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Roles of equalization in radar imaging: modeling
for superesolution in 3D reconstruction
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Abstract

In radar imaging, resolution is generally dictated by its corresponding system point spread function, the response
to a point source as a result of an external excitation. This notion of resolution turns out to be rather questionable,
as the interpretation of echoes received from a range of continuous targets according to a linear model allows
one to cast the imaging problem as a communication system that maps the target reflectivity function onto
measurements, which in turn suggests that by virtue of sampling and equalization, one can achieve unlimited
spatial resolution. This article reviews the fundamental problem inherent to pulse compression in a multistatic
multi-input-multi-output (MIMO) scenario, from a communications viewpoint, in both focused and un-focused
scenarios. We generalize the notion of 1D range compression and replace it by a more general 4D pulse
compression. The process of focusing and scanning over a 3D object can be interpreted as a MIMO 4D
convolution between a reflectivity tensor and a space-varying system, which naturally induces a 4D MIMO channel
convolution model. This implies that several well-established block and linear equalization methods can be easily
extended to a 3D scenario with the purpose of achieving exact reconstruction of a given reflectivity volume. That
is, assuming that no multiple scattering occurs, resolution is only limited in range by the sampling device in the
unfocused case, while unlimited in case of focusing at multiple depths. Exact reconstruction under a zero-forcing
or least-squares criterion depends solely on the amount of diversity induced by sampling in both space (via
scanning rate) and time (via sampling rate), which further allows for a tradeoff between range and cross-range
resolution. For instance, the fastest scanning rate is achieved by steering non overlapping beams, in which case
portions of the object can be reconstructed independently from each other.
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1 Introduction
Pulse compression is a term widely used within the
radar systems community, and was originally achieved
by transmitting a Chirp waveform, which, when con-
volved with its matched version, allows the target infor-
mation to be recovered without the need of transmitting
a narrow pulse, in many cases unfeasible in a practical
implementation [1]. The basic idea to restore resolution
relies on the assertion that the equivalent of two succes-
sively received narrow pulses, whose widths are deter-
mined by the chirp bandwidth, are not allowed to
interfere. After sampling the received signal, since either
a matcheda or mismatched receiver is FIR, the overall
response can at best only approximate an impulse,

therefore limiting resolution. Thus, for a long time,
there has been a common belief, especially in military
and geophysics applications, that target information
recovery for transmissions beyond the limits imposed by
the system ambiguity function is not possible, the main
reason stemming from the fact that, apparently, accu-
racy in detection has always been linked to a bandwidth
issue.
The notion of resolution in imaging systems turns out

to be rather questionable as raised by several authors,
be it in the electromagnetic domain [2] for radar appli-
cations, or in the acoustic context for ultrasound ima-
ging [3] and geophysics applications [4]. The
interpretation of echoes received from a range of targets
according to a linear model is by no means new [5,6]
and even though the idea of deconvolution is well-estab-
lished in related fields as seismic exploration [4], a more
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precise formulation and connections of the imaging pro-
blem to signal processing and communications jargons
in a 3D scenario is in order.
As noted in [6], the idea of a resolution criterion dates

back to Lord Rayleigh (1879) in the context of light
intensity distribution, who proposed that two compo-
nents of equal intensity should be considered resolved,
when the first maximum of one component sits at the
first minimum of the other. Even though Rayleigh reso-
lution has been considered a bound on resolution, the
so-called super-resolution algorithms became known as
way to surpass this limit. These include minimum var-
iance unbiased estimate (MVUE) and minimum norm
solutions, which are very well established estimation
techniques [7]. In pulse radar systems, we can interpret
such two components as two pulses received from a
straight line of range, which can still be resolved even in
cases where the Rayleigh resolution limit is exceeded.
Of course, this is the definition of resolution in one
dimension.
More generally speaking, in an imaging system, resolu-

tion is defined independently in range and cross-range
(azimuth and elevation). While the former is dictated by
the pulse width, or, by the system ambiguity function
(which usually assumes a matched filter structure for
the receiver) [1], cross-range resolution is achieved by
increasing the antenna aperture, or the transmitted sig-
nal frequency; In this scenario, the term superresolution
refers to additional processing in which resolution
beyond what is determined by the antenna features,
transmitted pulse, and the usual matched filter can be
achieved, by making use of additional diversity and/or
signal processing methods.
Synthetic aperture radars (SAR) are one common

example where a virtual array can be generated via
antenna motion [1,8]. There is a mathematically rich lit-
erature on SARs which exploits spatial diversity of trans-
mitters and receivers in order to sharpen the system
point-spread-function [8]. Most of these derivations
assume weak scattering, although schemes that exploit
multiple scattering are also possible. This can be devel-
oped in a monostatic, bistatic, or more generally, in
multistatic and wideband configurations. Readers should
also refer to [9] for a group-theoretic based approach on
radar imaging, assuming a free-space environment. In
all these references, a common implication is that the
synthesis of an ideal ambiguity function, i.e., an exact
Dirac-delta, is not possible, due to strong constraints in
its mathematical form.
Thus, while mathematicians have extensively studied

the imaging formation from an inverse operator perspec-
tive, the signal processing community has tackled the
same issue using estimation and information theoretic
tools, which have been widely established in digital

communications [10]. In particular, the subject of pulse
compression has evolved into a more general design of
waveforms in multi-input-multi-output (MIMO) radars,
capable of transmitting different wave-forms from each
antenna. They can be classified into bistatic MIMO
radar and colocated MIMO radar. In the former, the
transmitting antennas are widely separated, so that each
antenna sees a different radar cross sections (RCS). In
colocated MIMO radar, the antennas are closely posi-
tioned, so that they share the same RCS. The latter pro-
vides interference rejection capabilities, improved
parameter identification and flexibility in the design of a
beam pattern. Each specific scheme is determined by
the antennas and imaging area positions in space,
which, in turn, are defined by the application at hand.
For instance, beamformers provide a flexible way of
steering and focusing a microwave or ultrasound beam
by time-delaying the corresponding signals a teach
antenna [11]. For narrow-band transmitted signals, the
MIMO radar is thus approximated by a single-input-
multiple-output (SIMO) system, where scaled versions
of a single waveform are transmitted (also known as
phased-array radar).
Regardless of the application, the final goal continues

to be the optimization of the corresponding MIMO
ambiguity function, either by optimizing the waveform
(aiming range compression) or its covariance matrix
(which affects resolution in cross-range). In the latter,
the MIMO ambiguity function is optimized by minimiz-
ing the side lobes of the autocorrelations and cross cor-
relations of the waveforms. While most of these
references consider point targets, the waveforms can be
optimized considering extended targets as well [10]. In
particular, [10] considers waveform and receiver optimi-
zation assuming that the target and clutter impulse
responses are known, by maximizing the SINR in the
colocated MIMO radar scheme. One important issue
that results from the study of waveform design is
whether, from an estimation point of view, one is really
required to compress, as raised in [12] considering both
Cramér-Rao bound (CRB) and sufficient statistics for
parameter estimation.
Unfortunately, be it for imaging point targets or

extended targets, the resolution issue has been some-
what overlooked, in the sense that it is still considered
bounded by the system ambiguity function (even in the
MIMO case). A situation where this becomes of para-
mount importance arises frequently in radar-based med-
ical imaging systems [13]. For example, detecting
tumors or imaging microcalcifications in the human
body often requires sub-millimeter resolution, in which
case the method should also cope with the practical
aspects that worsen the resolution limits normally
encountered in long-distance communications
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applications–see [14] and the references in the same
issue. One of the main differences is in the choice of the
carrier frequency [15]. Note that the higher the carrier
frequency, the better the cross-range resolution (which
justifies a 1D model, considering that an entire area can
be covered via A-scan lines). On the other hand, in
order not to incur into Rayleigh scattering effects [16],
one must pick fc >v/Δmin, where v is the wave speed
inside the medium, and Δmin the desired minimum
range resolution. Now, the higher the carrier, the more
the signal is attenuated by the medium, which constitu-
tes one of the fundamental tradeoffs in radar systems,
namely, Cross-range Resolution × Depth of penetration.
For instance, in X-ray imaging, the exposure to ionizing
radiation inherent to X-rays can be damaging to tissues,
and, in general, harmful to the human body, since their
effects are cumulative. These two factors are the main
reasons why microwave imaging systems (MIS) have
emerged as an attractive alternative in breast imaging
for tumor detection [17-19]. Note that lower frequencies
also limit the size of the antenna employed, and there
should be a fair compromise among all the above
factors.
Highly focused beams can also be achieved without

