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Independent vector analysis based on overlapped
cliques of variable width for frequency-domain
blind signal separation
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Abstract

A novel method is proposed to improve the performance of independent vector analysis (IVA) for blind signal
separation of acoustic mixtures. IVA is a frequency-domain approach that successfully resolves the well-known
permutation problem by applying a spherical dependency model to all pairs of frequency bins. The dependency
model of IVA is equivalent to a single clique in an undirected graph; a clique in graph theory is defined as a
subset of vertices in which any pair of vertices is connected by an undirected edge. Therefore, IVA imposes the
same amount of statistical dependency on every pair of frequency bins, which may not match the characteristics
of real-world signals. The proposed method allows variable amounts of statistical dependencies according to the
correlation coefficients observed in real acoustic signals and, hence, enables more accurate modeling of statistical
dependencies. A number of cliques constitutes the new dependency graph so that neighboring frequency bins are
assigned to the same clique, while distant bins are assigned to different cliques. The permutation ambiguity is
resolved by overlapped frequency bins between neighboring cliques. For speech signals, we observed especially
strong correlations across neighboring frequency bins and a decrease in these correlations with an increase in the
distance between bins. The clique sizes are either fixed, or determined by the reciprocal of the mel-frequency scale
to impose a wider dependency on low-frequency components. Experimental results showed improved
performances over conventional IVA. The signal-to-interference ratio improved from 15.5 to 18.8 dB on average for
seven different source locations. When we varied the clique sizes according to the observed correlations, the
stability of the proposed method increased with a large number of cliques.

Keywords: blind signal separation (BSS), independent component analysis (ICA), independent vector analysis (IVA)

1 Introduction
When an audio signal is recorded by a microphone in a
closed room, it reaches the microphone via not only a
direct path, but also infinitely many reverberant paths.
The source sound wave is delayed in time and its energy
is absorbed by walls when it is delivered by a reverber-
ant path. In order to make the problem practically tract-
able, the time delay is usually limited to a certain
number by which the signal energy may almost disap-
pear through repeated reflections. The signal recorded
by a digital microphone can then be modeled by a dis-
crete convolution of a finite impulse response (FIR) fil-
ter and the source signal [1-3]. When there are multiple

microphones and multiple sources, each microphone
recording is expressed by the sum of the convolutions
of corresponding transfer functions and source signals
[4-6] such that

xj(t) =
M∑
i=1

T∑
τ=0

aji(τ )si(t − τ )

=
M∑
i=0

aji(t) ∗ si(t), j = 1, . . . ,N,

(1)

where the integer numbers j, M, N, and T are, the
microphone number, number of sources, number of
microphones, and order of the FIR filter, respectively.
The time-domain sequences xj(t) and si(t) are the signals
recorded by microphone j and generated by source i,
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respectively, and aji(t) is the coefficient at time t of the
FIR filter for the transfer function from source i to
microphone j; it is affected by the recording environ-
ment, including the source and microphone locations.
To ensure that the linear transformation is invertible,
the number of sources should be equal to the number
of microphones, i.e., N = M [4].
This type of problem is often called blind signal separa-

tion (BSS) because there is no assumption of the source
characteristics. Many studies have been carried out to
tackle BSS problems based on independent component
analysis (ICA), which minimizes the statistical dependency
among the output signals [4-8]. However, direct inversion
of the time-domain mixing filter in Equation 1 is difficult
and often leads to unstable solutions. To obtain a more
stable convergence, the short-time Fourier transform
(STFT) is used to convert the convolution in Equation 1
to multiplications in the frequency domain [5]:

Xj (ω, k) = Aji (ω) Si (ω, k) , j = 1, . . . ,N, (2)

where ω is the center frequency of each component of
STFT, and the complex values Xj(ω, k), Aji(ω), and Si(ω,
k) are STFT components of xj(t), aji(t), and si(t), respec-
tively. Note that another discrete time domain exists
which is denoted by the dummy variable k. This is dif-
ferent from the real-time variable t, as each value of k
corresponds to a frame of the STFT. The value of Aji(ω)
is assumed to be constant over time, so it is not a func-
tion of k. Because we use discrete STFT, the center fre-
quency of each discretized frequency bin is expressed as

ωb = b
Bωmax, where B is the total number of frequency

bins, b denotes the frequency bin number, and ωmax is
the maximum frequency equivalent to half of the
Nyquist sampling rate. This means that the frequency-
domain BSS methods only consider the STFT compo-
nents at the frequencies in [0 π] [5]. The components at
frequencies in [-π 0] can be reconstructed perfectly
because a real-valued time-domain signal has a conju-

gate symmetric Fourier series: X(−ω) = X̄(ω) for ω Î
[0 π], where X(ω) is the complex conjugate of X(ω).
For a more compact notation, we rewrite Equation 2 as

xb
[
k
]
= Absb

[
k
]

b = 1, 2, . . . ,B, (3)

where xb[k] = [X1(ωb, k) . . . XN (ωb, k)]
T, sb[k] = [S1

(ωb, k) . . . SM(ωb, k)]
T, and Ab is an N × M matrix

whose (j, i)th element is Aji(ωb, k). Dealing with the sig-
nals in the frequency domain improves the performance
since longer filter lengths are better handled in the fre-
quency domain and the convolved mixture problem
reduces to an instantaneous mixture problem in each
frequency bin; this is expressed as

yb
[
k
]
= Wbxb

[
k
]
, b = 1, 2, . . . ,B, (4)

where yb[k] is a vector of M estimated independent
sources and Wb is an M × N matrix. Ideally, when Wb

= (Ab)-1, we can perfectly reconstruct the original
sources by yb[k] = (Ab)-1Absb[k] = sb[k]. However, all
frequency-domain ICA algorithms inherently suffer
from permutation and scaling ambiguity because they
assume different frequency components to be indepen-
dent [4,9]. The instantaneous ICA may assign individual
frequency bins of a single source to different outputs, so
grouping the frequency components of individual source
signals is required for the success of the frequency-
domain BSS [10]. One of the simplest solutions is
smoothing the frequency-domain filter [10-12] at the
expense of performance because of the lost frequency
resolution. There are other methods for colored signals,
such as explicitly matching components with larger
inter-frequency correlations of signal envelopes [13-15].
Recently, a method called independent vector analysis

(IVA) has been developed to overcome the permutation
problem by embedding statistical dependency across dif-
ferent frequency components [16-19]. The joint depen-
dency model assumes that the frequency bins of the
acoustic sources have radially symmetric distributions
[20]. Because speech signals are known to be spherically
invariant random processes in the frequency domain
[21], such an assumption seems valid and also results in
decent separation results. However, when compared to
the frequency-domain ICA followed by perfect permuta-
tion correction, the separation performance of IVA
using spherically symmetric joint densities is slightly
inferior [19]. This suggests that such source priors do
not exactly match the distribution of speech signals and
that the IVA performance for speech separation can be
improved by finding better dependency models [22,23].
We propose a new dependency model for IVA. The

single and fully-connected clique is decomposed into
many cliques of smaller sizes. A new objective function
is derived to account for strong dependency inside the
individual cliques and weak dependency across the cli-
ques by retaining a considerable amount of overlap
between adjacent cliques. The clique sizes are either
fixed or determined by a mel-scale with its frequency
index reversed; the latter was proven to be more robust
to the increased number of cliques through simulated 2
× 2 speech separation experiments.
This article is organized as follows. Section 2 explains

