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Abstract

This article proposes a new algorithm for finding the angles of arrival of multiple uncorrelated sources impinging
on a uniform linear array of sensors. The method is based on sparse signal representation and does not require
either the knowledge of the number of the sources or a previous initialization. The proposed technique considers
a covariance matrix model based on overcomplete basis representation and tries to fit the unknown signal powers
to the sample covariance matrix. Sparsity is enforced by means of a /;-norm penalty. The final problem is reduced

to an objective function with a non-negative constraint that can be solved efficiently using the LARS/homotopy
algorithm. The method described herein is able to provide high resolution with a low computational burden. It
proceeds in an iterative fashion solving at each iteration a small linear system of equations until a stopping
condition is fulfilled. The proposed stopping criterion is based on the residual spectrum and arises in a natural way
when the LARS/homotopy is applied to the considered objective function.

1. Introduction

Brief summary of classical direction of arrival estimators
The estimation of the directions of arrival (DoA) of
multiple sources using sensor arrays is an old problem
and plays a key role in array signal processing. During
the last five decades, a plethora of methods have been
proposed for finding the DoA of different narrowband
signals impinging on a passive array of sensors. These
methods can be divided into two categories: parametric
and nonparametric estimators.

Nonparametric methods include beamforming and
subspace methods. The former relies on scanning the
power from different locations. Exponents of this cate-
gory are conventional beam-former [1] and Capon’s
method [2]. Conventional beamformer, a.k.a. Barlett
beamformer, suffers from poor spatial resolution and
cannot resolve sources within the Rayleigh resolution
limit [1]. As it is well known, this lack of resolution can
be mitigated only by increasing the number of sensors
of the array because improving the SNR or increasing
the number of time observations does not increase the
resolution. On the contrary, Capon’s minimum variance
method can resolve sources within the Rayleigh cell if
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the SNR is high enough, the number of observations is
sufficient and the sources are not correlated. Unfortu-
nately, in practice, Capon’s power profile is strongly
dependent on the beamwidth, which, on its turn,
depends on the explored direction and in some scenar-
ios this could lead to a resolution loss. To counteract
this, an estimator of the spectral density obtained from
the Capon’s power estimate was derived in [3] achieving
better resolution properties. Herein this method will be
referred as Normalized Capon. Another well-known
category of nonparametric DoA estimators is the one
composed by subspace methods. These algorithms are
able to provide high-resolution and outperform beam-
forming methods. The most prominent member of this
family is MUItiple SIgnals Classification (MUSIC) [4], it
relies on an appropriate separation between signal and
noise subspaces. This characterization is costly and
needs a previous estimation of the number of incoming
signals.

Parametric methods based on the maximum likelihood
criterion [5] exhibit a good performance at expenses of a
high computational cost. These techniques estimate the
parameters of a given model instead of searching the
maxima of the spatial spectrum. Unfortunately, they
often lead to difficult multidimensional optimization
problems with a heavy computational burden.
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An interesting algorithm that lies in between the class
of parametric and nonparametric techniques is the
CLEAN algorithm. This method was first introduced by
Hoégbom [6] and have applications in several areas: array
signal processing, image processing, radar and astron-
omy. Recently, Stoica and Moses throw light on the
semiparametric nature of the algorithm [7]. In broad
outline, it operates in a recursive manner subtracting at
each iteration a fraction of the strongest signal from the
observed spatial spectrum.

For those readers interested on a more detailed and
comprehensive summary of angle of arrival estimators,
the authors refer them to [1,8].

Sparse signal representation
Sparse representation of signals over redundant diction-
aries is a hot topic that has attracted the interest of
researchers in many fields during the last decade, such as
image reconstruction [9], variable selection [10], and com-
pressed sensing [11]. The most basic problem aims to find
the sparsest vector x such that y = Ax, where y is the mea-
sured vector and A is known. This matrix A is called dic-
tionary and is overcomplete, i.e., it has more columns that
rows. As a consequence, without imposing a sparsity prior
on X, the set of equations y = Ax is underdetermined and
admits many solutions. Formally, the objective is to mini-
mize ||x||o subject to y = Ax, where ||-||o denotes the [,-
norm [12]. This is an intractable NP-hard combinatorial
problem in general [13]. Fortunately, if the vector is suffi-
ciently sparse the problem can be relaxed replacing the /,-
norm by a /;-norm, defined as ||x[|; = X;|x;|, leading to a
convex optimization problem with a lower computational
burden. The conditions that ensure the uniqueness of the
solution were studied in [14].

