detection and

classification results in all these challenging situations,
being of special interest the ability of the system to reli-
ably count vehicles with heavy traffic (such as in the
third sequence). The system is also able to work with
different type of perspectives, since it computes the cali-
bration of the camera and thus considers the 3D volume
of vehicles instead of just 2D silhouettes. The last
sequence (Color noise) has been selected since it corre-
sponds to a sequence captured with a low cost camera,
which indeed shows significant color noise in some
regions of the image. The segmentation and blob gen-
eration stages absorb this type of distortion and makes

Figure 14 Linear movement in y, and their associated p(xt|zt) values.

Table 1 Detection and classification results

Sequence ECL ECP FNL FPL FNP FPP NL NP RL PL RP PP

Dusk 0 5 24 9 1 0 1662 118 0.9801 0.9861 0.9492 0.9573

Rain and shadow 33 26 73 88 7 11 4516 627 0.9570 0.9484 0.9298 0.8780

Traffic jam 10 28 63 7 16 4 4796 563 0.9833 0.9891 0.9147 0.9180

Dusk and rain 8 13 19 48 0 1 968 115 0.9225 0.8842 0.8783 0.8145

Perspective 2 10 30 18 2 2 614 101 0.9186 0.9216 0.8614 0.8447

Color noise 0 3 0 1 0 0 561 23 0.9982 0.9912 0.8696 0.8696
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that the detection and classification results are both
excellent.

8.2 Sampling results
This subsection shows some experimental results that
illustrate the benefits of using the proposed sampling
strategy within the Bayesian framework. First, we show
with a real example that the proposed method can be
used to reach high values of posterior probability with
few iterations. Second, we compare the performance of
this sampling strategy with that of well known sampling
methods typically used in the context of particle filtering
and Bayesian inference.
8.2.1 Real data example
The proposed method performance has been evaluated
as well according to the number of required evaluations
of the posterior distribution to reach the above-men-
tioned detection and classification rates.
As explained along the article, the proposed sampling

strategy allows adapting the number of evaluations to
the movement of the vehicle. Hence, typically it is only
needed to carry out movements in the y-direction, while
the movements in width, height, and length are only
necessary in entering and leaving situations.
The system generates a number of samples adapted

to the number of vehicles of the scene at each instant.
The greater the number of vehicles the greater dimen-
sion of the state vector and number of posterior
evaluations.
Figure 17 shows the behavior of the system regarding

the number of evaluations according to the number of
tracked vehicles. We have used accumulated values of
different sequences, divided into three characteristic sce-
narios: low traffic, normal traffic and heavy traffic. The
histograms of the left column show the distribution of

the number of vehicles for these scenarios, while the
right column shows the corresponding distribution of
number of evaluations. As shown, the number of objects
in the low-traffic scenario does not typically exceed
three vehicles simultaneously in the scene, and includes
a large amount of instants in which there are no vehi-
cles at all. Therefore, we observe that the system per-
forms a proportional number of evaluations, 50 in
average without considering the bin at 0, which corre-
spond to those instants without vehicles.
In the two other situations: normal traffic and heavy

traffic, the number of vehicles is increased, and there
are some instants with 4 and 5 vehicles in the scene,
which requires a higher computational load to the sys-
tem. The histograms of the number of evaluations show
that, in these situations, the number of evaluations
ranges between 0 and 100, and between 0 and 200,
respectively.
8.2.2 Synthetic data experiments
The following experiments aim to show that the slice
sampling-based strategy generates better estimates of a
target posterior distribution compared to the impor-
tance re-sampling algorithm [14] and the Metropolis-
Hastings algorithm.
The tests are carried out as follows. For the sake of

simplicity, a target distribution is defined as a multi-
variate normal distribution, N (μ, Σ), of D dimension,
where μÎ RD and Σ Î R D×D. The three-mentioned
algorithms are executed to generate a number of sam-
ples of this target distribution. The error is computed as
the norm of the difference between the average value of
the samples and the mode of the multi-variate normal
distribution ε = ||μ − 1