conventional IVA; Section 3 gives a detailed algorithm
of the proposed method to contrast with IVA. Section 4
presents the results of the simulated speech separation
experiments, and Section 5 summarizes the proposed
method and its future extensions.
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2 IVA
The key idea behind IVA is that all of the frequency
components of a single source are regarded as a single
vector, the components of which are dependent on one
another. The independence between source vectors is
approximated by a multivariate, joint probability density
function (pdf) of the components from each source vec-
tor, and the joint pdf is maximized rather than the indi-
vidual independencies between each frequency bin. The
IVA model consists of a set of basic ICA models where
the univariate sources across different dimensions have
some dependency such that they can be grouped and
aligned as a multidimensional variable.
Figure 1 illustrates a 2 × 2 IVA mixture model. Let

the multidimensional source vector be
si = [s1i , s

2
i , . . . , s

B
i ]

T for i = 1, 2. Each component of s1 is
linearly mixed with the component in the same dimen-
sion of s2 by Ab such that[

xb1
xb2

]
=
[
ab11 ab12
ab21 ab22

] [
sb1
sb2

]

=
[
ab11s

b
1 + ab12s

b
2

ab21s
b
1 + ab22s

b
2

]
,

(5)

for b = 1, . . . , B. For microphone j = 1, 2, the obser-
vation vector is expressed as

xj =

⎡
⎢⎢⎢⎣
x1j
x2j
...
xBj

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a1j1s

1
1 + a1j2s

1
2

a2j1s
2
1 + a2j2s

1
2

...
aBj1s

B
1 + aBj2s

B
2

⎤
⎥⎥⎥⎦ . (6)

The mixing of the multivariate sources is dimension-
ally constrained so that a linear mixture model is formu-
lated in each layer. The instantaneous ICA is extended
to a formulation with multidimensional variables or vec-
tors, where the mixing process is constrained to the
sources on the same horizontal layer or on the same
dimensions. The joint dependency within the dependent
sources is modeled by a multidimensional pdf, and
hence, correct permutation is achieved.
To derive the objective function of IVA, a single

dimension of the estimated sources in Equation 4 is
extracted, and a new vector is constructed by collecting
the source coefficients of all the frequency bins. The
source estimate yi is expressed by the following matrix-
vector multiplication:

yi =

⎡
⎢⎢⎢⎣
y1i
y2i
...
yBi

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∑N
j=1 w

1
ijx

1
j∑N

j=1 w
2
ijx

2
j

...∑N
j=1 w

B
ijx

B
j

⎤
⎥⎥⎥⎥⎦ (7)
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Figure 1 Mixture model of IVA.

Lee and Jang EURASIP Journal on Advances in Signal Processing 2012, 2012:113
http://asp.eurasipjournals.com/content/2012/1/113

Page 3 of 12



=

⎡
⎢⎢⎢⎣
w1

i
w2

i
...
wB

i

⎤
⎥⎥⎥⎦ [x1x2 . . . xN] , (8)

where wb
i is the ith row of matrix Wb and wb

ij is the

jth element of wb
i . For a simple derivation of the IVA

algorithm, we assume that ybi has a unit variance to

eliminate the variance terms from the original IVA
learning algorithm [19]. This can easily be achieved by

scaling wb
i appropriately such that

wb
i ← wb

i

/√
E
[|ybi |2]. (9)

In resynthesis, the above normalization is reversed to
restore the original scales. The likelihood of yi is com-
puted by the following multivariate pdf [19,20]:

p(yi) ∝ exp

⎛
⎝−

√√√√ B∑
b=1

|ybi |2
⎞
⎠ . (10)

The goal of IVA is optimizing {W1, W2, . . . , WB} to
maximize the independence among the separated
sources, {y1, y2, . . . , yM}, where the independence is
approximated by the sum of the log likelihoods of the
given data computed by Equation (10). The detailed
learning algorithm can be found in [19,20].
Figure 2 illustrates the mixing assumption and how

the IVA algorithm works. Two sources are mixed at dif-
ferent amounts in different frequency bins. To find y1
and y2 for the estimates of s1 and s2, IVA instead esti-
mates the unmixing matrices to minimize the depen-
dency between different sources while maintaining
strong dependency across frequency bins. There is only
a single dependency model in which all the frequency
bins distinguished by their center frequencies are con-
nected to one another: that is, the spherical dependency
described by Equation (10).