In case of an observation vector contaminated by
noise, a natural variation is to relax the equality con-
straint to allow some error tolerance ¢ > 0:

rnxin Ix]l; subject to Hy—Ax”; <e (1)
or alternatively,
min |y — Ax||§ subject to  |x|; < B ()

where the constraint ||x||; < 8 with § > 0 promotes
sparsity. This formulation is known as Least Absolute
Shrinkage and Selector Operator (LASSO) and was ori-
ginally proposed by Tibishirani [15]. The augmented
formulation of (2) is well-known in signal processing
and is commonly called Basis Pursuit Denoising (BPDN)
[16]:

min |y —Ax[; +7 lIxl; with © =0 3)
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The three formulations (1)-(3) are equivalent in the
sense that the sets of solutions are the same for all the
possible choices of the parameters 7, ¢, . To go from
one formulation to the other we only need a proper cor-
respondence of the parameters. Nevertheless, even if the
mapping between the regularization parameters exists,
this correspondence is not trivial and it is possibly non-
linear and discontinuous [17].

When the vector x is real, the LASSO problem (2), or
its equivalent formulation (3), can be solved with stan-
dard quadratic programming techniques [15]. However,
these techniques are time demanding and faster meth-
ods are preferred. Osborne et al. [18] and later Efron et
al. [19] proposed an efficient algorithm for solving the
LASSO. This algorithm is known as “homotopy method”
[18] or LARS (Least Angle Regression) [19]. In this arti-
cle this technique will be referred to as LARS/homo-
topy. A variant of the traditional LASSO problem, that
will be specially useful in the covariance fitting that will
be addressed later on, is the so-called positive LASSO.
In this case, an additional constraint over the entries of
the vector x is considered in the LASSO problem to
enforce the components of the vector to be non-nega-
tive:

min [y - Ax|;
Ixll, < 8

The positive LASSO problem (4) can be solved in a
efficient way introducing some slight modifications in the
traditional LARS/homotopy. This approach was proposed
by Efron et al. [19], but is not as widely known as the tra-
ditional one. Briefly, the algorithm starts with a very large
value of 7, and gradually decreases the regularization
parameter, until the desired value is attained. As 7
evolves, the optimal solution for a given 7, x(r), moves on
a piecewise affine path. As the minimizer x(z) is a piece-
wise-linear function of 7 we only need to find the critical
regularization parameters 7o, 71, 7o, ..., Tstop Where the
slope changes [17], these values are the so-called break-
points. The algorithm starts with x = 0 and operates in
an iterative fashion calculating the critical regularization
parameters 7y >7; > ... > Tgop = 0 and the associated mini-
mizers X (7o), X (1), ..., X (Tstop) Where an inactive compo-
nent of x becomes positive or an active element becomes
equal to zero. Normally, the number of active compo-
nents increases as 7 decreases. Nevertheless, this fact can-
not be guaranteed: at some breakpoints, some entries
may need to be removed from the active set.

(4)

subject to and x; >0Vi

Sparse representation in source location
Although there are some pioneering studies carried out
in the late nineties, e.g., [20,21], the application of sparse
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representation to direction finding has gained noticeable
interest during the last decade. Recent techniques based
on sparse representation show promising results that
outperform conventional high-resolution methods such
as MUSIC. In [20] a recursive weighted minimum-norm
algorithm called FOCUSS was presented. This algorithm
considers a single snapshot and requires a proper initia-
lization. The extension to the multiple-snapshot case
was carried out in [22] and it is known as M-FOCUSS.
Unfortunately, as it is described in [23], this technique
is computationally expensive and requires the tuning of
two hyperparameters that can affect the performance of
the method significantly.

