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Abstract

Monitoring physiological functions such as swallowing often generates large volumes of samples to be stored and
processed, which can introduce computational constraints especially if remote monitoring is desired. In this article,
we propose a compressive sensing (CS) algorithm to alleviate some of these issues while acquiring dual-axis
swallowing accelerometry signals. The proposed CS approach uses a time-frequency dictionary where the
members are modulated discrete prolate spheroidal sequences (MDPSS). These waveforms are obtained by
modulation and variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the time-varying
nature of swallowing acclerometry signals. While the modulated bases permit one to represent the signal behavior
accurately, the matching pursuit algorithm is adopted to iteratively decompose the signals into an expansion of
the dictionary bases. To test the accuracy of the proposed scheme, we carried out several numerical experiments
with synthetic test signals and dual-axis swallowing accelerometry signals. In both cases, the proposed CS
approach based on the MDPSS yields more accurate representations than the CS approach based on DPSS.
Specifically, we show that dual-axis swallowing accelerometry signals can be accurately reconstructed even when
the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate that the MDPSS are suitable
bases for swallowing accelerometry signals.

Keywords: compressive sensing, swallowing accelerometry, modulated discrete prolate spheroidal sequences,
time-frequency dictionary, matching pursuit

1 Introduction
Continuous monitoring of physiological functions such as
swallowing can pose severe constraints on data acquisition
and processing systems. Even when sampling physiological
signals at low rates (e.g., 250 Hz), we end up with close to
a million of samples in the first hour of monitoring. Simi-
lar computational burdens are ever-present in telemedi-
cine, and in recent years we have witnessed numerous
efforts to deal with this problem. One such effort is to
compress the acquired signals immediately upon sampling
using various schema (e.g. [1]). The other is to rethink the

way we acquire the data, and a number of recent publica-
tions have begun looking at this approach (e.g., [2-5]).
The idea of compressive sensing (CS) has gained con-

siderable attention in recent years. The main idea
behind CS is to diminish the number of steps involved
when acquiring data by combining sampling and com-
pression into a single step [3,4]. Specifically, CS enables
one to acquire the data at sub-Nyquist rates, and
recover it accurately from such sparse samples [3].
In this article, we propose an approach for CS of swal-

lowing accelerometry signals based on a time-frequency
dictionary. In particular, the members of the dictionary
are recently proposed modulated discrete spheroidal
sequences (MDPSS) [6,7]. The bases within the time-
frequency dictionary are obtained by modulation and var-
iation of the bandwidth of discrete prolate spheroidal
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sequences (DPSS) to reflect the vaying time-frequency
nature of many biomedical signals, including the swal-
lowing acclerometry signals considered in this article.
Using the proposed approach, we carry out a numerical
analysis of synthetic test signals and real swallowing
accelerometry signals. The numerical analysis using the
synthetic test signals showed that the CS approach based
on MDPSS was more accurate than the CS approach
based on DPSS (e.g., [7,8]). Additionally, the analysis of
swallowing accelerometry signals showed that we can
obtain 90% cross-correlation between the reconstructed
signals and the actual signals using only 50% percent of
samples. This has been observed for three different types
of swallowing tasks.
The article is organized as follows: Section 2 describes

swallowing accelerometry and outlines the advantages of
this approach for detecting swallowing difficulties. In
Section 3, we describe the proposed approach for CS
using the time-frequency based dictionary consisting of
MDPSS bases. Section 4 reports the data analysis steps
that we carried out to obtain the reported results, which
are presented in Section 5 along with the discussion of
the same results. The conclusions are drawn in Section 6.

2 Swallowing accelerometry
Swallowing (deglutition) is a complex process of trans-
porting food or liquid from the mouth to the stomach
consisting of four phases: oral preparatory, oral, pharyn-
geal, and esophageal [9]. Dysphagic patients (i.e., patients
suffering from swallowing difficulty) usually deviate from
the well-defined pattern of healthy swallowing. Dysphagia
frequently develops in stroke patients, head injured
patients, and patients with others with paralyzing neuro-
logical diseases [10]. Patients with dysphagia are prone to
choking and aspiration (the entry of material into the
airway below the true vocal folds) [9]. Aspiration and
dysphagia may lead to serious health sequelae including
malnutrition and dehydration [11,12], degradation in psy-
chosocial well-being [13,14], aspiration pneumonia [15],
and even death [16].
The videofluoroscopic swallowing study (VFSS) is used