3 Proposed dependency models for IVA
For real-sound sources, it is unreasonable for neighbor-
ing and distant frequency components to be assigned
the same dependency because the dependency of neigh-
boring frequency components is much stronger than
that of distant frequency components. This section
describes the proposed dependency models in which the
single and fully connected statistical dependency of IVA
is decomposed into several cliques whose sizes are set
to be fixed or mel-scaled. The details of the proposed
models are explained in this section.

3.1 Overlapped cliques of a fixed size
The statistical dependency between adjacent frequency
components is much larger than that between distant

components. For example, the dependency between ybi
and yb+1i for an arbitrary b is much stronger than that

between ybi and yb+ki when k ≫ 1. We considered the

difference in center frequencies of the STFT compo-
nents in the proposed dependency model. As shown in
Figure 3, the clique of the components of the estimated
source vectors yi was broken into several cliques in
order to eliminate the direct dependency between dis-
tant frequency bins. This segmentation of the spherical
model can be visualized as a chain of cliques [23]. The
dependency among the source components propagates
through chain-like overlaps of spherical dependencies
such that the dependency between components weakens
as the distance between them grows. The corresponding
multivariate pdf is given in the following form:

p
(
yi
) ∝ exp

⎛
⎜⎝−

C∑
c=1

√√√√√ lc∑
b=fc

|ybi |2
⎞
⎟⎠ , (11)

where C is the number of cliques, and fc and lc are the
first and last indices, respectively, of clique c designed to
satisfy the condition

fc < lc−1, c = 2, 3, . . . ,C, (12)

so that the series of cliques have chained overlaps.
With the proposed source prior in Equation (11), we
derive a new learning algorithm to find a set of linear
transformation matrices that make the components as
statistically independent as possible, such that

{Wb∗} = argmax
{Wb}

L({Wb}), (13)

where the log likelihood function L is defined as

L({Wb}) ∝ log

[
B∏
b

|detWb| ·
M∏
i

p(yi)

]

=
B∑
b

log |detWb| +
M∑
i

log p(yi)

=
B∑
b

log |detWb| −
M∑
i

C∑
c=1

√√√√√ lc∑
b=fc

|ybi |,

(14)

where M is the number of sources defined in Equation
(1). We apply the natural gradient learning rule [24] to
Wb at each frequency bin b:
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�Wb ∝
[
I − ϕ

(
ybi
)
ybi
]
Wb, (15)

where I is an M × M identity matrix, (·)H is the Her-
mitian transpose operator, and �(yb) is a vector function
whose ith element is

[
ϕ(yb)

]
i
=

∂ log p(ybi )

∂ybi

=
∑
c∈Sb

ybi√∑lc
b=fc

|ybi |2
,

(16)

where Sb is a set of cliques that includes bin b. At
every adaptation step, Wb is constrained to be orthogo-
nal by the following symmetric decorrelation scheme:

Wb ←
(
Wb(Wb)

H
)−1

2Wb, b = 1, 2, . . . ,B. (17)

At the end of the learning, the well-known minimal
distortion principle [25] is applied to Wb by

Wb ← diag
(
(Wb)

−1
)
Wb, b = 1, 2, . . . ,B. (18)