If multiple snapshots can be collected in an array of
sensors, they can be used to improve the estimation of
the angles of arrival. Several approaches for summariz-
ing multiple observations have been proposed in the lit-
erature. The first of these approaches is the so-called /;-
SVD presented by Malioutov et al. [24]. This method is
based on the application of a singular value decomposi-
tion (SVD) over the received data matrix and leads to a
second-order cone optimization problem. This algo-
rithm requires an initial estimation of the number of
sources. Although it does not have to be exact, a small
error is needed for a good performance. An underesti-
mation or an overestimation of the number of sources
provokes a degradation in the performance of the
method. Even if the effect of an incorrect determination
of the number of sources has no catastrophic conse-
quences, such as the disappearance of the sources in
MUSIC, the performance of the algorithm can be con-
siderably degraded. Another important drawback is that
[1-SVD depends on a user-defined parameter which is
not trivial to select. An alternative approach to summar-
ize multiple snapshots is the use of mixed norms over
multiple measurement vectors (MMV) that share the
same sparsity pattern [22,25]. This formulation is useful
in array signal processing, specially, when the number of
snapshots is smaller than the number of sensors. If we
assume that the snapshots are collected during the
coherence time of the angles, the position of the sources
keep identical among the snapshots; the only difference
between them resides in the amplitudes of the imping-
ing rays. Basically, this approach, which is out of the
scope of the article, tries to combine multiple snapshots
using the [, norm and to promote sparsity on the spatial
dimension by means of the /;-norm. Unfortunately, this
joint optimization problem is complex and requires a
high computational burden. When the number of snap-
shots increases, the computational load becomes too
high for practical real-time source location. Recently,
new techniques based on a covariance matrix fitting
approach have been considered to summarize multiple
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snapshots, e.g., [26-28]. Basically, these methods try to
fit the covariance matrix to a certain model. The main
advantage of covariance fitting approaches is that they
lead to convex optimization problems with an affordable
computational burden. Moreover, they do not require a
previous estimation of the number of incoming sources
or heavy computations such as SVD of the data. It
should be also pointed out that as these methods work
directly with the covariance matrix less storage space is
needed because they do not need to store huge amounts
of time data. The technique proposed by Yardibi et al.
[26] leads to an optimization problem that can be solved
efficiently using Quadratic Programming (QP). In the
case of the approach exposed by Picard and Weiss [27],
the solution is obtained by means of linear program-
ming (LP). The main drawback of this last method is
that it depends on a user defined parameter that is diffi-
cult to adjust. In the same way, Liu et al. [29] propose a
new method which is based on a hyperparameter that
has been heuristically determined. On the contrary,
Stoica et al. [28,30] propose an iterative algorithm
named SParse Iterative Covariance-based Estimation
approach (SPICE), that can be used in noisy data sce-
narios without the need for choosing any hyperpara-
meter. The major drawback of this method is that it
needs to be initialized.

Article contribution

This article proposes a simple, fast, and accurate algo-
rithm for finding the angles of arrival of multiple
sources impinging on a uniform linear array (ULA). In
contrast to other methods in the literature, the proposed
technique does not depend on user-defined parameters
and does not require either the knowledge of the num-
ber of sources or initialization. It assumes white noise
and that the point sources are uncorrelated.

The method considers a structured covariance matrix
model based on over-complete basis representation and
tries to fit the unknown signal powers of the model to
the sample covariance. Sparsity is promoted by means
of a /;-norm penalty imposed on the powers. The final
problem is reduced to an objective function with a non-
negative constraint that can be solved efficiently using
the LARS/homotopy algorithm, which is, in general, fas-
ter than QP [19] and LP [17]. The method described
herein proceeds in an iterative manner solving at each
iteration a small linear system of equations until a stop-
ping condition is fulfilled. The proposed stopping criter-
ion is based on the residual spectrum and arises in a
natural way when the LARS/homotopy is applied to the
considered objective function. From the best of our
knowledge this stopping condition has never been con-
sidered before in sparse signal representation.
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2. The proposed method: sparse covariance
fitting for source location

Consider L narrowband signals {xi[k]}L, impinging on
an array of M sensors. The kth observation can be
expressed as:

ylk] = S(O)x[k] + w[k]  k=1,...,N (5)

where x [k] = [x; [k] ... x; [K]]T is the vector of
unknown source signals, the matrix § (8) ¢ C™ > is
the collection of the steering vectors corresponding to
the angles of arrival of the sources 8 = [6,, ..., 0;] T that
is, $ (0) = [s (0,) ... s (0,)], and w [k] € CM * ! denotes
a zero-mean additive noise, spatially, and temporally
white, independent of the sources with covariance
matrix o2l , being I, the identity matrix of size M.

Taking into account (5) the spatial covariance matrix
can be expressed as:

R = E(y[kly" K]} = S(0)PS"(8) + 021 6)

being P = E {x [k] X'/ [k]}. The classical direction find-
ing problem can be reformulated as a sparse representa-
tion problem. With this aim, let us consider an
exploration grid of G equally spaced angles ® = {¢, ...,
¢g} with G >>M and G >>L. If the set of angles of arri-
val of the impinging signals @ is a subset of ®, the
received signal model (5) can be rewritten in terms of
an overcomplete matrix Sg constructed by the horizon-
tal concatenation of the steering vectors corresponding
to all the potential source locations.

ylk] = Scxclk] + wik] (7)

M . .
where Sge C" G contains the steering vectors cor-

responding to the angles of the grid Sg = [s; ... sg], with
s; = s(9;), and xg [k] € cé*lisa sparse vector. The
non-zero entries of xg [k] are the positions that corre-
sponds to the source locations. In other words, the nth
element of xg [k] is different from zero and equal to the
gth component of the vector x [k] defined in (5),
denoted by x, [k], if and only if ¢, = 6,. It is important
to point out that the matrix Sg is known and does not
depend on the source locations.