widely in today’s dysphagia management and it represent
the gold standard for assessment [9,17]. However, VFSS
requires expensive X-ray equipment as well as expertise
from speech-language pathologists and radiologists.
Hence, only a limited number of institutions can offer
VFSS and the procedure has been associated with long
waiting lists [18,19]. In addition, day-to-day monitoring
of dysphagia is crucial due to the fact that the severity of
dysphagia can fluctuate over time and VFSS is not suita-
ble for such day-to-day monitoring.
Cervical auscultation is a promising non-invasive tool

for the assessment of swallowing disorders [20] involving
the examination of swallowing signals acquired via a

stethoscope or other acoustic and/or vibration sensors
during deglutition [21]. Swallowing accelerometry is one
such approach and employs an accelerometer as a sensor
during cervical auscultation. Swallowing accelerometry
has been used to detect aspiration in several studies,
which have described a shared pattern among healthy
swallow signals, and verified that this pattern is either
absent, delayed or aberrant in dysphagic swallow signals
[22-34].
However, these previous studies used single-axis acceler-

ometers and exclusively monitored vibrations propagated
in the anterior-posterior direction at the cervical region.
Proper hyolaryngeal movement with precise timing during
bolus transit is vital for airway protection in swallowing
[9]. Since the motion of the hyolaryngeal structure during
swallowing occurs in both anterior-posterior (A-P) and
superior-inferior (S-I) directions, the employment of dual-
axis accelerometry seems well motivated. Since correlation
has been reported between the extent of laryngeal eleva-
tion and the magnitude of the A-P swallowing accelero-
metry signal [35], it is hypothesized that vibrations in the
S-I axis also capture useful information about laryngeal
elevation. From a physiological stand point, the S-I axis
appears to be as worthy of investigation as the A-P axis
because the maximum excursion of the the hyolaryngeal
structure during swallowing is of similar magnitude in
both the anterior and superior directions [36,37]. Recent
contributions have indeed confirmed that dual-axis accel-
erometers yield more information and enhance analysis
capabilities [38-43].

2.1 Data
Sample signals used in this article were collected from 408
participants (ages 18-65) over a 3 month period from a
public science centre in Toronto, Ontario, Canada. All
participants provided written consent and had no docu-
mented swallowing disorders. The research ethics boards
of the Toronto Rehabilitation Institute and Holland Bloor-
view Kids Rehabilitation Hospital (both located in Tor-
onto, Ontario, Canada) approved the study protocol.
To collect data from participants, we used a dual-axis

accelerometer (ADXL322, Analog Devices), which was
attached to the participant’s neck (anterior to the cricoid
cartilage) using double-sided tape. The axes of acceleration
were aligned to the anterior-posterior and superior-infer-
ior directions. Data were band-pass filtered in hardware
with a pass band of 0.1-3,000 Hz and sampled at 10 kHz
using a custom LabVIEW program running on a laptop
computer. With the accelerometer attached, each partici-
pant was cued to perform five saliva swallows (i.e., dry
swallows), five water swallows by cup with their chin per-
pendicular to the floor (i.e., wet swallows) and five water
swallows in the chin-tucked position. The entire data col-
lection session lasted 15 min per participant.
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3 Proposed scheme
Traditional signal processing approaches for sensing and
processing of information have relied on the Shannon
sampling theorem, which states that a bandlimited sig-
nal x(t) can be reconstructed from uniform samples
{x(kTs)}:

x(t) =
∑
k

x(kTs)
sin(�max(t − kTs)/π)

�max(t − kTs)/π
(1)

where Ts is the sampling period and Ωmax represents the
maximum frequency present in the signal. In other words,
the Shannon sampling theorem states that in order to
ensure accurate representation and reconstruction of a sig-
nal with Ωmax, we should sample it at least at 2Ωmax sam-
ples per second (i.e., the Nyquist rate). However, many
recent publications have challenged this approach for a
number of reasons (e.g., [44,45]). First, by using the Shan-
non sampling theorem we rely on bases of infinite support,
while we generally reconstruct signal samples in the finite
domain [44]. Second, large bandwidth values can severely
constraint sampling architectures [45]. Third, even when
we consider signals with a relatively low band-width values
such as swallowing accelerometry signals, continuous
monitoring of swallowing function can produce large
number of redundant samples, which severely constraints
our processing efforts.
A recently proposed idea of CS resolves some of the

aforementioned issues [3-5]. CS is a method closely
related to transform coding, since a transform code con-
verts input signals, embedded in a high-dimensional
space, into signals that lie in a space of significantly smal-
ler dimensions (e.g., wavelet and Fourier transforms) [4].
CS approaches are particularly suited for K-sparse sig-
nals, i.e., signals that can be represented by significant K
coefficients over an N-dimensional basis. Encoding of a
K-sparse, discrete-time signal of dimension N is accom-
plished by computing a measurement vector y that con-
sists of M << N linear projections of the vector x. This
can be compactly described via