To select an appropriate set of cliques that is suited to
our goal, we constructed a matrix of size B × B whose
(i, j)th element is the correlation coefficient between bin
i and bin j from a single source. Figure 4A-D shows the
computed correlation coefficient matrices obtained from
four different speech signals of two females and two
males. In all four cases, a strong correlation was
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Figure 2 Mixing and separation models of conventional IVA.
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observed around the diagonal with a positive slope
because they were from closely located frequency pairs.
The correlation decreased as it went off-diagonal.
Although the low-frequency components had a wide-
spread dependence over the 0-3 kHz region, it was
much weaker than that along the positive sloping diago-
nal. All of the speech signals are from the TIMIT data-
base, and the same observations held true for other
speech signals as well. To consider strong correlations
among neighboring frequency bins, we adopted a depen-
dency graph consisting of several cliques of the same
size and increasing center frequencies. Taking 1,024 fre-
quency bins as an example, the beginning and ending
indices of Equation (11) were [f1 l1] = [1 256], [f2 l2] =

[2 257], [f3 l3] = [3 258], . . ., [fC lC ] = [769 1024],
where the number of frequency bins for each clique was
fixed to 256. This simple dependency model using over-
lapped cliques is shown in Figure 5. All of the cliques
were of the same size but with varying center
frequencies.

3.2 Overlapped cliques of variable sizes
Figure 6 shows another model that reflects the spread
dependence at low frequencies. The cliques have vari-
able sizes based on the reversed mel-frequency scale.
We adopted the mel-scale to prevent being biased to
any specific cases; this scale has been proven to be effi-
cient in numerous speech signal-processing applications
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such as speech recognition and enhancement. General
human speech is characterized by rapid changes occur-
ring more often in the lower-frequency regions. There-
fore, most auditory frequency scales, including the mel-
scale, use a narrow bandwidth for the low-frequency
region based on the observation that there is little
dependence among neighboring frequencies [26]. In the
high-frequency region, there is greater dependence
among neighboring frequencies, so a relatively large
bandwidth is used. However, in the proposed method,
we set the sizes of the bands in the opposite fashion.
We assigned larger clique sizes to low frequencies
because they have less statistical dependence to one
another, and smaller clique sizes to higher frequencies.
Since the cliques play the role of joining the same

source components distributed in different frequencies,
a larger bandwidth is necessary to cover the weak and
spread dependence in the low-frequency region. For
higher frequencies, a smaller amount of overlap is
enough because of the greater dependence among
neighboring frequency components, as shown in Figure
4. The overlapped vertices between the adjacent cliques
in the dependency graph enables collection of the same
source components. Therefore, the clique size is deter-
mined by the reversed mel-scale, which is computed by

h (ωc) = A
[
log10

(
1 +

ωc

700

)
− log10

(
1 +

ωc − 1
700

)]
, (19)

where ωc is the center frequency of clique c, A is a
constant, and h(ωc) is the bandwidth of clique c. The
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beginning and ending indices fc and lc in Equation (11)
are then obtained by

fc = max (1, bc − h (ωc)) , lc = min (B, bc + h (ωc)) , (20)

where bc is the center-bin number of clique c. The
max and min operators ensure that the computed bin
numbers are within a valid range.

4 Experiments
We compared the performance of the audio source
separation using the proposed dependency models with
that of the fully connected dependency model of the

conventional IVA. Both methods were applied to multi-
ple speech separation problems. The geometric config-
uration for the simulated room environments is shown
in Figure 7. Various 2×2 cases were simulated by com-
bining pairs of source locations from A to J. For exam-
ple, experiment 1 was a combination of sound source 1
from location A and sound source 2 from location H,
experiment 2 was a combination of sources from loca-
tions B and G, etc. We set the dimensions of the room
to 7 m × 5 m × 2.75 m and the heights of all micro-
phones and source locations to 1.5 m. The reverberation
time was 100 ms, and the corresponding reflection coef-
ficient was 0.57 for every wall, floor, and ceiling. Room

1

2

3 1
2

3
4

Dependence coverage
(kHz)

 Rectangular window T−F dependence across frequencies

Center frequency
(kHz)

Figure 5 Dependency model of fixed clique size.