The assumption that the set of angles of arrival is a
subset of @ is only required for the derivation of the
algorithm. Obviously, it does not always hold. Actually,
this is a common assumption in many exploration
methods in the direction finding literature (e.g., Capon,
Normalized Capon, MUSIC, etc). In the case that 0 ¢
®, the contribution of the sources leaks into the neigh-
boring elements of the grid.
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Bearing in mind (7) and assuming a white noise with
covariance matrix O’MZ)IM, the spatial covariance matrix

of (5) can be rewritten in terms of Sg and takes the
form:

R = E{y[kly"'[k]} = ScDSE + 021u (8)

with D = E{x¢[k]xH[k]}. An important remark is that
D e C%* 9 s different to the source covariance matrix P
e C"* " introduced in (6). Actually, since only L entries
out of G can differ from zero, D is a sparse matrix.

A common assumption in many direction finding pro-
blems is that sources are uncorrelated. Under this
assumption, the matrix D is a diagonal matrix with only
L non-zero entries given by diag (D) = [p; ... pal’ = p,
being p € R¢*1.

Note that p is a G x 1 sparse vector with non-zero
entries at positions corresponding to source locations.
Furthermore, the elements of p are real-valued and non-
negative.

To cast the problem into a positive LASSO with real
variables let us make some manipulations on (8). Apply-
ing vectorization to (8) it yields:

vec{R} = 8% ® Sgvec{D} + o 2vec{Iy} 9)

where ® and vec {-} denote the Kronecker product
and the vectorization operator. It should be remarked
that the result of §% ® S € CM*xG?,

Since D is a diagonal matrix because the sources are
uncorrelated, only G columns of Si; ® Sg have to be
taken into account. Using this fact, the dimensionality of
the problem can be reduced. In this way, it is straight-
forward to rewrite the expression (9) in terms of vector
p just removing some columns of S ® S¢:

vec{R} = Ap + aj vec{ly) (10)

with A=[si®s; s} ®s)

Ac (CM2><G .
Separating real and imaginary parts the above equa-
tion takes the form:

] [A o2 vec{ly}
BRI

where

st ® sg]. Note that

(11)

1, = Re {vec[R]} A, = Re {A}
r; = Im {vec[R]} A; =Im {A}
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In the expression (11), vec{l,;} denotes the vectoriza-
tion of the identity matrix of dimensions M x M and
Opzx is a vector of zeros of size M? x 1. More com-
pactly, the expression (11) can be rewritten as:

r=Ap+n (12)

with obvious definitions for r, A, p, and n. Note that r
and p ¢ R2M*x1 and A c R2M*xG

Unfortunately, the spatial covariance matrix is
unknown in practice and is normally replaced by the
sample covariance matrix obtained from a set of N

R N
observations R = ﬁ] > ylk]y"'[k]. A possible method for
k=1

finding p is the following constrained least squares pro-
blem:

. A 2
min | - Ap|

subjectto p;>0 i=1,...,G

. (13)
Iplly =Y pi < B with =0

j=1

R Re {vec|R

Where 1 = N

Im jvec|R
Note that (13) is positive LASSO problem. The main
idea behind (13) is to fit the unknown powers to the
model such that the solution is sparse. The method
tries to minimize the residual, or in other words, tries
to maintain the fidelity of the sparse representation

with the received data subject to a non-negative con-
G

straint on the powers and )_pi < B. This last con-
j=1

straint promotes sparsity, as it was exposed in (2), but

also imposes a bound in the received signal power.

Unfortunately, the parameter 3 is unknown and has to

be estimated. Even worse, the solution of (13) is very

sensitive to the parameter f3, a little error in the esti-

mation of the parameter can lead to a wrong solution

vector.

Instead of solving (13) let us consider the next equiva-
lent formulation:

e 2
min |t —Ap|; +tlpl, "

subjectto >0, p;>0 i=1,...,G

The problems (13) and (14) are equivalent in the
sense that the path of solutions of (13) parametrized by
a positive B matches with the solution path (14) as ¢
varies. To go from one formulation to the other one we
need a proper correspondence between the parameters.
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The problem (14) can be solved in an efficient way
with the LARS/homotopy algorithm for positive LASSO.
The method operates in an iterative fashion computing
the critical regularization parameters 7y >7; >... > Tgrop 2
0 and the associated minimizers p (7p), p (1), .., P
(tstop)» Where an inactive component of p becomes posi-
tive or an active element becomes equal to zero. Let us
remark that there is only one new candidate to enter or
leave the active set at each iteration (this is the “one at
a time condition” described by Efron et al. [19]).