y = �x (2)

where F represents an M × N matrix and is often
refer to as the sensing matrix [4]. A natural formulation
of the recovery problem is within an norm minimization
framework, which seeks a solution to the problem

min‖x‖0subject to
∥∥y − �x

∥∥
2 < η (3)

where h is the expected noise of measurements, ||x||0
counts the number of nonzero entries of x and || • ||2 is
the Euclidian norm. Unfortunately, the above minimiza-
tion is not suitable for many applications as it is NP-
hard [46]. To avoid the computational burden,

approaches like thresholding, (orthogonal) matching
pursuit and basis pursuits have been proposed [46]. In
this article, we will focus on the matching pursuit [47].
Given the CS framework, the immediate question is

how to define the sensing matrix F, that is the bases
used in the recovery of the signal. Most commonly used
sensing matrices are random matrices with independent
identically distributed (i.i.d.) entries formed by sampling
either a Gaussian distribution or a symmetric Bernoulli
distribution [48]. Previous publications have shown that
these matrices can recover the signal with high probabil-
ity [48]. However, when dealing with biomedical signals,
we would like to “precisely” recover the signals (i.e.,
with a very small error). Therefore, we propose to use a
time-frequency dictionary (also known as frames [49])
based on modulated discrete prolate spheroidal
sequences (MDPSS).

3.1 Time-frequency dictionaries based on MDPSS
To understand MDPSS, let’s begin with a general
description of discrete prolate spheroidal sequences
(DPSS). Given N such that n = 0, 1, . . . , N −1 and the
normalized half-bandwidth, W such that 0 < W <0.5,
the kth DPSS, vk(n, N, W ), is defined as the real solu-
tion to the system of equations [50]:

N−1∑
m=0

sin[2πW(n − m)]
π(n − m)

vk(m,N,W) = λk(N,W)vk(n,N,W) k = 0, 1, . . . ,N − 1 (4)

with lk(N, W ) being the ordered non-zero eigenva-
lues of (4)

λ0(N,W) > λ1(N,W), . . . ,λN−1(N,W) > 0. (5)

Slepian showed that behaviour of these eigenvalues for
fixed k and large N is given by

1 − λk(N,W) ∼
√

π

k!
214k+9

4 α 2k+1
4 [2 − α]−(k+0.5)Nk+0.5e−γN (6)

where

α = 1 − cos(2πW)

γ = log

[
1 +

2
√
(α)√

2 − √
α

]

The first 2NW eigenvalues are very close to 1 while
the rest rapidly decays to zero [50]. Interestingly
enough, it has been observed that these quantities are
also the eigenvalues of N × N matrix C(m, n) [50],
where the elements of such a matrix are

C(m,n) =
sin[2πW(n − m)]

π(n − m)
m,n = 0, 1, . . . ,N − 1 (7)

and the vector obtained by time-limiting the DPSS, vk
(n, N, W ), is an eigenvector of C(m, n). The DPSS are
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doubly orthogonal, that is, they are orthogonal on the
infinite set {−∞, . . . , ∞} and orthonormal on the finite
set {0, 1, . . . , N − 1}, that is,

∞∑
−∞

vi(n,N,W)vj(n,N,W) = λiδij (8)

N−1∑
n=0

vi(n,N,W)vj(n,N,W) = δij (9)

where i, j = 0, 1, . . . , N − 1. The sequences also obey
symmetry laws

vk(n,N,W) = (−1)kvk(N − 1 − n,N,W) (10)

vk(n,N,W) = (−1)kvN−1−k(N − 1 − n,N, 1/2 − W) (11)

where n = 0, ±1, ±2, . . . and k = 0, 1, . . . , N − 1.
If these DPSS are used for signal representation, then

usually accurate and sparse representations are obtained
when both the DPSS and the signal under investigation
occupy the same band (e.g., [6,51]). However, problems
arise when the signal is centered around some frequency
|ωo| >0 and occupies bandwidth smaller than 2W. In
such situations, a larger number of DPSS is required to
approximate the signal with the same accuracy despite
the fact that narrowband signals are more predictable
then wider band signals [7,52]. In order to find a better
basis, MDPSS were proposed in [6,7]. MDPSS are
defined as

