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Abstract

We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output-MIMO)
systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools
in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on
the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients
since they work on state space models. We propose a two-step algorithm where the first step identifies the system
order using the subspace principle in a state space format, while the second step estimates coefficients of the
transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace
methods with improved noise-robustness for sparse systems.
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1. Introduction

The problem of identifying multiple-input multiple-out-
put (MIMO) systems arises naturally in spatial division
multiple access architectures for wireless communica-
tions. Subspace system identification methods refer to
the category of methods which obtain state space mod-
els from subspaces of certain matrices constructed from
the input-output data [1]. Being based on reliable
numerical algorithms such as the singular value decom-
position (SVD), subspace methods do not require non-
linear optimization and, thereby, are computationally
efficient and stable without suffering from convergence
problems. They are particularly suitable for identifying
MIMO systems since there is no need to impose on the
system a canonical form and, therefore, they are free
from the various inconveniences encountered in classical
parametric methods.

Another good feature of subspace methods is they
incorporate a reliable order estimation process.
Although this is largely ignored by other identification
methods, system order estimation should be an integral
part of a system identification algorithm. In fact, cor-
rectly identifying the system order is essential to ensure
that subsequent parameter estimation will yield a well-
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defined set of model coefficient estimates. While it is
obvious that an underestimated order will result in large
modeling errors, it is equally dangerous to have an over-
parameterized model as a result of selecting an impro-
perly large order. Over-parameterization not only cre-
ates a larger set of parameters to be estimated, but also
leads to poorly defined (high variance) coefficient esti-
mates and surplus unvalidated content in the resulting
model [2]. For parameterized linear models, a usual way
of estimating the order is to conduct a series of tests on
different orders, and select the best one based on the
goodness-of-fit using certain criterion such as the
Akaike’s information criterion [3]. Subspace-based order
identification determines the order as the number of
principle eigenvalues (or singular values) of a certain
input-output data matrix. This mechanism has been
proven to be a simple and reliable way of order estima-
tion and the same principle has been applied to detect
the number of emitter sources in array signal processing
[4], to determine the number of principal components
in signal and image analysis [5,6] and to estimate the
system order in blind system identification [7,8].

It has become well known that many systems in real
applications actually have sparse representations, i.e.,
with a large portion of their transfer function coeffi-
cients equal to zero [9]. For example, communication
channels exhibit great sparseness. In particular, in high-
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definition television, there are few echoes but the chan-
nel response spans many hundreds of data symbols
[10-12]. In broadband wireless communications, a hilly
terrain delay profile consists of a sparsely distributed
multipath [13]. Underwater acoustic channels also exhi-
bit sparseness [14].

Despite of their good features, subspace methods are
not suited for systems with sparse transfer function
coefficients since they deal with state space models. One
fact is that for a given transfer function matrix, there
exist infinite number of state space representations
related by a similarity transform. As a result, when the
system to be identified has sparse transfer function coef-
ficients, the state space model produced by a subspace
method is almost certain to be non-sparse due to the
inherent arbitrary similarity transform associated with
the model.

Work on sparse system identification has been
reported in [15-17], however, they consider only single-
input single-out (SISO) systems. In addition, these
methods assume the system order is known a priori,
which is not necessarily true in practice. This article stu-
dies the problem of the identification of MIMO systems
with sparse transfer functions coefficients. In particular,
we leverage on reliable system order identification of
subspace methods to build input-output relationship in
terms of transfer function coefficients, and exploit L1-
norm optimization proven to be able to produce robust
sparse solutions [9] to estimate these coefficients. The
resulting method consists of a systematic way of order
identification and efficient coefficient estimation for
sparse systems.

The rest of this article is organized as follows. Section
2 gives an overview of subspace identification methods.
Section 3 proposes the LRL1 algorithm. Section 4 pre-
sents simulation results and Section 5 draws
conclusions.