necessarily increasing the carrier frequency, with an idea
known as Time Reversal [20], another super-resolution
technique that generates a virtual aperture by time-
reversing the signals received from a point emitting
source via multiple paths, exploiting the non-homoge-
neous nature of a medium by re-transmitting them in
order to achieve high focusing at the source. The time-
reversal concept is identical to a matched filtering pro-
cess, whose principle can be shown analytically, for
instance, in [21]. It had been pro-posed recently in con-
junction with a binary hypothesis test of detection in
the presence or absence of a target in a highly cluttered
environment considering a single antenna [22], and
further in a beamforming configuration for target detec-
tion imaging [23], the latter further applied to a breast
cancer scenario. It has also been combined with Spot-
light SAR in [24].
An interesting fact with all current radar-based

approaches is that resolution in range seems to be trea-
ted quite differently from resolution in cross-range.
That is, while the former requires “pulse compression”,
the latter is solved via “beam compression”. Note that
because in general we have a collection of signals trans-
mitted and received from several directions, the pulse is
in reality a 3D function whose shape is given by the
combined effect of the transmitted pulse and the MIMO
medium’s Green function. This motivates us to think of
compression as an operation that is performed in all
three dimensions in space, in a way that the term “pulse
compression” is more properly applied to achieve

volumetric, and not only range resolution. Moreover,
methods for recovering resolution in radar imaging sys-
tems have always assumed a continuous model for the
reflectivity information. This is perhaps the major rea-
son why the solution to the inverse problem could only
be approximated, normally done so via matched filter-
ing. The fact is, in theory, reflectivity is discrete infor-
mation whose granularity is dictated by the amount of
resolution one is interested in achieving, for both range
and cross-range. In this article, this will be accomplished
by recasting the imaging problem into one that maps a
reflectivity volume into measurements collected by illu-
minating a target object with a generally unfocused
beam. As a result, the commonalities related to mini-
mum range resolution for target detection can be con-
sidered irrelevant, once the pulse transmission problem
is restated as a standard, albeit, 3D communication
problem.
This presentation proposes to formulate the (static)

imaging problem in both unfocused and focused cases
as a MIMO multirate multidimensional transmission
problem. We show how steering at several depths in the
focused case can be interpreted as an induced 4D
MIMO convolution model, subject to standard linear
estimation/equalization problems. In the unfocused case,
the amount of induced space and time diversity will be
the determinant factor for the accuracy in reflectivity
estimation. For the focused scenario, the central idea is
to perform estimation of the entire object in one shot,
once data from all points inside the object have been
collected. As an important special case, we consider the
single-antenna, free-space, narrowband, far-field sce-
nario. This results in a Toeplitz structured transmission
matrices so that when the beam pattern function is
separable, efficient superfast estimation receivers based
on the known transmitted pulse exist. This has signifi-
cant impact on all radar-based applications requiring
sub-millimeter resolution, which call for efficient recei-
vers in order to cope with the often massive amount of
data involved.
Notation: We denote by T the transpose and * the

transpose complex conjugate operator, while we use * to
denote convolution. We use vec(·) to stack the columns
of a matrix into a vector, and reshM (·) to reshape a
matrix with M rows into a column vector.

2 Background on related work
To contextualize the problem, we shall refer to [25],
where an isotropic point-source model p(t, x) = p(t)δ(|x
- x0|), is considered in a wideband distributed aperture.
We assume that the transmitted signal wavelength is
smaller than the minimum diameter of a target. Other-
wise, Rayleigh scattering theory must apply, and the
received signal will also depend on the wavelength and
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target diameter [16]. Hence, under the so-called dis-
torted wave Born approximation, the scattered field
measured at point x and time t from a continuous dis-
tribution of targets is given by

ysc(t, x) =
∫∫

g(x, z, t − τ ′)s(z)∂2τ ′uin(z, τ ′)dτ ′dz (1)

where

uin(z, τ ′) =
∫

g(z, x0, τ ′ − τ )p(τ )dτ (2)

is the incident field, s(z) is the reflectivity function,
and g(x, z, t) is the Green’s function associated with the
background medium [25]. Defining

G(t, x) �
∫

g(x, z, τ ′)∂2t g(z, x0, t − τ ′)dτ ′ (3)

we can write

ysc(t, x) =
∫∫

G(t − τ , z)p(τ )dτ s(z)dz � H(s)p(t).(4)

In the development of [25], the scattering operator ℋ
(s) represents a linear mapping from the input p(t) to
the measurements, in a distributed array pattern. For
simplicity, consider a single source of waveform. The
operator ℋ is then seen as a linear mapping from the
reflectivity variable s(·) to the scattering operator ℋ(s).
In [25], the main contribution is towards inverting ℋ(s),
or, more generally speaking, estimating s. That is, given
the Green’s function of the medium, an inverse scatter-
ing operator ℋ-1 or a least-squares estimator of the
form

(H∗H)−1H∗ (5)

is considered (or a MMSE approach assuming knowl-
edge of noise statistics); For such, the adjoint ℋ* is
computed based on the underlying Green’s function.
Then, assuming a finite number of transmit vectors, the
spectral decomposition of (ℋ*ℋ) is pre-computed, a
fact that allows for an offline computation of the action
of the estimator on the received signal.
The points below raise important questions with

regards to a practical and thus more precise modeling
of the imaging system, which shall reveal the extent to
which the information on the reflectivity function s(z)
can be recovered:
1. The above widebeam, wideband formulation does

not convey any information on the geometry of the pro-
blem, and does not tell us what limits on resolution can
be achieved for a particular antenna configuration. A
general question that remains is, how do we quantify
resolution by focusing (or unfocusing) when

illuminating a target? How does the geometry of a beam
and the way it is steered over an object affect its overall
reconstruction?
2. For a given carrier frequency, in which case we

assume that we have sufficient penetration in range, the
minimum range resolution Δmin obtained from the func-
tion s(z) is translated into time resolution by virtue of
sampling. This immediately raises some fundamental
questions regarding feasibility and complexity of imple-
mentation of the corresponding receiver. That is, is it
possible to sample the received signal fast enough?
What kind of transmit/receive structure must be
employed to achieve a certain resolution level? What is
the impact of sampling in the amount of complexity
required for a specific application?
3. In a practical imaging system subject to sampling,

and considering finite extent signals in the freespace,
what should be the counterpart of (5)? Is there an effi-
cient way of reconstruction that exploits structure,
rather than performing the spectral factorization of
(ℋ*ℋ)?
In the sequel, we connect fundamental aspects of

radar imaging with modeling and equalization in digital
communications as a starting point to tackle the above
issues.

3 Motivation
Assume that the transmitter is able to produce a highly
collimated beam, so that it can be approximately con-
fined to a straight line, as illustrated in Figure 1.
In this case, our problem reduces to that of imaging a

line, defined by the reflectivity function s(z). This is the
central idea in radar imaging; to recover s(z) from mea-
surements y(t, x, z), by converting time delay into range
z.
An important case of study arises when the back-

ground medium is the freespace, where

g(t, x, z) =
δ(t − |x − z|/c)

4π |x − z| , (6)

.

s(τ).

Figure 1 One dimension imaging inside a volume, assuming a
very narrow beam.
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the solution of the freespace wave equation. Let

p (t) = a (t) ejω0t be the transmitted pulse from an

antenna at point x, where ωc = 2πfc is the carrier fre-
quency, with fc given in Hertz. Considering that a(t) is
slowly varying, we have

y(t, x) = −
∫
line

ω2
0p(t − 2|r − x0|/c)
32π2|r − x0| s(r)dr + v(t) (7)

where v(t) is an additive noise term, in order to model
an additional uncertainty. Let τ = 2|r - x0|/c, and define

s̃(τ ) � −ω2
0

32π2|r − x0| s(r).