Mk(N,W,ωm;n) = exp(jωmn)vk(N,W;n) (12)

where ωm = 2πfm is a modulating frequency. It is easy
to see that MDPSS are also doubly orthogonal, obey the
same Equation (4) and are bandlimited to the frequency
band [−W + ωm : W + ωm].
The next question which needs to be answered is how

to choose a proper modulation frequency ωm. In the
simplest case when the spectrum S(ω) of the signal is
confined to a known band [ω1; ω2], i.e.,

S(ω) =
{� 0 ∀ω ∈ [ω1,ω2] and|ω1| < |ω2|

≈ 0 elsewhere
(13)

then the modulating frequency, ωm, and the band-
width of the DPSSs are naturally defined by

ωm =
ω1 + ω2

2
(14)

W =

∣∣∣∣ω2 − ω1

2

∣∣∣∣ (15)

as long as both satisfy:

|ωm| +W <
1
2
. (16)

However, in practical applications, exact frequency
band is known only with a certain degree of accuracy
and usually evolves in time. Therefore, only some rela-
tively wide frequency band is expected to be known. In
such situations, an approach based on one-band-fits-all
may not produce a sparse and accurate approximation
of the signal. In order to resolve this problem it was
suggested to use a band of bases with different widths
to account for time-varying bandwidths [53]. However,
such representation once again ignores the fact that the
actual signal bandwidth could be much less then 2W
dictated by the bandwidth of the DPSS. In order to pro-
vide further robustness to the estimation problem we
suggest to use of a time-frequency dictionary containing
bases which reflect various bandwidth scenarios.
To construct this time-frequency dictionary, it is

assumed that an estimate of the maximum frequency is
available. The first few bases in the dictionary are the
actual traditional DPSS with bandwidth W. Additional
bases could be constructed by partitioning the band
[−ω; ω] into K subbands with the boundaries of each
subband given by [ωk; ωk+1], where 0 ≤ k ≤ K − 1, ωk+1

>ωk, and ω0 = −ω, ωK-1 = ω. Hence, each set of MDPSS
has a bandwidth equal to ωk+1 − ωk and a modulation
frequency equal to ωm = 0.5(ωk + ωk+1).
Obviously, a set of such function again forms a basis

of functions limited to the bandwidth [−ω; ω]. While
particular partition is arbitrary for every level K ≥ 1, we
can chose to partition the bandwidth in any desired way
as shown in Figure 1. In this article, we partition the
bandwidth in equal blocks, as shown in Figure 1d, to
reduce amount of stored pre-computed DPSS. In gen-
eral, finding the best partitioning approach would be
based on a priori knowledge about the phenomenon
under investigation. Unless such knowledge is available,
there is no strong reason for us to believe that non-uni-
form approaches shown in Figures 1a-c would yield a
better performance than the uniform partitioning
scheme shown in Figure 1d without extensive optimiza-
tion procedures. However, such investigations are
beyond the scope of this manuscript.

3.2 Matching pursuit and MDPSS-based frames
As mentioned at the beginning of Section 3, the CS
approaches can be NP-hard, which are not practically
viable. Fortunately, efficient algorithms, known generic-
ally as matching pursuit [47,49], can be used to avoid
some of the computational burden associated with the
CS. The main feature of the algorithm is that when
stopped after a few steps, it yields an approximation
using only a few basis functions [47]. The matching pur-
suit decomposes any signal into a linear expansion of
waveforms that are selected from a redundant dictionary
of functions [47]. It is a general, greedy, sparse function
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approximation scheme with the squared error loss,
which iteratively adds new functions (i.e. basis functions)
to the linear expansion. In comparison to a basis pursuit
it significantly reduces the computational complexity,
since the basis pursuit minimizes a global cost function
over all bases present in the dictionary [47]. If the dic-
tionary is orthogonal the method works perfectly. Also,
to achieve compact representation of the signal, it is
necessary that the atoms are representative of the signal
behaviour and that the appropriate atoms from the dic-
tionary are chosen.
The algorithm for the matching pursuit starts with

initial approximation for the signal, x̂, and the residual,
R:

x̂(0)(m) = 0 (17)

R(0)(m) = x(m) (18)

where m represent the M time indices that are uni-
formly or non-uniformly distributed. Then, the match-
ing pursuit builds up a sequence of sparse
approximation by reducing the norm of the residue,
R = x̂ − x. At stage k, it identifies the dictionary atom
that best correlates with the residual and then adds to
the current approximation a scalar multiple of that
atom, such that

x̂(k)(m) = x̂(k−1)(m) + αkφk(m) (19)