The algorithm is based on the computation of the so-
called vector of residual correlations, or just residual
correlation, b(z) = AT(f- — Ap(7)) at each iteration. The

method starts with p = 0 which is the solution of (14)
for all the T = 7o = 2miaX (A'1);, being (ATt); the ith

component of the vector AT¢, and proceeds in an itera-
tive manner solving reduced-order linear systems. The
whole algorithm is summarized in Algorithm 1 (see
[19,31] for further details). This iterative procedure
must be halted when a stopping condition is satisfied.
This stopping criterion, which is the main contribution
of this article, will be described later in Section 3.

It should be pointed out that the least squares error of
the covariance fitting method exposed in (14) decreases
at each iteration of the LARS/homotopy algorithm. This
result is justified by the next two theorems.

Theorem 1: The sum of the powers increases monoto-
nically at each iteration of the algorithm. Given two vec-
tors with non-negative elements p(z,,;) and p(z,) that
are minimizers of (14) for two breakpoints 7,,; and 7,
respectively, with 7, >7,,1, it can be stated that [ p(z,
Dl 2 "P(Tn)"1~

Proof: See Appendix 1.

Theorem 2: The least squares error ||f—Ap(r)||§

decreases at each iteration of LARS/homotopy algo-
rithm. Given two vectors with non-negative elements p
(z,) and p(z,,;) that are minimizers of (14) for two con-
secutive breakpoints 7, and 7,,,; of the LARS/homotopy,
with 7, >7,,1, it can be stated that

N 2 N 2
||1' - Ap(fn+l)”2 =< ”I’ - Ap(‘l.’n) ”2
Proof: See Appendix 2.
Algorithm 1 Proposed method
INITIALIZATION: P = 0, T = 2max (A"f);, n=0

J = active set = &, I = inactive set = J
while # stopping criterion and 3 i € [ such that b; > 0
do

1) Compute the residual correlation b = AT( — Ap)
2) Determine the maximal components of b. These
will be the non-zero elements of p(z,) (active



Blanco and Najar EURASIP Journal on Advances in Signal Processing 2012, 2012:111

http://asp.eurasipjournals.com/content/2012/1/111

components).

J = argmax{b;}, I=J°

3) Calculate the update direction u such that all the
active components lead to an uniform decrease of
the residual correlation (equiangular direction).

u = (AJA) '

4) Compute the step size y such that a new element
of the b becomes equal to the maximal ones (3 ie [
such that b; (7,,.1) = bjc; (1,41)) or one non-zero
component of p becomes zero (3 j € J such that p;
(Tn+1) =0).

5) Actualizep > p + YW, Tpp1 =T, -2y, n=n + 1

end while

3. Stopping criterion: the cumulative spectrum
The definition of an appropriate stopping criterion is of
paramount importance because it determines the final
regularization parameter 7giop and Consequently the
number of active positions in the solution vector. In
general, larger values of 7 produce sparser solutions.
Nevertheless, this fact cannot be guaranteed: at some
breakpoints, some entries may need to be removed from
the active set.

Most of the traditional approaches exposed in the lit-
erature for choosing the regularization parameter in dis-
crete ill-posed problems are based on the norm of the
residual error in one way or another, e.g., discrepancy
principle, cross-validation, and the L-curve. Neverthe-
less, recent publications [32,33] suggest the use of a new
parameter-choice method based on the residual spec-
trum. This technique is based on the evaluation of the
shape of the Fourier transform of the residual error.
From the best of authors’ knowledge, this approach has
never been used as a stopping criterion in sparse repre-
sentation problems. The method exposed herein is
inspired in the same idea with some slight modifica-
tions. The main difference resides in the fact that no
Fourier transform needs to be computed over the resi-
dual, as it will be exposed later on, the spatial spectrum
of the residual arises in a natural way when the LARS/
homotopy is applied to (14). The following result is the
key point of the stopping criterion proposed in this
article.

Theorem 3: When the LARS/homotopy is applied to
the problem (14), the residual correlation obtained at
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the kth iteration of the algorithm, expressed as
b(z,) = AT(f — Ap(w)), is equivalent to the Barlett esti-
mator applied to the residual covariance matrix

G

Ci = R— Y pi(w)sis!. Then, the ith component of the
i=1

vector of residual correlations satisfies b;(z;) = sf’éksi.

Proof: See Appendix 3.

This theorem provides an alternative interpretation of
the residual correlation at the kth iteration b (z;) which
can be seen as a residual spatial spectrum. Bearing in
mind this idea and under the assumption that the noise
is zero-mean and spatially white the following para-
meter-choice method is proposed: to stop as soon as the
residual correlation resembles white noise.