Substituting it into (7), we get

y(t, x) =
∫

p(t − τ )s̃(τ )dτ + v(t). (8)

Figure 2 shows the equivalent baseband system,
obtained after demodulation of the received signal.
Given a predetermined target resolution, in general

two received pulses will overlap, resulting in what is
known in the communications jargon as inter symbol
interference (ISI). Thus, a natural question that follows
is whether such waveform can be designed in order to
avoid ISI. The answer to this question is well known in
communications theory; for such, the transmitted pulse
must have a Nyquist property, meaning that its response
should have zero crossings at multiples of the sampling
instant Ts. In theory, this can be easily achieved via, for
instance, a raised-cosine pulse, which naturally con-
forms with the Rayleigh resolution criterion previously
discussed. Two implementation issues arise in such
design: in practice, sampling is performed at delayed
instants kTs + t0, which again results in ISI; Also, for
high-resolution sampling, one needs to design a very
wide bandwidth pulse, which implies that we should be
able to squeeze a narrow, high-energy lobe in the inter-
val [-Ts, Ts]. This may not be feasible in many applica-
tions (as medical ones), so that, in general, the pulse
width will span a wider range. This will result in ISI as
well.
All of the above assume no processing at the receiver.

When the latter is employed, several techniques for ISI
removal can be considered, so that the main question

now is how to design both transmitter (pulse) and recei-
ver according to some design criteria, in a way that ISI
be completely removed or minimized. For instance,
when the received pulses are sufficiently separated in
time (yielding a certain spacial resolution), so that they
do not overlap, MMSE equalization implies that the
receive filter must be matched to a(t), in which case the
output SNR is maximized. This is in fact the standard
form of pulse compression used in radar systems, where
a(t) is normally chosen as a chirp waveform. The chirp
waveform is already by itself a form of coding, where
the so-called time bandwidth product quantifies the
amount of redundancy introduced [13]. Bark codes are
also used as a pulse design technique, and in general,
the idea is to look for good codes whose orthogonality
properties can contribute to undistorted transmission
[1,26]. On the other hand, if one is concerned with the
minimization of false alarms due to erroneous detection
of side-lobes, a mismatched filter design must be pur-
sued instead [26,27]. Note that, without considering
noise, a mismatched, possibly infinite impulse response
(IIR) filter provides much higher resolution compared to
a matched one (if the receiver is allowed to be IIR, the
overall transmission can be an exact impulse). More-
over, even in the case where the received pulses do
overlap, a general MMSE or least-squares equalizer can
be considered instead. Compensating for the inherent
ISI in(8) in the MSE sense is the central idea behind
most communications systems, even though several stra-
tegies of design and transmit/receive schemes can be
envisioned.
In general, how fast one can sample is determined by

the state-of-the-art of analog-to-digital converters
(ADC). For instance, at the speed of light, sub-milli-
meter resolution implies that two received pulses are
separated in time by Ts = 2Rmin/c = 2 · 10-3/(3 · 108) =
6 · 10-12s. Since 20 MHz ADCs are the most easily avail-
able, achieving such sampling rate becomes a formidable
challenge in practice. On the other hand, in the acoustic
context these issues are no longer at stake, since ultra-
sound waves propagate with much lower velocity (aver-
age 1540 m/s inside the body). However, the low
velocity of ultrasound waves limits the frame rate in
which the image is produced, especially for narrow
beams and multiple focal points. These facts motivate
us to look into general widebeam solutions, where back-
scatter from several points is received at the same point,
or, possibly, at several receiving locations at the same
time. Nevertheless, regardless of the nature of the trans-
missions (electromagnetic or acoustic), in this article we
shall first assume that one can sample as fast as neces-
sary, and will examine a few well-known structures into
which the radar problem can be straightforwardly cast.
The range resolution limit is then tackled by considering

a(t)
s̃(τ)

v(t)

y(t)

Transmitted pulse

Figure 2 Equivalent baseband system representation.
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focusing at multiple depths, at the desired spatial
resolution.

4 Multidimensional multirate model
Equation (4) can be seen as a mapping from the trans-
mitted waveform to measurements, through an operator
that depends on the reflectivity function. A more
insightful view of this problem, however, is to express
the system as one that maps reflectivity in space onto
measurements at the receiving antenna, through the
combination of a known waveform and the medium’s
Green function. In this case, different transmission and
reception architectures can be envisioned, depending on
the level of focusing employed. This is intimately related
to (1) the geometry of the antennas and object in space;
(2) how many antenna elements are activated for trans-
mission and reception in a certain scheme; and (3) on
the nature of the transmitted signals.

4.1 Unfocused imaging: MIMO radar
In the MIMO case the transmitting and receiving beams
are unfocused, and each antenna element transmits a
different waveform. This is illustrated in Figure 3, where
a particular patch from an antenna transmits omnidirec-
tionally from each element illuminating the target com-
pletely. Thus, for a given point z inside the volume, the
received signal at an arbitrary point y on the antenna,
given the transmitted pulse p(t, x) at point x only, can
be compactly written as [1]

y(t, x, z) = Js(x)Jr(y)[g(x, z, t) � ∂2t [g(z, x, t) � p(t)]s(z)

= Js(x)Jr(y)[g(y, z, t) � g(z, xm, t) � p′′(t)]s(z)
(9)

where p”(t) denotes the second derivative with respect
to t, and Js(x) and Jr(y) are the time derivatives of the
current density at the transmitting and receiving points
on the antenna.

Our goal is to reconstruct the entire object volume,
or, equivalently, to recover all the cross sections that
form a 3D image. Here is where the geometry of the
problem comes into picture. First, it is assumed that
the aspect angle of all antennas elements is such that
they see the same RCS. Second, we would like to pre-
serve the geometry of the volume we want to recon-
struct, in the sense that each cross section is
“unrolled” to form a 3D tensor representing the object
image. That is, we shall map each point of the reflec-
tivity function s(z) onto the corresponding point of the
unrolled object, which we define as continuous tensor
defined by S(r), where r = [r1 r2 r]T. Its discrete-time
version is denoted by the R1 × R2 × R3 tensor S, which
is obtained by sampling S at [n0T0 n1T1 kTr]

T. The
quantities {R1, R2} define the target resolution in cross
range, while R3 defines resolution in range. We shall
denote by S(k), k = 0, 1, . . . , R3 - 1 the R1 × R2 matrix
containing a rectangular lattice of points within a cross
section of the object at range k, and by S(n)a vector of
reflectivities within the tensor S, n = n0,n1, . . . ,nR1R2 ,
along direction n. Moreover, we define by sk the reflec-
tivity at point rk for k = 0, 1, . . . , R̃ − 1, R̃ = R1R2R3 .
We further define R = R1R2. Let us spatially sample
the antenna surface, so that the transmitting patch
contains Qt = Q1Q2 antenna elements, which transmit
Qt waveforms, i.e., pℓ(t), ℓ = 0, 1, . . . , Qt - 1. These in
turn are received at Qr receiving elements, at yi(t), i =
0, 1, . . . , Qr - 1. The complete model is illustrated in
Figure 4a, which comprises the forward and backward
MIMO channels denoted by Gf(t) and Gb(t), respec-
tively. Let uk(t), k = 0, 1, . . . , R̃ be the kth output of Gf

(t), at the corresponding point rk,

uk(t) =
Qt−1∑
�=0

p′′
�(t) � gk(x�, t) (10)

and note that we can instead express the problem as a
mapping from reflectivities to measurements as shown
in Figure 4b.
We thus see that our main problem is how to recover

the tensor S, given the measurements yi(t), at the
desired resolution {R1, R2, R3}. Before discussing the
possible solutions to this problem, we first analyze what
happens in the more general case of a focused (trans-
mitted) beam.

4.2 Focused imaging
Focusing is achieved by concentrating energy in a small
volume within the object, so that only echoes received
from that particular volume become significant. This is
achieved by integration of delayed copies of the trans-
mitted signal, weighted by the time derivative of the

Transmit/
Receive

Figure 3 Widebeam transmission and reception over all the
antenna elements.