N

∑N
n=1 xn||, where N is the num-

ber of samples, and xn Î RD is the nth sample.
Each algorithm is executed 100 times, and the error is

averaged to avoid numerical instability. The test is exe-
cuted for example instances of the multivariate distribu-
tion, where D = 1, 2, 4, 10 and asking the algorithms to
generate 10 to 1,000 samples.
Figure 18 shows the obtained error of each method

according to the number of samples, for 1D, 2D, 4D,
and 10D. For low dimensionality (1D, 2D), the impor-
tance sampling algorithm performs well, similarly to the
slice sampling. The MH algorithm performs well
although carefully selecting the step size. We can see
that a step size too small makes that the algorithm
obtains high rejection rates that affect to the accuracy of
the estimation. When the dimensionality of the problem
grows (4D or 10D), which is more adapted to real track-
ing problems, the importance sampling algorithm begins
to offer very poor results. The reason is that this
method is known to require an exponentially growing
number of samples to reach good estimations [13]. We
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Figure 15 Recall and precision graphs for the different
sequences defined in Table 1. The values of the graph for each
sequence correspond to the recall-precision pairs of light (left) and
heavy (right) vehicles.
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run these tests for obtaining up to 1,000 samples, which
is clearly insufficient.
In these high-dimensionality examples, we can see that

the performance of the slice sampling-based algorithm is

very high, and better than the one of the MH. It is note-
worthy that the step size is very important for the MH
algorithm, while the SS algorithm adapts the step size to
the target function and thus do not require that fine

Figure 16 Example results for each one of the sequences used for testing. From left to right, the sequences correspond to those indexed
in Table 1.
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parameter tuning. When the number of samples is low,
this drawback makes the MH to fail to reach the regions
of the target distribution with higher probability, and
thus the error is too large. This is illustrated in Figure 19,
where the MH and the SS methods are compared in a 2D
example, using 10 and 100 samples. As shown, the slice-
based method reaches the high-probability mass of the
target distribution in a couple of iterations while the MH
do not. When the number of samples is increased to 100,
the MH reaches as well that regions of the space.
Therefore, we can say that, compared to other meth-

ods, the SS algorithm (i) generates better estimations
with less number of samples; (ii) provides more accurate
results; and (iii) is less sensitive to parameter tuning. In
summary, the proposed scheme can be used for real
applications as the one described in the text which
require accurate results and real-time processing, since
it can generates good estimates using a reduced number
of samples.
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Figure 17 Distribution of number of objects (left) and number
of evaluations of the posterior (right) for three different traffic
scenarios.
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8.3 Computation requirements
Finally, attending to the computation time of the whole
system implementation, it runs at around 30 fps using
images downsampled to 320 × 240 pixels for processing
on an Intel Core2 Quad CPU Q8400 at 2.66 GHz, with
3 GB RAM and a NVIDIA 9600 GT. This is an indus-
trial PC that satisfies the installation requirements and
allows us to process the images in real time.
The program has been implemented in C/C++, using

OpenCV primitives for data structure and basic image
processing operations, OpenGL for visualization of
results, and OpenMP and CUDA for multi-core and
GPU programming, respectively.

9 Conclusions
In this article, we have presented the results of the work
done in the design, implementation, and evaluation of a
vision system designed to represent a serious alternative,
cheap, and effective to systems based on other types of
sensors in vehicle counting and classification for free
flow and shadow tolling applications.
For this purpose, we have presented a method that

exploits different information sources and combines them
into a powerful probabilistic framework, inspired by the
MCMC-based particle filters. Our main contribution is
the proposal of a novel sampling system that adapts to the
needs of each situation, so that allows for very robust and
precise estimates with a much smaller number of point-

estimates with respect to other sampling methods such as
Importance sampling or the Metropolis-Hastings.
An extensive testing and evaluation phase has led us

to collect data on system performance in many situa-
tions. We have shown that the system can detect, track,
and classify vehicles with very high levels of accuracy,
even in challenging situations, including heavy traffic
conditions, presence of shadows, rain, and variable illu-
mination conditions.
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