R(k)(m) = x(m) − x̂(k)(m) (20)

where αk = (R(k−1)(m),φk(m))/||φk(m)||2. The process
continues till the norm of the residual R(k)(m) does not
exceed required margin of error ε >0: ||R(k)(m)|| ≤ ε [47].
Here we can consider two stopping approaches. One

is based on the idea that the normalized mean square
error should be below a certain threshold value, g:

||x − x̂(k)||22
||x||22

≤ γ (21)

An alternative stopping rule can mandate that the
number of bases, nB, needed for signal approximation
should satisfy nB ≤ K. In previous contributions (e.g.,
[6]), K is set equal to ⌈2NW ⌉ + 1 to compare the per-
formance of the MDPSS-based frames with DPSS.
In either case, a matching pursuit approximates the

signal using L bases as

x(n) =
L∑
l=1

〈x(m),φl(m)〉φl(n) + R(L)(n) (22)

where φl are L bases from the dictionary with the
strongest contributions.

3.3 Estimation of sampling times
Based on the definition of MDPSS, we are expected to
know when the sampling times occur in order to use a

Figure 1 Different approaches to form a 4-band time-frequency dictionary based on MDPSS. (a)-(c) demonstrate non-uniform blocks,
while (d) represents a uniform-block division.
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proper value of the basis function. However, this
assumption is typically not realized and we need to esti-
mate the time location. Therefore, let us assume that
the signal

x(t) =
M−1∑
m=0

x(t̂m)δ(t − t̂m) + n(t) (23)

is a superposition of M delta functions with additive
noise n(t) resulting from the nonuniform sampling. To
estimate t̂m let us first consider the period extension of
the signal:

x(t) =
∞∑

k=−∞
Xke

jk�ot + n(t) (24)

where Ωo = 2π/T and the Fourier coefficients are
given by

Xk =
M−1∑
m=0

x(t̂m)e−jk�o t̂m =
M−1∑
m=0

x(t̂m)ukm − (M − 1) ≤ k ≤ (M − 1) (25)

where um = e−j�o t̂m. The problem is them to find the
parameters t̂m that satisfy the above equation from the
noisy nonuniform samples, which can be achieved using
the annihilating filter [2,44,54]. In particular, if the
transfer function of the annihilating filter is defined as

A(z) =
M−1∏
m=0

(1 − umz−1) =
M−1∑
m=0

αmz−m (26)

then by filtering both sides of Equation (25) using the
filter, we get

M−1∑
m=0

αmXk−m =
M−1∑
m=0

N−1∑
n=0

x(t̂n)uk−m
n αm =

M−1∑
m=0

x(t̂n)

[
N−1∑
n=0

u−m
n αm

]
ukn (27)

where the last term is due to un being a root of A(z).
Then, A(z) can be obtained by solving Equation (27) for
{am} (i.e., set Equation (27) equal to zero and solve for
filter coefficients). Using the roots of A(z), um = e−j�o t̂m/T,
the nonuniform sampling time are estimated by

t̂m =
−T

2π j
log um m = 0, . . . ,M − 1 (28)

A thorough description of the procedure can be found
in [2, Appendices 1 and 2].

4 Data analysis
Our data analysis consists of two parts. In the first part,
we consider the synthetic test signals in order to exam-
ine the accuracy of the scheme in well-known condi-
tions. In the second part, we use dual-axis swallowing
accelerometry signals to examine how accurately we can
recover these signals from sparse samples. In both cases,
we will follow the procedure shown in Figure 2.

4.1 Synthetic test signals
To analyze the proposed scheme, we assumed the fol-
lowing test signal:

x(n) =
10∑
i=1

Ai sin(2π finTs) + σζ (n) (29)

where 0 ≤ n < N, Ts = 1/256, N = 256, Ai is uniformly
drawn from random values in 0[2] and fi ~ N(30, 102).
ζ(n) represents white Gaussian noise and s is its stan-
dard deviation.
The first experiment consists of maintaining 150 sam-

ples equally spaced throughout the signal. The SNR values
are varied between 0 and 30 dB in 1-dB increments, while
the normalized half-bandwidth W is altered between 0.300
and 0.375 in 0.025 increments. We compared the accuracy
of the proposed approach using 7- and 15-band MDPSS-
based dictionaries against the CS approach based on
DPSS. The accuracy was compared by evaluating the nor-
malized mean square error:

MSE =
||x(n) − x̂(n)||22

||x(n)||22
(30)

where x(n) is a realization of the signal defined by
Equation (29) and x̂(n) represents a recovered signal.
The MSE values were obtained using 1,000 realizations.
To calculate the recovered signal using the DPSS, we
used the following formula

x̂DPSS(n) = U(n, k)
(
U(m, k)TU(m, k)