Merched EURASIP Journal on Advances in Signal Processing 2012, 2012:106
http://asp.eurasipjournals.com/content/2012/1/106

Page 6 of 18



current density over the antenna, giving rise to a beam
pattern, as illustrated in Figure 5.
Assuming that the antenna elements are closely

located, and that p(t) is narrowband, the transmitter
becomes a bidimensional phased array, modeled as a
SIMO system represented by a steering vector. On the
other hand, the receiving beam can be unfocused in
general, so that the received signals are collected at all
antenna elements and processed by a MIMO system.
Let the mth entry of the underlying SIMO system be

given by ejωctm , where tm is the delay applied to the sig-
nal point m relative to the signal at the center of the
antenna xo, with respect to the focal point, which we
denote by rf . We shall omit the dependence on rf for
simplicity of notation. Let uk(t) be the signal at rk,

(a)

.
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...

...

...

..
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Jr
(x
)

y1(t, x)

yi(t, x)

vi(t)

v1(t)

y0(t, x)

v0(t)

yQr−1(t, x)

vQr−1(t)
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)

sk(r)

s0(r)

s1(r)

sR̃−1(r)

S(r)

∑Qt−1
�=0

p′′� (t) � g0(r, x�, t)

∑Qt−1
�=0

p′′� (t) � gK−1(r, x�, t)

Figure 4 Overall System model as (a) a mapping from waveforms to measurements; (b) equivalent model as a mapping from
reflectivity to measurements.
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Receive

.

Figure 5 Focused beam.
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defined within the depth of field corresponding to rf .
Equation (10) in this case can be written as

uk(t) = −ω2
o

Qt−1∑
�=0

J(�)p(t)ejωct� � gk(x�, t), (11)

where the term J(ℓ) consists of a 2D window that pro-
vides apodization, in order to shape the transmitted
beam pattern. Let aℓ = xℓ - xo be a vector from the cen-
ter of the antenna to an arbitrary point on the antenna,
and define the wave number � = ωo/co. Thus, expressing

gk(xℓ, t) explicitly as gk(x�, t) = ḡk(x�, t) �
δ(t−|rk−x�|/c)

4π |r−x�| ,

and using the Fraunhofer condition at the focal plane,
we have

uk(t) = −ω2
o
p(t − |rk − xo| /c)

4π |rk − xo| ·
Qt−1∑
�=0

J(�)ejωct�ejκa
T
�

̂rk−x� � ḡk(x�, t)

(12)

= −
∫

ω2
o
p(τ − |rk − xo|/c)

4π |rk − xo| ·
Qt−1∑
�=0

J(�)ejωct�ejκa
T
�

̂rk−x� ḡk(x�, t − τ )dτ

(13)

= −
∫

ω2
o
p(τ − |rk − xo| /c)

4π |rk − xo|
w(r̂k − xo, t − τ )dτ � βk(rf , t)

(14)

where w(r̂k − xo, t) is the 2D discrete time Fourier
transform of the time varying tapering function
J(�)ejωct� ḡk(x�, t) at rk at time t, with ̂ denoting the
corresponding unit-norm vector. We shall define bk(rf,
t) as the combined effect of the beam pattern and the
transmitted pulse at time t, with f denoting the focal
point. The complete system is illustrated by the spatial
multirate structure of Figure 6a.
The interpretation of this scheme is as follows.

Assume we have the antenna beam focused at r f .
Because the beam is narrow at the focal plane, and
due to a finite (extent) depth of field, the illuminated
portion of the object can be represented by a K1 × K2

× K3 parallelepiped s̄rj , which contains the corre-
sponding most significant reflectivity samples (i.e., the
ones shaped by the transmitted pulse, lateral beam
function and the depth of field). Their positions rela-
tive to the point r f are set by the spatial shifts

z(−mi) � zmi,0
0 zmi,1

1 zmi,2
2 , i = 0, . . . ,K − 1 , where K ≜

K1K2K3. We further define K̃ � K1K2 . The columns of
the downsampling matrix B define the geometry in
which these spatial blocks are processed, as the object
is scanned at a given rate. That is, let s̄ra and s̄rb be
two parallelepipeds (tensors), possibly intersecting, at
focal points ra and rb, respectively. For instance, when
K = | det B | (i.e., the volume of the fundamental par-
allelepiped defined by B), it implies that nonoverlap-
ping blocks are being processed each time. This is
actually the lowest spatial rate for which the object
can be processed without loss of useful information.
On the other hand, when choosing B = I the object is
being scanned at the highest possible rate, which is
given by the desired spatial resolution. For simplicity,
we shall assume rectangular parallelepipeds, so that
the beam region of support coincides with a rectangu-
lar parallelepiped as well. Each tensor block is then
(continuous-time) convolved with the K1 × K2 × Qr

tensor F r f (t) , the resulting impulse response of the

cascade of the bk(rf , t)p(t) with Gb(t), for f = {a, b}.
More specifically, assume Jr(xi) = 1, and let F r j,q (t) , q

= 0, 1, . . . , Qr - 1, be the K1 × K2 rectangular matrices

that constitute F r f (t) at the focal point rj,

j = 0, 1, . . . ,D − 1, where D is number of foci. The Qr

× 1 received vector is defined as
yrj(t) = [y0(t) y1(t) . . . yQr−1]T and expressed as

yrj(t) = Frj(t) � srj(�) + vrj(t), j = 0, 1, . . . ,D − 1, (15)

where Frj(t) is Qr × K̃ given by

Frj(t) =

⎡
⎢⎢⎢⎣

vecT(F rj,0(t))
vecT(F rj,1(t))

...
vecT(F rj,Qr−1(t)).

⎤
⎥⎥⎥⎦ (16)

and

srj(�) = vec(s̄rj(�))

= [s̄rj(n0, r) s̄rj(n1, r) . . . s̄rj(nK̃−1, r)]
T (17)

for ℓ = 0, 1, . . . , K3 - 1. The quantity vrj(t) is the

corresponding vectorized noise samples.
Here is the crucial point in understanding the imaging

process in general. First, it is important to note the dif-
ference between the range resolution defined by the spa-
tial sampling Tr, and the time separation between two
consecutive received pulses (here, more generally we
speak of MIMO pulses), which leads to the sampling
rate Ts = 2Δmin/c, where Δmin is the minimum target
separation required for a certain application, in the
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colocated radar. This coincides with the spatial sampling
Tr in the far field scenario, since in this case we are
allowed only one focal point in range. Hence, Tr = Δmin,
i.e., we are limited by the achievable time sampling. On
the other hand, focusing allows sampling at the desired
spatial resolution, so that Δmin is only defined within the
incoming tensors of reflectivities. That is, sampling the
received vectors at the rate nTs yields the discrete model

yrj(n) =
B−1∑
�=0

Frj(n − �)srj(V�) + vrj(n), j = 0, 1, . . . ,D − 1, (18)

where Frj(0) . . . Frj(N − 1) is the sampled version of

Frj(t) at Ts, while srj(V�) corresponds to the down-

sampled version of srj(�) , with V = Δmin/Tr. Figure 6b
illustrates the difference between Tr and Δmin.

(a)

..

Receive antenna surface

...

...
...

...