2. Subspace identification
For an M-input {u,, (k), m = 1,..,M} L-output {y, (k), [ =
1,..,L} system described in the state space form:

X1 = Axy, + By, (1a)
y:. = Cx. + Duy, (1b)
h d_ef T
where u, = [ur(k), ..., um(R)]>

v E ), @], and x k), ()]
are the input, output, and state vectors, respectively,
with T denoting matrix transpose. A € RV, B e
RNVM C e R™N, and D € R¥M are the system, input,
output, and direct feed-through matrices, respectively.
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Noise in (1) has been omitted for brevity purposes and
will be added in the simulation in Section 4. Given S
measurements (i.e., k = 0,..., S - 1) of the input and out-
put, subspace identification methods estimate the system
order N and matrices (A, B, C, D), and derive system
transfer functions via H(z) = D + C(zlyy - A)'B, with
Iyn denoting the identity matrix of size N x N. The pro-
cedure is as follows.

Choose a positive integer i and define the input and
output block Hankel matrices as:

u up --- uj—l
uu; --- uj

Ugji-1 = ! (2)
Wi—g Ui - Wiyj—2
Yo¥Y1 " ¥
Yi¥2 0y

Yoji-1 = !

Yi-1¥i 0 Yivj—2

Note that Ug,;; has j (= S - i + 2) columns with the
first one formed by u; (k = 0,..., i - 1). Similarly, we can
define the j-column block Hankel matrix U, ; using uy
(k = i,.., 2i - 1) to form the first column. For conveni-
ence, the following short-hand notations are adopted:

def

def
U, =Uyi1, Yy = Yo/i-1 ®3)

def def
U= Ui, Y= Yoo (4)

For each of the four matrices in (3) and (4), by delet-
ing or adding one block row at the bottom and keeping
the number of columns unchanged, we have two addi-
tional notations. For example,

_ def

Y, =

def
f ifi-2, Yf = Yi/2i

Note that i is a user-specified parameter and is
required to be larger than the system order, ie., i >N. In
general, a subspace identification algorithm consists of
three steps. The first step performs projections of the
row spaces of the data matrices and estimates the order
of the system. In particular, the following oblique pro-
jections are first calculated:

Oi = Yi/uW, (5)

Oi.1 = Yf_/U[’W;
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where W, = (Up) W = U and Yf/u,W, are

p Yp ’ p Y; ’ FYYp
the oblique projection of the row space of Y, along the
row space of Uron the row space of W, and can be cal-
culated according to

Yr/u W, = [Y/UF] - [W,/Uf] - W,

with [Yf/UJ?] denoting the projection of the row space

of Yron the row space of the orthogonal compliment of
the row space of Uy [1].

The SVD of the weighted oblique projection is calcu-
lated and the order of the system (N) is determined as
the number of principal singular vales in X, leading to
the identification of the principal subspaces U; and Vj,

IAWAY N
W,0,W, = UZV = (U; U,) L=z (6)
0 X/ \V,

where W; and W, are weighting matrices and a speci-
fic choice of them leads to different algorithms [1]. For
example,

Wy =1, Wo =1 (7)
and
Wi =i, W = (UR)'(UF (U)D) Uy, (8)

result in the popular N4SID and MOESP algorithms,
respectively, with t+ denoting Moore-Penrose pseudo-
inverse.

Define the extended observability matrix and state
sequence as

C
aer | A
r; s
CAi—l
def .
Xi = (XiXis1, - - Xij—1) € RV

The second step of a subspace algorithm is to find
estimates of the extended observability matrix and state
sequences via

r=w;'u,x)?

X =T70;, Xi =T} 0
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The final step is to determine the system matrices A,
B, C, and D (up to within a similarity transformation)

by
Xir1 A B\ (X
Yyi C D/ \ Uy

Note that the sizes of matrices involved in the sub-
space methods are dependant on i. It will be shown in
Section 4 that while the order can be estimated reliably
across a broad range of i’s as long as the condition i >N
is satisfied, the quality of subsequent coefficient esti-
mates depends on i in a non-monotonous fashion.