1

2

3
1

2
3Dependence coverage

(kHz)

 Mel−scale T−F dependence across frequencies

Center frequency
(kHz)

Figure 6 Dependency model of mel-scale clique sizes.

Lee and Jang EURASIP Journal on Advances in Signal Processing 2012, 2012:113
http://asp.eurasipjournals.com/content/2012/1/113

Page 8 of 12



impulse responses were obtained by an image method
[1-3] using the above parameters. The impulse
responses of the transfer functions from source locations
A and H to the two microphones are shown in Figure 8.
The peak location was not at the origin because the
direct path had its own delay. The filter length was 100

ms, which was equivalent to 800 tabs at an 8-kHz sam-
pling rate. The amplitude dropped rapidly because of
the loss of energy due to the reflection.
Male and female speech signals chosen from the

TIMIT database were synthetically convolved with the
impulse responses corresponding to the locations of the
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sources and microphones in each experiment. When the
algorithm was applied to source separation in the STFT
domain, a 2048-point FFT, 2048-tab Hanning window,
and shift size of 512 samples were used. The separation
performance was measured in terms of the signal-to-
interference ratio (SIR) which is defined as [19]:

SIR = 10 log

( ∑
k,b |∑i r

b
iq(i)s

b
q(i)[k]|2∑

n,b |∑i�=j r
b
iq(j)s

b
q(j)[k]|2

)
, (21)

where q(i) indicates the separated source index of the
ith source and riq(j) is the overall impulse response com-

puted by riq(j) =
∑

m wb
ima

b
mq(j) . In order to represent how

close the estimated Wb
i was to the inverse of the mixing

filters Ab
j , the SIR numbers were measured in decibels,

because the acoustic signal power ratio is in the log
scale [26]. The higher SIR is, the closer the result is to
perfect separation.
We compared the single clique model of IVA with the

proposed multiple clique models. The multiple clique
designs are shown in Figure 9. The numbers of cliques
were 2, 4, 8, 12, and 16, and the overlap ratio between
neighboring cliques was set to 50%. In A-E, the center
frequencies were “linearly” increased, and the sizes were
all fixed except for the first and last because they were
located at opposite ends. For example, the four cliques
in Figure 9B cover the frequency regions of 0-1.5, 0.5-
2.5, 1.5-3.5, and 2.5-4 kHz. The neighboring cliques
overlap by 50%, so the dependency is well propagated.
In contrast, the center frequencies of F-J are on the
“reversed mel-scale” in Equation (19): the clique sizes
are inversely proportional to the rate of change in the

mel-scale. The same four cliques in Figure 9G cover 0-
2.2, 1.1-3.1, 2.4-3.7, and 3.3-4 kHz. Their actual band-
widths were 2.2, 2.0, 1.36, and 0.74 kHz, although the
bandwidths computed by Equation (19) were 1.47, 1.02,
0.68, and 0.49 kHz. Because the first and last cliques
had only one neighbor, their sizes were 1.5 times larger
than the expected bandwidths, while the sizes of the
second and the third cliques were twice as large to
impose a 50% overlap with neighboring cliques.
The “CR” number in each of the clique designs in Fig-

ure 9 is the ratio of the sum of correlation coefficients
enclosed by the union of all the cliques to the sum of
the total correlation coefficients. It approaches unity as
the enclosed region approaches the total area. The cor-
relation map is identical to Figure 4A from the speech
of female 1, who was one of the input sources of our
experiments. The CR number does not account for the
separation performance directly but roughly shows how
well a clique design models the dependence of the fre-
quency bins.
All of the separation performances were measured for

their SIR and are summarized in Table 1. The first
“IVA” row represents the SIR numbers obtained by the
conventional IVA algorithm [19]. Rows labeled “LIN2,”
“LIN4,” “LIN8,” “LIN12,” and “LIN16” are the results of
the proposed models utilizing the clique designs in Fig-
ure 9A-E, and rows labeled “MEL2,” ..., “MEL16” are the
results with the clique designs in Figure 9F-J. Columns
indicate various combinations of source locations, aver-
age SIR (denoted by “SIR”) of the seven experiments,
average number of iterations (denoted by “Iter.”) for the
solution to converge, and CR number of the corre-
sponding clique design. The average SIRs that were
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1 2 3 4