.

v0(t)

s̄rf
(m)

s̄rf
(0)

B

B

z(−m0)

z(−mk)

S(r)

z(−mK−1)
B

s̄rf
(1)

B
z(−m1)

s̄rf
(K − 1)

β0(rf , t)

βm(rf , t)

βK−1(rf , t)

Jr
(x
)

y1(t)

yi(t)

vi(t)

v1(t)

y0(t)

yQr−1(t)

vQr−1(t)

gm(xi, t)

β1(rf , t)

Frf
(t)

Gb(t)

Equivalent MIMO channel

Depth of field

Equivalent MIMO channel

T1

T2

Δmin

vrb
(t)

K Qr

y
rb

(t)
F rb

(t)

S

srb
(�)

sra (�)

vra (t)

K Qr

y
ra

(t)
F ra (t)

s̄ra

s̄rb

Tr

(b)
Figure 6 Overall System model as (a) a mapping from reflectivity to measurements; (b) MIMO system representing the imaging
problem.
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5 Modern structures for reflectivity estimation
Suppose we are to estimate a tensor arriving from one
particular focal point. Essentially, tensor imaging can be
cast like any other MIMO estimation problem, formu-
lated as either a Bayesian or classical estimation mini-
mum variance unbiased estimator (MVUE) problem.
Due to the difficulty of finding such nonlinear estima-
tors in practice, it is common to restrict the receiver to
be linear. Now, assume that the output signal is sampled
at Ts. In formulating the convolution model for the
received echoes, two common structures can be
induced, depending on the receiver design:

5.1 Block processing
Let L be the received signal window length, and define
the vectorized tensor of reflectivities and its correspond-
ing received vector around rj, respectively:

xrj(k) = vec([srj(V(k + B′ − 1)) · · · srj(V(k + 1))srj(Vk)]) (19)

ȳrj = vec([yrj(L − 1) · · · yrj(1) yrj(0)]) (20)

where B’ = N + L-1, for k = 0, 1,...,B-1. This choice of
L induces a block-by-block transmission scheme with
interblock interference (IBI), where each block has size
L. That is, let D be the number of desired foci set to
cover the object space. Then,

ȳrj(k) = Hrjxrj(k) + v̄rj(k), j = 0, 1, . . . ,D (21)

where

Hrj =

⎡
⎢⎢⎢⎢⎣
Fj(0) Fj(1) · · · Fj(N − 1) · · · 0 · · · 0

0 Fj(0) · · · Fj(N − 2)
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 0 · · · Fj(0) · · · Fj(N − 1)

⎤
⎥⎥⎥⎥⎦ (22)

with dimensions QrL × K̃(N + L − 1) , and v̄rj(k) are
the vectorized noise samples. This can be the case in a
monostatic scenario illustrated in Figure 7a, where at
the time the radar starts listening, part of the signal has
already returned to the radar site.
On the other hand, if the observation window is suffi-

ciently long so that all incoming MIMO pulses can be

completely observed, transmission becomes memoryless,
meaning that at the time the radar starts listening, no
information of near targets is present (Figure 7b). In
this case, we replace (19) and (20) by

xrj = vec([srj(V(B − 1)) · · · srj(V) srj(0)])
ȳrj = vec([yrj(N + B − 2) · · · yrj(1)yrj(0)])

(23)

where Hrj has the form

Hrj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Frj(N − 1) 0 · · · 0

Frj(N − 2) Frj(N − 1)
. . .

. . .
...

. . .
. . . 0

Frj(0)
. . .

. . . 0
...

. . .
. . .

...

0
. . .

. . . Frj(N − 1)
...

. . .
. . .

...
0 · · · 0 Frj(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

with dimensions (N + B − 1)Qr × BK̃ .

When Hrj is a tall full-rank matrix, a solution is found

rather independently for every focal point. Two impor-
tant solutions can be envisioned:
(i) Matrix Inversion. Here, the solution is given by

x̂rj(k) = (ITδ Hrj)
−1ITδ ȳrj(k) (25)

where

ITδ = [0BK̃×δ IBK̃×BK̃ 0BK̃×NQr−δ] (26)

The optimal delay δopt ∈ [0, NQr] is chosen such that
it minimizes the output noise power, by minimizing the

matrix norm
∥∥∥(ITδ Hrj)

−1
∥∥∥ (see [28], for the case of Toe-

plitz Hrj ).
(ii) Minimum variance (least-squares). This is given by

x̂rj(k) = (H∗
rjHrj)

−1H∗
rj ȳrj(k), j = 0, 1, . . . , D. (27)

In Equation (22), the dimension of Hrj is

QrL × K̃(N + L − 1) , so that all we need is

QrL ≥ K̃(N + L − 1) . The same goes for Equation (24),

where the condition is (N +M − 1)Qr > BK̃ .

5.2 Ts-spaced space-time linear equalization
In linear equalization, the final goal is to approximate
the overall response as much as possible to an impulse
(aside from minimizing the noise effect), for which a

(a) Observation window

. ..

(b)

...

Observation window

Figure 7 Illustration of received overlapped pulses in two
scenarios: (a) when the observation window is short; (b) when
the observation window is long.
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zero forcing equalizer is in general IIR. Now, if one is
restricted to an FIR receiver, several solutions exist, all
of which depending on the desired cost function, aiming
to minimize the effect of sidelobes and noise at the
output.
Referring to Figure 2, if the received signal is sampled

at Ts > Tp, where Tp is the pulse width, the standard
pulse compression technique attempts to recover the
reflectivity information inherent to s(k) via matched fil-
tering. That is the case if one is primarily interested in
maximizing the SNR. Alternatively, the requirement on
the SNR can be relaxed, and a mismatched filter can be
considered instead. In [27,29], significant reduction on
the sidelobes of the overall impulse response can be
obtained, if different Lp-norm minimization criteria are
considered. Observe that regardless of the optimization
criteria employed, it is not possible in general to recon-
struct the input perfectly, unless an IIR receiver is used,
which brings up noise amplification issues in practice.
Given the structure of (22), one cannot find a receive

MIMO filter Wrj (n) , so that when convolved with

Frj (n) yields an impulse, unless Hrj is a tall full-rank

matrix. This condition is satisfied if

QrL ≥ K̃(N + L − 1) and the subchannels of the
MIMO channel do not share common zeros. Still, a
solution to this problem can be found in the MVUE
sense, given by

Ŵrj = (H∗
rjHrj)

−1h(δQrL+1:QrL(δ+1),:) (28)

where h(δQrL+1:QrL(δ+1),:) corresponds to the (δ + 1)th

block column of Hrj , and δ is the optimal delay for this
estimation.
Observe that either in the unfocused scenario, or in

case each tensor block srj is to be recovered indepen-
dently from other blocks, its 3D resolution can only rely
on the feasibility of the sampling rate device. That is,
while lateral resolution in these cases depends on the
spatial grid density, resolution in range will be limited
to Δmin. The point is thus how accurately one can esti-
mate srj by using (27) or (28), specially when Hrj is not

a tall full-rank matrix.
The fact is that, in addition to the 1D time convolu-

tion model for each focal point, scanning at an arbi-
trary resolution rate yields overlap of successive blocks,
which naturally characterizes a volumetric convolution
between the object (reflectivity tensor), and the space-
varying tensor defined by the beam pattern for differ-
ent focal points. The spatial model for this operation
will depend on the number of directions and depths
the beam is moved to, whereby, similarly to block pro-
cessing in time, motion can induce a particular

processing structure in space (e.g., block processing,
with or without overlap). The overall process is in gen-
eral a 4D MIMO space (time)-varying convolution
model. For instance, choosing
D = (R1 + K1 − 1) (R2 + K2 − 1) (R3 + K3 − 1) implies
scanning at the spatial resolution {T0, T1, Tr}, and cor-
responds to a complete 4D MIMO (space-varying)
convolution. On the other hand, for the fastest scan-
ning, we can pick D = R1R2R3/|det B| foci, and the
whole space is scanned with nonoverlapping blocks.
This tells us that unlike the unfocused scenario, or in
the case where information received from around the
focal point is not sufficient for independent estima-
tions of each block, focusing allows for further diver-
sity; in this sense, resolution is unlimited, and
ultimately dictated by the desired spatial sampling of
S, and not only by the sampling device. As a result,
estimation must be accomplished jointly, after data
received from around all foci have been acquired. Of
course, the type of receiver will depend heavily on the
nature of the signals involved. For instance, the ultra-
sound wave speed is much slower compared to the
one of a microwave, so that quicker estimates must be
produced for every focal point in the former case. As
we have mentioned, the beam foci and their positions
relative to the antenna will define the convolution
model employed. For this reason, we shall consider the
beam motion in two separate steps, first with respect
to lateral motion, covering all azimuths and elevations,
which is then followed by depth motion.
a) Lateral Motion
Consider the signals in (18), and assume that the

object is scanned at a fixed depth r = dk across all possi-
ble azimuths and elevations such that the object is still
within the beam. This corresponds to picking
rj = rl,k =