Under the assumption that the noise is spatially white,
the power is distributed uniformly over all the angles of
arrival and the spatial spectrum has to be flat. To deter-
mine whether the residual correlation corresponds to a
white noise spectrum a statistical tool has to be consid-
ered. Several tests are available in the literature to test
the hypothesis of white noise. Herein the metric that
will be considered to see if the residual looks like noise
is:

ibi(fk)

a(l) ="' (15)

)]

bi(‘lfk)

1

Il
—_

where the subindex k, with k = 0, ..., ksp, denotes the
kth iteration of the LARS/homotopy algorithm. The
metric ¢, is a slight modification of the conventional
normalized cumulative periodogram proposed by Barlett
[34] and later by Durbin [35]. Traditionally, the cumula-
tive periodogram has been defined for real-valued time
series. In the real case, the spectrum is symmetric and
only half of the spectrum needs to be computed. How-
ever, it can be easily extended to embrace complex-
valued vectors as it is shown in (15). Throughout this
entire document c¢; will be referred to as normalized
cumulative spectrum (NCS).

For an ideal white noise the plot of the NCS is a
straight line and resembles the cumulative distribution
of a uniform distribution. Thus, any distributional test,
such as the Kolmogorov-Smirnov (K-S) test, can be con-
sidered to determine the “goodness of fit” between the
cumulative spectrum and the theoretical straight line. In
[34], Barlett proposed the use of the K-S test which is
based on the largest deviation in absolute value between
the cumulative spectrum and the theoretical straight
line. The K-S test rejects the hypothesis of white noise
whenever the maximum deviation between the
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cumulative spectrum and the straight line is too large.
On the contrary, the cumulative spectrum is considered
white noise if it lies within the K-S limits. The upper
and the lower K-S limits, as a function of index [, are
given by

l:l: 3
G  JVMN

where 0 = 1.36 for the 95% confidence band and ¢ =
1.63 for the 99% band.

Notice that the NCS does not require an accurate esti-
mation of the noise power at the receiver. Since the
cumulative spectrum (15) is normalized with respect to
the average power at each kth iteration, the decision
metric only depends on the shape of the spatial
spectrum.

The proposed stopping condition is: to stop as soon as
the residual correlation resembles white noise, that is,
when the NCS lies within the K-S limits.

(16)

4. Numerical results

The aim of this section is to analyze the performance of
the covariance fitting method proposed in this article.
To carry out this objective, some simulations have been
done in Matlab. Throughout the simulations, a uniform
grid with 1° of resolution has been considered for all the
analyzed techniques. Furthermore, a zero-mean white
Gaussian noise with power 02 = 1 has been considered.
The generated source signals are uncorrelated and dis-
tributed as circularly symmetric i.i.d complex Gaussian
variables with zero mean. Since the same power P will
be considered for all the sources, throughout this entire
section the signal to noise ratio (SNR) is defined by

SNR(dB) = 10logo( %,).

To illustrate the algorithm and the new stopping con-
dition based on the cumulative spectrum, we have con-
sidered four uncorrelated sources located at -36°, -30°,
30°, 50° that impinge on a ULA with M = 10 sensors
separated by half the wavelength. The SNR is set to 0dB
and the sample covariance matrix is computed with N =
600 snapshots. Figures 1 and 2 show the evolution of
the NCS and the vector of residual correlations, respec-
tively. As it is shown in Figure 1, the algorithm is
stopped after 16 iterations when the NCS lies within the
K-S limits of the 99% confidence band. The final solu-
tion p is shown in the Figure 3. Note that the residual
spectrum of the final solution in Figure 2 is almost flat
and the residual correlation resembles white noise.

Next, the probability of resolution of the covariance
fitting method as a function of the SNR is investigated.
With this aim we have considered two uncorrelated
sources located at -36° and -30° that impinge on a ULA
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.
20 40 60 80 100 120 140 160 180
Angle index

Figure 1 Cumulative Spectrum as a function of the angle
index. The scenario is composed by four sources located at 8 =
[-36° -30°, 30°, 50°], M = 10 sensors, N = 600 snapshots, SNR = 0dB.
The final solution is achieved after 16 iterations of the LARS/
homotopy and it is chosen as the first one that lies within the K-S
limits of the 99% confidence band.

with M = 9 sensors. Both sources transmit with the
same power and the sample covariance has been com-
puted with N = 1000 snapshots. Figure 4 shows the
results of the covariance fitting method compared to
other classical estimators: MUSIC [4], Capon [2] and
Normalized Capon [3]. In order to make a fair compari-
son between the different techniques, the number of
sources of the MUSIC algorithm has been estimated