2

)

min
AB,C,D

F

3. The proposed LRL1

As mentioned previously, subspace methods are ineffi-
cient in dealing with sparse transfer function coeffi-
cients. That is, for a system with sparse transfer
function coefficients, the outcome of subspace methods
is one of many (non-sparse) state space realizations (A,
B, C, D). In order to exploit the sparseness in the sys-
tem, system (1) is represented using transfer function
coefficients. In particular, for the /th output the follow-
ing linear regression (LR) relationship holds:

N
ye+N) = Y auple+ N — n)

o (10)
Y

bumitim(k + N — 1), k=1,...,S—N,1=1,..., L
m=1 n=0

Where{a,, b,,, ;} are the system transfer function
coefficients. Equation (10) can be re-written into a vec-
tor form:

M
yi(k+N) =yga+» bl k=1..,8S—N,((11)

m=1

where

a=(ay...an)",
Vir = ik + N = 1),y1(k+ N = 2),...,y(k)),

uly = (un(k+ N (ke + N = 1), ... um(R))

and the contribution of the mth input to the /th out-
put is presented by

bm,l = (me/lr ey me/l)T

By stacking up the output samples in (11), one can
have

(13)
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y; = [Y1 U]y, (14)
where
i =[N+ Dp(N+2)...n(S)]"
U=U;...Uy),
Y11 urTnl
Yg,l “Lz
Yl = . ’ Um = . 7
Yng,l uﬁ(st)
vi=(" 8",

B = (b by,

Note that it is a common practice to identify a multi-
input single-output model for each output separately
and then combine the individual models into a final
MIMO model. However, if there are common or corre-
lated parameters among models for different output
variables and/or correlated noise, then performing iden-
tification on all outputs simultaneously can lead to bet-
ter and more robust models [18]. By combining all
outputs of (14), we have

y=HB (15)
where
a
y
yl B,
Y = ’ ’ B = BZ ’
y :
t B,
Y, uo--- .- 0
Y,0oUO 0
Y, O ou

We now propose a two-step algorithm which first
identifies the system order in state space format. This
allows the formation of a MIMO model in terms of
transfer function coefficients. L1-norm optimization is
then exploited to estimate the coefficients of the model.
One of the key factors leading to recent advances in
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compressed sensing (CS) is that L1-norm optimization
promotes sparsity. That is, as compared with its popular
L2-norm counterpart, L1-norm optimization produces
better results when the parameters to be estimated are
sparse [9]. In our case, the data model (15) allows B to
be obtained by L1-norm minimization with guaranteed
convergence since, unlike the cases in CS, this is strict
convex optimization. The minimization generally takes
the following form [19]:

AN
B = arg min (|x|1 + A|ly — Hx||3) (16)

Where A balances the sparsity of the solution with the
fidelity to the data and should be inversely proportional
to the noise level. Efficient algorithms for solving (16)
have been developed [9,19].

The proposed algorithm makes further use of the SVD
in (6), where matrix %; = diag(1,..., A5) contains the prin-
cipal singular-values and X, = diag(An, ..., A;z) contains
noise singular-values. When noise is absent, X, is an all-
zero matrix. Otherwise, its diagonal entries will be non-
zero positive numbers. Although it is impossible here to
accurately estimate the noise variance, these diagonal
entries do reflect the noise level and can be represented by

il
&= (Z A,f)/(iL—N) (17)

k=N+1

In our proposed method, we will set the parameter in
(16) to A =3/6 where 0 is a positive constant. The pro-
posed LRL1 algorithm can now be summarized as
follows:

Step 1: Subspace identification of system order using
(5) and (6), and estimation of noise level using (17).
This step is a systematic order selection procedure with
reliable performance.

Step 2: Estimation of system transfer function coeffi-
cients using (16). This step is simultaneous optimization
over all outputs with robust sparse solutions.

4. Simulation

We evaluate the performances of the proposed LRL1
method against that of the subspace method N4SID [1].
The first MIMO system under consideration is gener-
ated by modifying the SISO system in [[1], p. 155]. In
particular, the system order and eigenvalues (i.e., the
vector [1 a’]”) are kept unchanged and one more input
and one more output are added to the original system.
Then, some elements in each of the transfer function
vector b,,,; (see (13)) are set to zero to create the desired
sparsity. The resulting 2-input 2-output system of order
N = 4 has the following transfer function coefficients:
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System 1:

a=(000 0.5288)7,

bi, -0.7139 0 1.2080 0 - 4.0361
by, 02.9505 - 2.7061 0 0.5238

b7, | | 00.0526-0.0239 - 0.6024 0
b7, 0-0.2686 - 0.2374 0.1585 0

In the simulation, the data size is chosen to be S =
200 and the inputs are sequences of Gaussian variables
with zero mean and unit variance. A white noise vector
vy is added to the output vector y; (see (1b)) and the
SNR as defined below is kept constant for each k,