[
r1 r2 dk

]
, where {r1, r2} are varied in order

to cover D1 = (R1 + K1 − 1) (R2 + K2 − 1) focal points,
for l = 0, 1, . . . ,D1 − 1 . We recognize the sequence
{y′

rj(n) = Frj(n − �)srj(V�)} as the output of a MIMO

2D space varying convolution between the constituting
matrices F rj,q(n) defined in (16), and the tensor slice at
range Vℓ corresponding to depth dk, which we denote
by Sdk(V�) . This convolution at depth dk results in Qr

images, or equivalently, a matrix with vector entries,
each one having Qr coefficients, which we denote by
Y ′

dk ,n . Note that similarly to the definition of a time

window, which sets the number of received images from
a focal point, we can also determine a spatial window,
with dimension smaller than D1 . However, in order to
exploit full space and time diversity, we shall continue
to assume a full spatial convolution model as well. We
thus have
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y′
dk(n) = vec(Y ′

dk ,n)

= vec([y′
r0,k(n) y′

r1,k(n) . . . y′
rD1−1,k(n)]),

(29)

so we can replace (18) by a more compact form as

ỹdk(n) =
B−1∑
�=0

Hdk(n − �)vec(Sdk(V�)) + Vdk(n), (30)

where Hdk(n − �) is a two-level block banded matrix
of size Qr(R1+K1-1)(R2+K2-1) × R1R2, representing a
MIMO 2D convolution. Defining

Sdk = [vec(Sdk(V(B − 1))) . . . vec(Sdk(V)) vec(Sdk(0))] (31)

Ydk = [ỹdk(N + B − 2) . . . ỹdk(1) ỹdk(0)] (32)

and denoting X dk = vec(Sdk) and ȳ′
dk
= vec(Ydk) , we

have

ȳ′
dk = HdkX dk + vdk (33)

where

Hdk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hdk(N − 1) 0 · · · 0

Hdk(N − 2) Hdk(N − 1)
. . .

...
...

. . .
. . . 0

Hdk(0)
. . .

. . . 0
...

. . .
. . .

...

0
. . .

. . . Hdk(N − 1)
...

. . .
. . .

...

0 · · · 0 Hdk(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

is a Qr(N + B - 1) (R1 + K1 - 1) (R2 + K2 - 1) × R1R2B
block toeplitz matrix, with block banded blocks.
The 3D model (33) fully describes the far-field trans-

mission scenario for a single depth at d0 = ∞; we see
that while resolution is unlimited in cross-range, we are
still limited to estimate B out of K3 images within the
tensor S.
b) Depth Motion
The lateral scanning can be performed at several

depths, giving rise to a full 4D convolution model. In
other words, (30) can be defined for k = 0, 1, . . . ,D2 ,
where D2 = (R3 + K3 − 1), so that overall rj covers
D = (R1 + K1 − 1) (R2 + K2 − 1) (R3 + K3 − 1) focal
points. There is, however, a subtle difference in the way
convolution is performed in the axial direction. While
the 2D convolution sum can be computed at the mini-
mum resolution step {T1, T2}, the volumetric convolu-
tion is obtained by combining images at ranges Vℓ, ℓ =

0, 1, . . . , B - 1, and at times 0, 1, . . . , N + B - 1, for
each depth dk. Let Cdk,c , with c = 0, 1, . . . , B - 1 be the
cth block column

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣
cdD2−1,B−1

. . .

cdD2−V ,B−1

⎤
⎥⎥⎦

0
...

0

· · ·

· · ·

· · ·

· · ·

0
...

0⎡
⎢⎢⎢⎣
cdD

2−V−1 ,B−2

. . .

cdD
2−2V ,B−2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
cdD

2−V−1 ,B−1

. . .

cdD
2−2V ,B−1

⎤
⎥⎥⎥⎦

· · ·

· · ·

· · ·

· · ·

0
...

0
...

. . .
. . .

. . .
...

0 . . .

⎡
⎢⎢⎣
cd2V−1 ,0

. . .

cdV ,0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
cd2V−1 ,1

. . .

cdV ,1

⎤
⎥⎥⎦

0 · · · · · · 0

⎡
⎢⎢⎣
cdV−1 ,0

. . .

cd0 ,0

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ð38Þ

of Hdk and define

Y = [ȳ′
d0 ȳ′

d1 . . . ȳ
′
dD2−1

], (35)

X = [vec(S(R3 − 1)) . . . vec(S(1)) vec(S(0))] (36)

Then, denoting y = vec(Y) and x = vec(X) allows as to
write

y = Hx + v (37)

where H is now a 4-level block banded convolution
matrix, with dimensions Qr(N + B -1) (R1 + K1 - 1) (R2

+ K2 - 1) (R3 + K3 - 1) × BR1R2R3 given by Equation
(38). Again, we can proceed in finding an estimate of
the reflectivity tensor S in (37) via matrix inversion or

LS, similarly to (25), with Hrj replaced by H . Note that
the tall full-rank condition imposed for separate blocks
is much more relaxed in this case due to the redun-
dancy of reflectivity in adjacent blocks.b

5.3 Fractionally-spaced equalization
Due to the massive amount of data generated in radar
imaging, a MIMO FIR receiver that reconstructs an
image at a fast rate can be highly desirable. As we have
mentioned in Section 5.2, for Ts-spaced equalization,
this is possible only if Hrj is tall full-rank. If not, exact
reconstruction based on an FIR receiver is still possible
by inducing some form of redundancy in the equivalent
discrete-time system. As we have mentioned, coding is
one form of redundancy, which leads to bandwidth
expansion at the transmitter. One way to induce redun-
dancy without physically introducing it at the
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transmitter, and more importantly, without incurring on
bandwidth expansion, is by oversampling the received
signal in time. Oversampling was originally performed
by integer factors, giving rise to the so-called fractionally
spaced equalizers. Recently, it has been shown that sam-

pling the output at fractional rates, say nTS
( L
M

)
, where

L >M, also allows for exact FIR receivers, in which case
we further assume that L and M are coprime.
After equalization, a rate reduction step restores the

original sampling rate (that means resolution in our
context). Fractional sampling allows for significant
reduction in overhead when compared to the more
common Ts/2-spaced FS equalizer, which corresponds
to the minimum integer sampling rate. Figure 8a illus-
trates the fractionally-spaced receiver, while Figure 8b
shows the equivalent discrete-time model with fractional
sampling. The filters Frj(z) and Wrj(z) are known as
fractional biorthonormal partners [30] if in the absence
of noise, the overall transmission is an exact delay (δ).
Oversampling the output is what makes exact recon-

struction possible. In fact, using well-known multirate
noble identities [31], this scalar system can be further
expressed via its block transmission equivalent, accord-
ing to Figure 9. The polynomials E(z) and R(z) corre-
spond to polyphase matrices, which are uniquely

determined by polyphase components Frj(z) and Wrj(z)

respectively, via their order L type-2 and type-1 decom-
positions (we drop the notation on rj in their factors for
simplicity)–see [30]:

Frj(z) =
L−1∑
k=0

�k(zL)zk, and Wrj(z) =
L−1∑
k=0

Wk(zL)z−k. (39)

Define the functions, for 0 ≤ k ≤ L - 1,

Gk(z) � zk��k(z), and Qk(z) � z−k�Wk(z) (40)

with m and l such that ℓL + mM = 1. Since L and M
are coprime, the smallest integers m and ℓ are obtained
by the Euclid’s algorithm. Defining the order M poly-
phase decompositions

Gk(z) =
M−1∑
j=0

Ek,j(zM)z−j, and Qk(z) =
M−1∑
i=0

Ri,k(zM)zi,(41)

the entries of the polyphase matrices E(z) and R(z) are
simply {Ek, j (z), Ri, k(z)}.
In [30], the authors develop a zero forcing solution for R