)†
U(m, k)Tx(m) (31)

where A† denotes the pseudo-inverse of a matrix; U(n, k)
is the matrix containing K bases (i.e., DPSS) and each
sequence is of length N; m denotes the time instances at
which the samples are available.
In the second experiment, we vary the number of

available samples from 50 samples to 200 samples in
increments of 10 samples in order to understand how
the number of samples affects the overall accuracy of
the proposed scheme. The samples are uniformly dis-
tributed, and the normalized half-bandwidth is set to
0.30. The lower boundary of 50 samples denotes a very
aggressive scheme, as it represents approximately 20% of
the original samples. On the other hand, the upper
boundary of 200 samples represents a very lenient
scheme for compressive sampling since it represents
approximately 78% of the original samples. Additionally,
we use the following four SNR values: 5, 15, 25 and 35
dB. The accuracy of the proposed CS-approach is exam-
ined using a 7- and 15-band MDPSS based dictionaries
against the CS-approach based on DPSS. The accuracy
metric is the MSE value defined by Equation (30) and
1,000 realizations are used to obtain its values.
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The third experiment examines the effects of non-uni-
form sampling times on the overall performance of the
CS-based schemes. In particular, we use 100 non-uni-
form samples and the SNR values were incremented by
1 dB from 0 to 30 dB. Also, the normalized half-band-
width is varied in 0.025 increments from 0.30 to 0.375.
The accuracy of the proposed approach based on
MDPSS is compared against the CS-approach based on
DPSS. Specifically, we use 7- and 15-band MDPSS-
based time-frequency dictionaries. The accuracy metric
is again the MSE value defined by Equation (30). 1,000
realizations are used again to obtain the MSE values,

and for each realization new 100 time positions are
achieved.

4.2 Swallowing accelerometry signals
Using the proposed scheme, we analyze how accurately
we can recover dual-axis swallowing accelerometry sig-
nals from sparse samples. Specifically, we assume two
different scenarios: only 30% of the original samples are
available and only 50% of the original samples are avail-
able. In both cases, we examine whether the uniform or
non-uniform sub-Nyquist rates have significant effects
on the overall effectiveness of the proposed scheme.

Figure 2 A flow chart for the proposed algorithm.
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In this numerical experiment, we use a 10-band MDPSS
based dictionary with the normalized half-bandwidth
equal to 0.15. To evaluate the effectiveness of the pro-
posed approach when considering dual-axis swallowing
accelerometry signals, we adopted performance metrics
used in other biomedical applications (e.g., [5,55,56]).
Those metrics are:

• Cross-correlation (CC): CC is used to evaluate the
similarity between the original and the reconstructed
signal, and is defined as:

CC =

∑N
n=1 (x(n) − μx) (x̂(n) − μx̂)√∑N

n=1 (x(n) − μx)
2
√∑N

n=1 (x̂(n) − μx̂)
2

× 100% (32)

where x(n) is the original signal and x̂(n) represents
a reconstructed signal. In addition, µx and μx̂ denote
the mean values of x(n) and x̂(n), respectively.
• Percent root difference (PRD): PRD measures dis-
tortion in reconstructed biomedical signals, and is
defined as:

PRD(%) =

√√√√∑N
n=1 (x(n) − x̂(n))2∑N

n=1 x
2(n)

× 100% (33)

• Root mean square error (RMSE): RMSE also mea-
sures distortion and is often beneficial to minimize
this metric when finding the optimal approximation
of the signal. RMSE is defined as:
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RMSE =

√∑N
n=1 (x(n) − x̂(n))2

N
(34)

• Maximum error (MAXERR): MAXERR is used to
understand the local distortions in the reconstructed
signal, and it particularly denotes the largest error
between the samples of the original signal and the
reconstructed signal. The metric is defined as:

MAXERR = max(x(n) − x̂(n)) (35)

In order to establish statistical significance of our
results, a non-parametric inferential statistical method
known as the Mann-Whitney test was used [57], which
assesses whether observed samples are drawn from a
single population (i.e., the null hypothesis). For multi-
group testing, the extension of the Mann-Whitney test

known as the Kruskal-Wallis was used [58]. A 5% signif-
icance was used.

5 Results and discussion
In this section, we present the results of numerical
experiments and discuss those results. First, we will dis-
cuss the results based on the synthetic test signals. In
the second part, we will discuss the results of numerical
experiments considering the application of the proposed
approach to dual-axis swallowing accelerometry signals.