<13 EEEEEEE 1st iteration o
‘‘‘‘‘ 10th iteration | = =
final solution | =

residual correlation
o

100 80 60 40 20 0 20 40 60 80
Angles (degrees)

Figure 2 Evolution of the vector of residual correlations b with
the iterations of the LARS/homotopy. The scenario is composed
by four sources located at @ = [-36°, -30°, 30°, 50°], M = 10 sensors,
N = 600 snapshots, SNR = 0dB. The final solution is achieved after
16 iterations of the LARS/homotopy and it is chosen as the first one
that lies within the K-S limits of the 99%. Note that the residual
correlation is almost flat.
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Figure 3 The power estimate of the proposed covariance
matrix fitting method. Final solution p obtained by the LARS/
homotopy after 16 iterations. The settings are: four sources located
at @ = [-36°, -30°, 30°, 50°], M = 10 sensors, N = 600 snapshots, SNR
= 0dB.

-

with the Akaike information criterion (AIC) [7]. The
curves in Figure 4 are averaged over 300 independent
simulation runs. From this figure, it is clear that the
proposed covariance fitting technique outperforms the
other classical estimators and it is about 6dB better than
the MUSIC algorithm and about 12dB better than the
Normalized Capon method.

Next, the performance of the proposed method in
terms of root mean square error (RMSE) is analyzed
and presented in Figure 5. Two uncorrelated sources
separated by Af = 6° that impinge on an array of M = 9
sensors were taken into account in the simulations. In
this case, the positions of the sources do not correspond

e ©
o N
T

Probability of resolution
o
(5]

0.4 g
0.3 N e
—©— Covariance Fitting
0.2 —&— MUSIC
—A— Normalized Capon
o1 - ¢ - Capon
0
-20 -1 20 30

SNR(dB)

Figure 4 Probability of resolution against SNR. 6 = [-3¢°, -30°], M
= 9 sensors, N = 1000 snapshots. The curves were obtained by

3l
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Figure 5 Root mean square error as a function of the signal-to-
noise ratio. Two uncorrelated sources separated by A0 = 6°. M = 10
sensors, N = 900 snapshots, SNR = 0dB. The curves were obtained

averaging the results of 300 independent simulation runs.

by averaging the results of 300 independent simulation runs.

to the angles of the grid. With this aim, the angle of the
first source ¢, is generated as a random variable follow-
ing a uniform distribution between -80° and 80° and the
angle of the second source is generated as 6, = 6; + Af.
The sample covariance has been computed with 900
snapshots. Figure 5 shows the RMSE of the proposed
method and MUSIC as a function of the SNR as long as
the two sources are resolved with a probability equal to
1. In the case of MUSIC the determination of the num-
ber of signal sources is performed by the AIC. The two
curves are based on the average of 300 independent
runs. From Figure 5 it can be concluded that at low
SNR the proposed method outperforms MUSIC. When
the SNR increases both methods tends to exhibit the
same performance.

Finally, the resolution capability of the method as a
function of the number of snapshots is investigated. The
scenario considered for this purpose is the following: two
sources located at ; = -36° and #; = -30° that impinge
on a ULA with M = 9 sensors. In this case, the trans-
mitted signals have constant modulus, which is a com-
mon situation in communications applications,
si(t) = @91 and s,(t) = @#2(). The signal phases
{gr(t)}2_, are independent and follow a uniform distribu-

tion in [0, 27]. Figure 6 shows the probability of resolu-
tion of the proposed method and MUSIC as a function of
the number of snapshots N. In this case the signal to
noise ratio is fixed to 1 dB. As in the previous cases, in
order to make a fair comparison between the two techni-
ques, the number of sources of the MUSIC algorithm has
been determined using AIC. The curves were obtained
by averaging the results of 500 independent trials. Note
that the covariance fitting method clearly outperforms
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Figure 6 Probability of resolution as a function of the number
of snapshots. Two uncorrelated sources located at @ = [-36°, -30°],
M = 9 sensors. The curves were obtained by averaging the results
of 500 independent trials.

MUSIC and is able to resolve the two sources with a
probability greater than 95% if N > 30.

5. Conclusions

A new method for finding the DoA of multiple sources
that impinge on a ULA has been presented in this arti-
cle. The proposed technique is based on sparse signal
representation and outperforms classical direction find-
ing algorithms, even subspace methods, in terms of
RMSE and probability of resolution. The proposed tech-
nique assumes white noise and uncorrelated point
sources. Furthermore, it does not require either the
knowledge of the number of sources or a previous
initialization.