(z) based on the Smith form of E(z). It is shown that there
exists an FIR right vector fractional biorthogonal partner of
Fi(z) if and only if QrL > K̃M , and the greatest common

divisor (gcd) of all the K̃M × K̃Mminors of E(z) is a delay.
If theses conditions are satisfied, exact reconstruction of
the input can be achieved. The additional degree of free-
dom offered by the resulting receiver is then exploited in
order to minimize the noise power at the output. As men-
tioned in [30], the advantage of the method relies on the
fact that neither the input nor the noise autocorrelation
matrices are needed when the noise is uncorrelated, in
comparison with an MMSE solution. Note that the ZF
solution of [30] is not the only one independent of statistics
when the noise is uncorrelated; a pure minimum-variance
(LS) based receiver also minimizes the output noise power.
Also, in the solution proposed in [30], their ZF method is
compared to the MMSE solution considering a zero deci-
sion delay in the filter design. This could deteriorate the
MMSE performance in comparison with the ZF approach.
In this sense, a MVUE approach is also a good candidate
for equalization (moreover, computing the Smith form is
not a systematic task, and represents an ill-conditioned fac-
torization problem, similar to the Jordan form).
Let NE and NR be the lengths of the polynomial

matrices E(z) and R(z), respectively, and define their
corresponding matrix coefficients
E j = [E0E1 · · ·ENE−1],Rj = [R0R1 · · ·RNR−1] .
Define the QLNR × KM(NE + NR - 1) block convolu-

tion matrix

T =

⎡
⎢⎢⎢⎢⎣
E0 E1 · · · ENE−1 · · · 0 · · · 0

0 E0 · · · ENE−1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 0 · · · E0 · · · ENE−1

⎤
⎥⎥⎥⎥⎦ . (42)

(a)
RateFIR

rate L
MTs

Equalizer reduction

vj(t)

sj(k) ŝj(k)

F j(t)
yj(t)

(b)
M M LL

vj(t)

ŝj(k)

K Q
F j(z) W j(z)

yj(t)sj(k)

Figure 8 Structure of (a) Fractionally-spaced receiver and (b)
equivalent discrete-time model.

... ... ... ... ...
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Iz−1

K

K

K
K

K

K

Q

Q

Q

ŝj(k)
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QrL × K̃M K̃M × QrL

Figure 9 Fractional Biorthogonal Partners construction.
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Hence, as long as we have

QrLNR ≥ K̃M(NE +NR − 1)and T is full-rank, if the

noise is uncorrelated, similarly to (28) the MVUE of sj
(k) is given by

R̂ = (T∗T)−1[T∗](δQL+1:QL(δ+1),:) (43)

6 Special case: single antenna, narrowband,
freespace, far-field
A special case of general interest arises when focusing is
performed in both transmission and reception, giving
rise to two distinct antenna beam patterns. Let

β ′
k(rf ) = w1(r̂k − x0)w2(r̂k − x0) be their product, corre-

sponding to point rk within the reflectivity tensor at rf .
In a freespace scenario, (9) simplifies to

y(t) = β ′
k(rf )

[
δ(t − 2 |x0 − rk| /c)

32π2 |x0 − rk| � p(t)
]
s̄rf (rk) (44)

= βk(rf )p(t − τ )s̄rf (rk) (45)

where βk(rf ) � β ′
k(rf )/32π2 |x0 − rk| , and τ ≜ |x0-

rk|/c. We have also dropped the dependency on x0,
since it is fixed in our development. This corresponds
to Qr = 1, so that we now deal with a simple multiple-
input-single-output (MISO) model, as illustrated in
Figure 10.
We observe that the 2D filter with coefficients given

by the antenna beam pattern defined by bk(rf) = bk(r) is
now space-invariant in cross-range, while filtering along
range is accomplished through the transmitted pulse
only, which is a time-invariant scalar function p(t). That
is, Frj (n − �) in (18) becomes

Frj(n − �) = p(n − �)F−
V�
, (46)

where F−
V�

= [β0(V�) β1(V�) . . . βK̃−1(V�)], so that

Hdk(n − �) in (30) is replaced by

Hdk(n − �) = p(n − �)HV�. (47)

At the far-field we focus on a single depth, d0, so that
Hdk(n − �) = p(n − �)H , where H becomes a (R1 +K1

-1)(R2 +K2 -1) × K1K2 two-level block Toeplitz matrix
with Toeplitz blocks. Hence, (33) simplifies to

ȳ′
d0 = (T ⊗ H)X d0 + vd0 (48)

or, equivalently,

Yd0 = HSd0T T + Vd0 (49)

in terms of the reshaped model, where T is tall,
Toeplitz-like, similar to (24). Assume that the beam
pattern function bk(r) is separable, and consider two
(discrete) sequences b0(n) and b1(n), which define two
Toeplitz matrices A0 and A1, respectively, at a certain
range, similarly to the structure of Hr0 in (24), with

the Frj(n) replaced by b0(n) or b1(n). In this case, we

write H as H = A1 ⊗ A0 , where A0 is (R1 + K1 - 1) ×
R1, and A1 is (R2 + K2 - 1) × R2. Therefore, referring
to (29), we have

y′
d0(n) = vec(Y ′

d0,n)

= (A1 ⊗ A0)[Sd0T T]:,N+B−2−n

(50)

where [·]:, N + B-2-n denotes the (N + B - 2 - n)th col-

umn of the argument, and Y ′
d0,n is defined in (29). This

implies that

Yd0,n = A0reshR1([Sd0T T]:,N+B−2−n)AT
1 +Vd0(n) (51)

for n = 0, 1, . . . , N + B - 2, where we use Yd0,n to
define the output that includes the noise term Vd0(n) ,

unlike Y ′
d0,n in (29). This model suggests, in light of

(25), two main procedures for estimating the volumetric
information Sd0 :
(i) Matrix inverse. Given the separable model above,

we can estimate Sd0 as

Ŝd0 = reshK̃

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

vec
[
(ITδ0A0)

−1
ITδ0Yd0,0Iδ1 (A

T
1Iδ1)

−1
]

vec
[
(ITδ0A0)

−1
ITδ0Yd0,1Iδ1 (A

T
1Iδ1)

−1
]

...

vec
[
(ITδ0A0)

−1
ITδ0Yd0,N+B−2Iδ1(A

T
1Iδ1 )

−1
]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠
Iδ2 (T TIδ2)

−1ð52Þ

where δ0, δ1, and δ2 are chosen optimally. The restric-
tion matrices Iδ0 , Iδ1 , Iδ2 are defined similarly to (26),
with δ0 Î [0, R1], δ1 Î [0, R2], and δ2 Î [0, B]. In [28], it
is shown that for the 1D case, when the delay δ is equal

...

y(t)

v(t)

s̄rf
(n0, r)

s̄rf
(n1, r)

p(t− τ)

β0(r)

β1(r)

s̄rf
(n

K̃−1
, r)

β
K̃−1

(r)

Figure 10 MISO system representing the doubly-focused case.
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to the number of zeros of the corresponding polynomial
outside the unit circle, say e.g., p(n), the matrix norm∥∥∥(T TIδ2)

−1
∥∥∥ is minimized. Here, because {b0(n), b1(n),

p(n)} are known a priori, {δ0, δ1, δ2} can be found offline,

so that
∥∥∥(ITδ0A0)

−1
∥∥∥ , ∥∥∥(ITδ1A1)

−1
∥∥∥ , and ∥∥∥(ITδ2T )−1

∥∥∥ can

be minimized as well.
(ii) Least-squares. Using well known properties of Kro-

necker products, the least-squares estimate of Sd0 is
given by

X̂ d0 =
[
(T ∗T )−1 ⊗ (HTH)

−1
]
(T ∗ ⊗ HT)ȳ′

d0 (53)

or, reshaping Ŝd0 and ȳ′
d0 according to (32) and (32),

Ŝd0 = (HTH)−1HTYd0T (T ∗T )−1. (54)