5.1 Synthetic test signals
The results of the first numerical experiment are shown
in Figure 3. Several observations are in order. First, the
proposed approach for CS based on the time-frequency
dictionary containing MDPSS achieved more accurate
signal reconstructions than the CS approach based on
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DPSS. This can be observed regardless of the initial
bandwidth used for discrete prolate sequences. Second,
the CS approaches based on both MDPSS and DPSS
bases provide similar accuracy at very low SNR values
(e.g., SNR <5 dB), which is consisted with previous pub-
lications which showed that the accuracy of CS
diminishes as SNR decreases [59].
The results of the second simulation are shown in Fig-

ure 4. As expected, CS approaches based on MDPSS
and DPSS have similar accuracies for a low SNR value
(i.e., SNR = 5 dB) as shown in Figure 4a. Both types of
bases (i.e., MDPSS and DPSS) are not suitable for accu-
rate representations of random variables, and possibly
dictionaries based on random bases would be a more
suitable approach for low SNR values. As SNR increases,
the MSE decreases for both approaches and the CS

approach based on MDPSS obtains higher accuracy.
The results also showed that if the percent of available
samples is below 30 (i.e., we are acquiring signals at
rates that are 30% of the original Nyquist rate), the
DPSS and MDPSS based schemes achieve similar
accuracy.
The results of third numerical experiment are summar-

ized in Figure 5. They clearly depict the advantage of the
CS approach based on the MDPSS over the approach
based on DPSS even non-uniform sampling is used. For
all four considered cases, we achieved more accurate
results with MDPSS than with DPSS. Additionally, more
accurate results are achieved when we use a 15-band dic-
tionary than the 7-band dictionary. This is in accordance
with the previous results shown in Figure 3, which also
showed that more comprehensive dictionaries can

0 10 20 30
10 2

10 1

100

SNR (dB)
(a)

M
S

E

0 10 20 30
10 2

10 1

100

SNR (dB)
(b)

M
S

E

0 10 20 30
10 2

10 1

100

SNR (dB)
(c)

M
S

E

0 10 20 30
10 2

10 1

100

SNR (dB)
(d)

M
S

E

Figure 5 The effects of random time positions of samples on the accuracy of the proposed scheme while altering the bandwidth of
discrete prolate sequences:(a) W = 0.300; (b) W = 0.325; (c) W = 0.350; (d) W = 0.375. The dashed lines denotes MSE obtained with the DPSS;
the solid line indicates MSE obtained with a 15-band MDPSS-based dictionary; and the solid line with squares denotes a 7-band MDPSS-based
dictionary.

Sejdić et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:101
http://asp.eurasipjournals.com/content/2012/1/101

Page 10 of 14



provide more accurate results due to the fact that they
can account for many different time-varying bandwidth
scenarios.

5.2 CS of swallowing accelerometry signals
Tables 1, 2, 3 and 4 depict the results of the numerical
analysis when the proposed scheme is applied to dual-
axis swallowing accelerometry signals. Sample signals
are shown in Figure 6.
Several observations are in order. First, we achieved

very high agreement between the reconstructed data
and the original signals with uniformly spread out sam-
ples. Statistically higher results were achieved with 50%
of samples than with 30% of samples when considering
the CCs results (p <<0.01), which resulted in statistically
lower errors with 50% of samples when considering the
three error metrics (p <<0.01).
Second, statistically worse results have been obtained

when using non-uniform (random) sampling times (p
<<0.01) in comparison to uniform sampling for both 30%
of samples and 50% of samples. This result is expected,
as it becomes more challenging to recover the signal
accurately with non-uniform samples. Additionally, it is

difficult to recover swallowing vibrations accurately,
given that these vibrations are short-duration transients.
Unless the non-uniform samples capture the behavior of
these short-duration transients, a larger recovery error is
achieved. However, with 50% of samples, we still obtain
very high agreement between the recovered data and the
original signals. As a matter of fact, the results obtained
with 50% of samples with non-uniform sampling are
comparable to the results obtained with 30% of samples
when using uniform sampling.
Third, amongst the considered swallowing tasks, dry

swallows tend to be recovered most accurately, followed
by the wet swallows and lastly by the wet chin down
swallows. From a physiological point of view, this is
expected since during the dry swallowing manoeuver
only small amounts of liquid (i.e., saliva) are swallowed.
It is also expected that wet chin down swallows will be
more difficult to recover due to the complex maneuver-
ing required during these swallows, which may intro-
duce signal components otherwise not present during
the dry and/or wet swallowing tasks.
Therefore, based on the presented results, we can state

with high confidence that CS based on the time-

Table 1 Performance of the proposed method for recovery of dual-axis swallowing accleremetry signals when
considering 30% of samples and a uniform sampling scheme