2
R I
vl

100 runs are conducted for each simulated scenario,
where for each run the input and noise vectors are inde-
pendently generated. The root mean square error
(RMSE) for the estimates of the T = N + M(N + 1)L
parameters in B is measured as

1 100
RMSE = - BlI3
s 1OOT;HBU) BII3

where B(r) denotes the estimates in the rth run. In the
simulation, J = 0.5 is fixed for all the scenarios and the con-
vex programming package from [20] is used in solving (16).

As mentioned in Section 2, the subspace approach
identifies the system order () by examining the iL diag-
onal entries of X in (6), i.e., the singular values (44,...,
Air) of the system, where i is the number of block rows
of the Hankel data matrices (see (2)) and L = 2 is the
number of outputs. For SNR = 30 and i changing from
4 to 10, we obtain iL singular values for each particular
choice of i. Figure 1 shows (4,..., 4,1, 0,..., 0) where zero
padding is made for cases with i < 10.

Checking for the number of principal (dominant) singu-
lar values clearly indicates that the system order is N = 4.
This result verifies that the identification of system order is
reliable regardless of the value of i as long as it is chosen to
be larger than N. This feature is very attractive in practice
since it is relatively easy to select an i which is larger than
the largest possible value the system order might have.

Having identified the system order, we now follow the
subsequent steps of the subspace and proposed LRL1
methods to estimate model coefficients. Figure 2 shows
the RMSE of the subspace method when i changes from
5 to 10 at SNR = 30. It can be seen here that the perfor-
mance of the subspace method depends on i in a non-
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Figure 1 System singular values (System 1).

monotonous fashion. That is, a larger i does not neces-
sarily leads to better coefficient estimates. This is due to
the fact that only finite datasets are available; increasing
the number of rows of the data matrices will lead to a
reduction in the number of columns. In the subsequent
simulations, i = 9 is used.

Figure 3 compares the estimation errors of the sub-
space and LRL1 methods for different SNR values. The
results show that LRL1 is more robust to noise in deal-
ing with this sparse system.

Further test is conducted by modifying System 1 to
create an even sparser system. In particular, some of the
transfer function coefficients of System 1 are set to zero,
which results in

System 2:

a=(000 0.5288)7,

0.0342

— SUBSPACE
0.034 q

00338} /
0.0336 / ,

0.0334 - q

0.0332 / i
0.033 / -

00328}
/
0.0326 \

0.0324 -

RMSE

0.0322 I I I 1 I I 1 I I
5

Figure 2 Estimation error of the subspace method (System 1).
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0.09 T T T T T T T
—— SUBSPACE

0.08 \ — LRL1

RMSE

0.01 I I I

I
10 15 20 25 30 35 40 45 50
SNR

Figure 3 Performance comparison (System 1).

bT
L1 00 1.2080 0 —4.0361
byi| o0 —2.7061 0 0
b, 1 00.0526 —0.0239 0 0
T 00 0 0.15850
b22

Figure 4 shows the performances of the two methods
under the same conditions as in Figure 3. The results
demonstrate that the improvement of LRL1 over the
original subspace method increases when the system to
be identified becomes sparser.

5. Conclusion

A noise-robust algorithm for the identification of
MIMO systems has been presented. The proposed
method leverages reliable system order identification of
subspace principle and exploits L1-norm optimization to
achieve high effectiveness for identifying systems with

0.05

— SUBSPACE
0.045 LRL1 H

0.04

0.035

0.03

RMSE

0.025

0.02

0.015

0.01

0.005 - . v .
10 15 20 25 30 35 40 45 50

SNR

Figure 4 Performance comparison (System 2).
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sparse transfer function coefficients. While retaining
good features of original subspace methods such as the
convenience for multivariable systems, the proposed
method is shown to be able to significantly improve
estimation accuracy for sparse systems.
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