1

2

3

4
  (J) Mel16, CR 0.291
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Figure 9 Various clique designs. (A)-(E) The center frequencies are linearly scaled, and the clique sizes are equal. (F)-(J) The center frequencies
and clique sizes are on an inverse mel-scale. The “CR” values are the ratios of the sum of the correlation coefficients included in the cliques to
the sum of all of the coefficients.
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larger than 18 dB are boldfaced. Among the linear
scales, the average SIRs of LIN4 and LIN8 were 18.7
and 18.8 dB, and the average numbers of iterations were
397 and 544, respectively. These indicate that LIN4 and
LIN8 greatly improved both the separation performance
and convergence speed compared to IVA. However,
when the number of cliques was more than 8, SIR
degraded rapidly (13.9 and 12.0 dB), and the separation
performance were even poorer than those of IVA.
Among mel-scales, the average SIRs of MEL4 and
MEL8 were both 18.7 dB, and their numbers of itera-
tions were 543 and 408, respectively, which were about
the same as those of LIN4 and LIN8. The difference
from the linear scales was when the number of cliques
was more than 8: the separation performance measured
by SIR did not degrade as badly as that of LIN12 and
LIN16. However, many more number of iterations was
required for both MEL12 and MEL16, implying that the
broken dependency made the algorithm oscillate around
the optimal solution. When comparing LIN and MEL,
their best SIRs were almost the same, but the average
iterations revealed that the mel-scales were more robust
for large numbers of cliques. This can be explained by
comparing the amount of correlation captured by the
clique designs. Figure 9 shows that the CR numbers of
MEL12 and MEL16 were 0.356 and 0.291, and those of
LIN12 and LIN16 were 0.333 and 0.272, respectively.
For 12 and 16 cliques, mel-scale designs had CR num-
bers larger by about 0.02 than the linear-scale designs.
The difference mostly originated from the low-frequency
region: the spread dependence observed at 1-2 kHz was
better captured by the mel-scale cliques, and which in
turn enabled correct source permutation. In summary,
the proposed method was more effective than the origi-
nal IVA in most clique configurations in terms of
separation performance, and the mel-scale clique

designs were better than the fixed-size designs in terms
of stability.

5 Conclusions
The totally spherical dependency model of IVA was
relaxed by the dependency models of chained cliques.
The new clique designs are advantageous because the
weak dependency among distant frequencies is modeled
by indirect dependency propagation, which helps in find-
ing a better local solution compared to the original IVA,
where the same amount of dependency is assigned to any
pair of frequency bins. In this article, two types of non-
spherical models are proposed. The first uses the same
number of frequency bins for all of the cliques, while the
other varies the number of frequency bins in reversed
mel-scales based on the measured correlation coefficients
between different frequency bins. Both dependency mod-
els achieved higher source separation performance and
faster convergence to correct solutions owing to more
accurate modeling of the statistical dependency. For
simulated mixtures of male and female speech signals,
both models obtained the highest performance when the
number of cliques was set to 4 or 8. When the clique size
was fixed, the performance degraded drastically for more
than eight cliques. However, when the clique size was
determined by the mel-scales, the same level of perfor-
mance was kept at the expense of convergence rate. This
implies the presence of up to 16 independent units in
speech signals along the mel-scale frequency axis. One of
the ongoing research issues is finding more flexible
dependency models, such as instantaneously varying the
dependency graph based on the correlation coefficients
measured from the input signals or on their harmonic
structures. Another research issue is finding appropriate
dependency models for natural sounds because the
dependency among the frequency components may not
be related to the mel-scale.
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