Appendix 1: proof of Theorem 1

The LARS/homotopy provides all the breakpoints 75 >7;
>... >Tgop 2 0 and the associated solutions p(zo), p(t1), ...,
P(7stop) Where a new component enter or leaves the sup-
port (the set of active elements) of p(z). It can be proved
that the sum of powers increases monotonically at each
iteration of the algorithm. Suppose two non-negative
vectors p(z,) and p(z,.1) that are minimizers of (14) for
the regularization parameters 7, and 7,,,1, respectively,
with 7, >7,,; > 0. The following inequality holds for the
breakpoint 7,;:

[E=Ap()| + mlp()], < [ - AP [ + walp(enn) ], (17)

Note that the regularization parameter z,, is the same
on both sides of the inequality. The expression on the
right-hand side of the inequality (17) is equal to
[t — AP(Tn+1)H§ + Tnat [ P(tne) |} + (70 — 1) | P(T0i1) | -
Therefore, the expression (17) can be rewritten as:
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(18)

It = Ap@) 5+ pe) |, = [ = APCwet) |5+ mst [P(eaer) | +(mnmtst) [ ()

By using minimization properties, if p (t,,1) is the
minimizer of (14) for the regularization parameter 7,,,;.
Then, next inequality holds:

i = Ap(zw) |3 + twer [P(znet) |y < [ AP + Tt [p(z)],  (19)

Note that the regularization parameter 7, ; is the
same on both sides of the inequality. Bearing in mind
(19) and (18), it is straightforward to obtain

(20)

= ap@)[; + mlp@n], < I~ Ap@n |3+t [p(@)], + (@ = wnan) (),

If the term 1, "p (7,) || 1 is added and subtracted from
expression on the right-hand side of the inequality (20),
the next expression is obtained

[ = ap(n)3+wa Pz, < [ = ApCe) |3+l D) | + (=) PCe) | = [P )

(21)

From this expression we can conclude that (z, - 7,,1)
(el - ol = 0. As 7, 52,1 2 0, then [p(z,
D - p@)ll = 0. Einally, we obtain [[p(z,.. )], = lp
(Tn) 1.

Appendix 2: proof of Theorem 2

If p(z,.,1) is a vector with non-negative components that
minimizes the problem (14) for 7,..; >0, then the follow-
ing inequality is fulfilled:

|8 = Ap(ra) 3 + T [p(z) |, < £ = Ap(m) |3+ Tt (), (22)
which can be rewritten as:
e ([p(en) |, = [P(@),) < i = Ap() [ — [ - Ap(znn) |5 (23)

Since Tn+1 > 0 and ||p(Tn+1)"1 - ”P(Tn) "1 2 0: as it was
proved in Theorem 1, the following in-equality is ful-

filled & — Ap(za) | —
obtain ||f'—Ap(rn)||§ > ||f‘—AP(Tn+1)||§'

iy _AP(Tn+1)H§ > 0. Finally, we

Appendix 3: an alternative interpretation of the
residual
The residual correlation b that appears when the LARS/
homotopy algorithm is applied to the problem (14), has
a clear physical interpretation.

Bearing in mind (11), the residual correlation b when
LARS/homotopy is applied to (14) takes the form

b(e) =" - ap(e) - [A &) ([ 1] [2 [ESICE

which can be rewritten in terms of complex matrices
A exposed in (10) and the sample covariance R.

b(r) =Re {AH (Vec [ﬁ] - Ap(r))} (25)
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The term Ap(z) can be expressed as

pi(7)

. pa(r) ¢

Ap(r)=[sj®s1 s;®s; sc®sc] | . =Y pm)sies (26)
]

Since s} ® s; = vec(s;s}!), then

B G
Ap(t) = vec {;pi(t)sisf’]

Applying from (26) to (25) the residual correlation at
breakpoint 7 yields:

b(r) = Re {A” <Vec [ﬁ] — vec [gp.[r)sis‘”})] —Re {A”vec (f{ - ép{(t)s,sf{)} (27)

Bearing in mind the matrix A presented in (10), the
last expression can be rewritten as:

sT@st (sT @ s}f) vec| €: sHC,s;
si®sh . sT ® sif) vec €, shC.s.

b(t) =Re 2 . 2 vec[C,] =Re ( 2 2)_ ’ =Re 2 ,r 2 (28)
sc@st \ st!Cesc

(st ® sif) vec [é,]

. .G
being C; = R— Y pi(t)sisi .
i=1
The ith component of b(z) is real because it fulfills

A ~H . .
sCrsq =siC, 1+ Therefore, the residual correlation

yields:

. . . AT
b(z) = [s?C,sl shCysy sgCrsG] (29)

This result provides an alternative interpretation of
the residual correlation. At each breakpoint 7, the corre-

sponding residual b(z) can be seen as the Barlett estima-
tor applied to the residual covariance matrix

.G
C. =R—Y pi(r)sist.
i1
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