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 96.6 ± 4.30 96.8 ± 4.28 92.8 ± 9.13 93.3 ± 8.85 90.5 ± 11.1 97.4 ± 5.54

PRD (%) 23.2 ± 12.3 21.8 ± 13.2 33.5 ± 19.6 31.7 ± 20.2 37.8 ± 23.4 17.1 ± 15.6

RMSE 0.04 ± 0.03 0.06 ± 0.04 0.05 ± 0.04 0.10 ± 0.08 0.12 ± 0.08 0.11 ± 0.08

MAXERR 0.34 ± 0.40 0.67 ± 0.69 0.56 ± 0.57 1.15 ± 1.06 1.51 ± 1.24 1.36 ± 1.19

Table 2 Performance of the proposed method for recovery of dual-axis swallowing accleremetry signals when
considering 30% of samples and a non-uniform sampling scheme

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 89.5 ± 7.17 92.5 ± 6.60 84.5 ± 11.3 87.8 ± 11.3 84.3 ± 13.7 94.4 ± 7.35

PRD (%) 43.9 ± 14.9 36.5 ± 15.7 53.3 ± 20.2 46.2 ± 22.5 52.4 ± 26.1 30.0 ± 17.4

RMSE 0.07 ± 0.04 0.10 ± 0.06 0.09 ± 0.04 0.15 ± 0.09 0.17 ± 0.11 0.23 ± 0.13

MAXERR 0.55 ± 0.53 0.88 ± 0.73 0.72 ± 0.62 1.35 ± 1.18 1.93 ± 1.60 2.38 ± 1.96

Table 3 Performance of the proposed method for recovery of dual-axis swallowing accleremetry signals when
considering 50% of samples and a uniform sampling scheme

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 98.1 ± 2.53 98.1 ± 2.83 95.8 ± 5.99 95.9 ± 5.69 94.1 ± 7.70 98.5 ± 3.66

PRD (%) 17.3 ± 8.87 16.4 ± 10.0 24.7 ± 14.1 23.6 ± 14.8 28.3 ± 17.6 12.6 ± 11.5

RMSE 0.03 ± 0.02 0.04 ± 0.03 0.04 ± 0.03 0.08 ± 0.06 0.09 ± 0.06 0.08 ± 0.06

MAXERR 0.26 ± 0.29 0.51 ± 0.52 0.41 ± 0.42 0.87 ± 0.77 1.12 ± 0.85 1.02 ± 0.87
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frequency dictionary containing MDPSS is suitable
scheme for dual-axis swallowing acceleromtry signals.
Particularly accurate results have been obtained when
we use 50% of samples. We expect that further improve-
ments can be achieved by optimizing the parameters of
the recovery process with respect to the considered
error metrics.

6 Conclusion
In this article, a CS algorithm for accurate reconstruc-
tion of dual-axis swallowing accelerome-try signals from
sparse samples was proposed. The proposed algorithm
uses a time-frequency dictionary based on MDPSS. The
modulating of DPSS was performed in order to account
for the time-varying nature of the dual-axis swallowing

Table 4 Performance of the proposed method for recovery of dual-axis swallowing accleremetry signals when
considering 50% of samples and a non-uniform sampling scheme

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 95.8 ± 4.44 96.4 ± 4.23 92.2 ± 8.77 93.2 ± 8.30 90.4 ± 10.6 97.1 ± 5.23

PRD (%) 26.4 ± 11.6 23.8 ± 12.4 35.4 ± 17.4 32.1 ± 18.2 38.4 ± 21.6 19.7 ± 14.1

RMSE 0.04 ± 0.03 0.07 ± 0.04 0.06 ± 0.04 0.11 ± 0.07 0.12 ± 0.08 0.14 ± 0.09

MAXERR 0.38 ± 0.37 0.69 ± 0.64 0.55 ± 0.54 1.08 ± 0.93 1.53 ± 1.22 1.69 ± 1.42
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Figure 6 Sample wet swallow from a healthy participant:(a) the original signal in the A-P direction; (b) the original signal in the S-I direction; (c) the
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accelerometry signals. The proposed CS algorithm was
tested using both synthetic test signals and swallowing
accelerometry signals. In both cases, we achieved very
accurate representations with MDPSS, which makes
these bases suitable for CS approaches of swallowing
accelerometry signals. Specifically, we showed that even
when the dual-axis swallowing accelerometry signals
were subsampled at by 50% below the Nyquist rate, we
still achieved very accurate representations of these
signals.
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