If H is separable, we obtain

Ŝd0 =
[
(AT

1A1)
−1 ⊗ (AT

0A0)
−1

]
(AT

1 ⊗ AT
0)Yd0T (T ∗T )−1 (55)

so that

Ŝ(V�) = (AT
0A0)−1AT

0reshR1+K1−1([Yd0T (T ∗T )−1]:,�)A1(AT
1A1)−1,

� = 0, 1, . . . ,B − 1
(56)

We highlight that in this configuration, p(n), bo(n),
and b1(n) play the role of a known channel in a commu-
nication system, which can be optimally chosen in order
to meet certain design specification.
Remark: Regarding implementation issues, as we have

mentioned, the structure of the receiver is paramount
for feasibility of the solution, specially when a significant
amount of data is involved.
Exploiting the structure induced by the Green’s func-

tion of a specific medium has thus a powerful impact
on the actual implementable solution of the correspond-
ing inverse. While in [25] an inverse or least-squares
operator is applied to the received signal (the latter by
considering the adjoint ℋ* and precomputing the spec-
tral decomposition of (ℋ*ℋ)), by virtue of sampling in a
3D freespace scenario, ℋ is replaced by (T ⊗ H) , so
that the LS estimator is computed via (56). This allows
us to replace a spectral factorization by a superfast
receiver whose defining parameters are computed off-
line. This subject is closely connected with the field of
fast equalization receivers in communications [7,32],
where an efficient estimation of the transmitted
sequence is available.

7 Preliminary experiments
We perform some preliminary simulations considering
the matrix inversion and least-squares receivers for an

exact modeling, 3D scenario in freespace aforemen-
tioned. We also plot the corresponding 1D equaliza-
tion receivers based on A-scan lines. The behavior of
these equalizers is well known, and the challenge in
their implementations lies in cases where the condi-
tioning of T , A0, and A1 becomes too high. Good
numerical properties and minimum MSE occur when
the columns of these matrices are orthogonal, so that
the LS solution becomes a matched filter. This is the
case when the transmitted pulses do not overlap, or
can be approximated by well designed codes. Two fun-
damental questions must be taken into consideration
when computing the above solutions: (1) What sort of
algorithm or method must be employed when imple-
menting (52) or (56). (2) How does the designed pulse
affect the numerical properties of the underlying solu-
tion, and more importantly, how does it affect the
implementation of the method chosen in (1). These
issues commonly arise in several different areas where
LS type solutions are deployed, and are currently a
(hot) topic of considerable activity in the field of fast
matrix equalizers [32,33]. In hostile wireless communi-
cations environments, long delay spreads and deep
fades are responsible for the ill-conditioning of the
corresponding convolution matrix, a fact that can be
similarly observed in {T ,A0,A1} depending on their
design criteria. Fortunately, these matrices are known
quantities, and can be designed in order to avoid
numerical difficulties. Several practical aspects must be
taken into consideration, including ease of implemen-
tation of the pulse, antenna dimensions, etc.
We assume that the beam pattern is generated by a 1

m × 1 m antenna with uniform tapering function and
current density, producing two separable sinc functions
b0(n) and b1(n). We estimate a 10 × 10 × 10 tensor,
with resolution T1 = T2 = Δmin = 0.1. The pulse length
is Tp = 10-7, and the carrier frequency is set to fc = 4
GHz. In A-scan imaging, the beam is swept over the
object. For each received signal, the estimator is com-
puted based solely on the transmitted pulse, while the
beam pattern is usually designed in order to minimize
the blurring effect in this direction. In the 3D modeling,
however, whatever the beam pattern in cross range is,
we make use of its shape when estimating along this
direction as well. Observe that a tall matrix can always
be induced by moving the beam over the object in order
to perform a complete spatial convolution. Hence,
improved results may be expected compared to the case
of A-scans.
Figure 11a shows the MSE decay normalized by the

Frobenius norm of S , for a 10 MHz chirp pulse p(t) =
cos(2πfct + π�t2), where � is the chirp rate. For the
matrix inversion approach, in theory the optimal delay
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δ2 should be equal to the number of zeros outside the
unit circle, in this example given by δ2 = 99. However,

the condition number of (ITδ2T ) in this case is 7 · 1013,

and produces no meaningful result. The optimal delay
was verified empirically to be δ2 = 0 instead. The corre-

sponding condition number of (ITδ2T ) is 7.5, and its

performance is close to the one of the LS receiver. For
the latter, the condition number of T*T is equal to 784.

Figure 11b shows the same scenario for a random
pulse whose taps are drawn from zero-mean, unit-var-
iance gaussian variables. The condition number of T*T

is 1.97, while for (ITδ2T ) , 13.2. This is to illustrate that

conditioning is fundamental, and is not necessarily
achieved when the transmitted signal is designed as a
Chirp, also aiming implementation issues.
We consider an 80 × 80 real scene image Figure 12a

for simplicity at a fixed range and an SNR of 10 dB, for
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Figure 11 NMSE for tensor and A-scan estimations via matrix inversion and LS: (a) chirp pulse; (b) random pulse.
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Figure 12 Preliminary experiment: (a) Original scene; (b) optimal minimum norm matrix inverse; (c) 3D-LS solution; (d) matched-filter
solution.
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a randomly generated pulse with Gaussian samples, and
additive white Gaussian noise. The optimal minimum-
norm matrix inverse and 3D-LS estimation are illu-
strated in Figure 12b, c, respectively, which can be com-
pared to the standard matched-filter receiver in Figure
12d. The corresponding A-scan schemes are shown in
Figure 13a, b. We further compare these recovered
scenes with the ones obtained with a Chirp transmis-
sion, in Figure 14a, b. We clearly see the effect of condi-
tioning in the matrix inverse solutions, and superiority
of the full convolution information-based receivers.
In this article, we have presented preliminary simula-

tions considering the effect of the transmitted signal in
A-scan and 3D estimation scenarios. A thorough com-
parison with other methods in a fair equivalent scenario
is still to be pursued in a separate future study.

8 Conclusions
We have approached the 3D radar imaging reconstruc-
tion problem as a tensorial estimation, according to a
multidimensional multirate model. This includes both
unfocused and focused scenarios. Exact reconstruction

of the reflectivity tensor is possible through standard
equalization techniques, such as linear equalizers and
block estimation. The conditions and accuracy in recon-
struction depend on the amount of space and/or time
diversity introduced, and can be induced by oversam-
pling or focusing, where in the latter redundancy is
achieved via overlapping tensor blocks. The entire pro-
cess can be seen as a 4D space and time convolution
model, whose knowledge allows for enhanced resolution
compared to standard matched (or mismatched) filter
approaches. In the unfocused scenario, or when scan-
ning is performed via non-overlapping blocks, oversam-
pling through biorthogonal partners is one way of
achieving exact reconstruction. Range resolution in
these cases is limited by state-of-the-art ADCs, and for
focused beams, in theory there is no limit on achievable
resolution. An important special case arises in the far-
field, narrowband, freespace scenario, which results in a
3D separable convolution model, described via Toeplitz-
like linear systems in all 3 dimensions. Because the
transmitted pulse and beam pattern functions are
known, this yields a superfast equalizer receiver, which

(a)
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

(b)
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Figure 13 Preliminary experiment: (a) Optimal minimum norm matrix inverse for A-scan processing; (b) 3D-LS solution for A-scan
processing.
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Figure 14 Chirp transmit pulse. (a) 3D-LS solution; (b) optimal minimum norm matrix inverse for A-scan processing.
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can be pre-computed via either matrix inversion or a LS
solution. The complexity and numerical properties of
the solution are one of the key factors for feasibility of
implementation.

Endnotes
aMatched Filtering is also called migration in the geo-
physics jargon, and backprojection in X-ray tomography
terminology. bDecision-Directed Receiver. In situations
where the range to be imaged is constituted by isolated
targets, with a well defined threshold for deciding upon
their existence or not, one can rely on decision-directed
estimates in order to improve the imaging of the targets.
This can be achieved by MIMO DFE, or approximately,
by first obtaining a rough estimate of the reflectivity,
and then rewriting the linear model in order to focus
only on the range where the targets exist. This opens up
several possibilities for structures based on decision-
directed feedback, and makes the estimation more accu-
rate by focusing only at the ranges where the target is
located.
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