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Enhanced “vector-cross-product” direction-finding
using a constrained sparse triangular-array
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Abstract

A new configuration of sparse array is proposed in this article to estimate the direction-of-arrivals (DOAs) and
polarizations of multiple sources. This constrained sparse array is composed of a dipole-triad, a loop-triad, and a
single antenna, which can be a dipole, a loop, or a scalar-sensor. These three units comprise a triangular geometry
in the space. This geometry creatively synergizes the conventional interferometry method based on the spatial
phase-delay across displaced antennas, and the “vector-cross-product” based on Poynting-vector estimator to
enhance the DOA estimation accuracy. The investigated algorithm based on this configuration adopts the “vector-
cross-product” DOA estimator to provide the coarse estimate and then derives the fine estimate by extracting the
inter-sensor phase factors in the sparse array. Following this, the disambiguation approach is adapted to derive the
unambiguous estimate, and this estimate is also fine in estimation resolution. The proposed configuration can
extend the array aperture and also reduce the mutual coupling. The significant performance of the proposed
sparse array composition is demonstrated by Monte Carlo simulations when the inter-sensor spacing far exceeds a
half-wavelength.

Keywords: antenna array mutual coupling, antenna arrays, aperture antennas, array signal processing, direction of
arrival estimation, polarization.

1. Introduction
The basic principle of the “vector-cross-product” direc-
tion-finding is to extract the relations between the elec-
tric-field e and the magnetic-field h of an
electromagnetic wave. The vector-cross-product
between e and h, the Poynting-vector u, will provide the
direction-cosines of the incident source. It follows that
the direction-of-arrival (DOA) of the source can be
estimated.
This “vector-cross-product” direction-finding algo-

rithm was proposed by Nehorai and Paldi based on the
six-component electromagnetic vector-sensor. A six-
component electromagnetic vector-sensor consists of
three orthogonal dipoles and three orthogonal loops.
These dipoles and loops are collocated at a point geo-
metry in space, in order to measure the electric-field
and magnetic-field of the incident signal, respectively. In
a multiple source scenario with K incident sources, the

responses of the kth source ak can be represented by the
3 × 1 electric-field vector ek and the 3 × 1 magnetic-
field vector hk [1,2]:

ak
def

[
ek
hk

]
def

⎡
⎢⎢⎢⎢⎢⎢⎣

ex,k
ey,k
ez,k
hx,k
hy,k
hz,k

⎤
⎥⎥⎥⎥⎥⎥⎦

def

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ1,k sin θ2,k sin θ3,kejθ4,k − sin θ1,k cos θ3,k
sin θ1,k sin θ2,k sin θ3,kejθ4,k + cos θ1,k cos θ3,k

− cos θ2,k sin θ3,kejθ4,k

− sin θ1,k sin θ3,kejθ4,k − cos θ1,k sin θ2,k cos θ3,k
cos θ1,k sin θ3,kejθ4,k − sin θ1,k sin θ2,k cos θ3,k

cos θ2,k cos θ3,k

⎤
⎥⎥⎥⎥⎥⎥⎦
, (1)

where {θ1, k Î [0, 2π), θ2, k Î [-π/2, π/2]} are the azi-
muth-angle and elevation-angle of the source (please
refer to Figure 1), respectively, and {θ3, k Î [0, π/2], θ4, k
Î [-π, π)} denote the auxiliary polarization angle and
polarization phase difference of the incident signal,
respectively (equating to {g, h} in [3]). The unique array-
manifold in (1) has been exploited extensively by various
eigenstructure-based direction-finding frameworks
[2-43].
Based on (1), the Poynting-vector uk of the kth inci-

dent source can be obtained by [1]:
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uk =
ek × h∗

k

——ek × h∗
k ||

=

⎡
⎣ cosθ2,kcosθ1,k
cosθ2,ksinθ1,k

sinθ2,k

⎤
⎦ def

⎡
⎣ux,k
uy,k
uz,k

⎤
⎦ , (2)

where * denotes complex conjugation, × symbolizes
the vector cross-product operator, || · || represents the
Frobenius norm of the element inside || ||, and {ux, k,
uy, k, uz, k} are the direction-cosines of the kth source
align to x-axis, y-axis, z-axis, respectively. From this uk,
the DOA (θ1, k, θ2, k) of the kth source can be derived
uniquely in the three-dimensional space. Equation (2)
also indicates that the azimuth-angle and elevation-
angle of each source can be automatically paired with-
out post-processing [2].
Wong et al. advanced the “vector-cross-product”

direction-finding algorithm by investigating some novel
capabilities of the electromagnetic vector-sensor (array),
for example, sparse array with six-component electro-
magnetic vector-sensor [10], DOA estimation without
the priori known sensors’ locations [9], “self-initiating
MUSIC” [12] and blind geolocation, beamforming for
frequency-hopping sources of unknown and arbitrary
hop-sequences [13].
One remarkable innovation to adapt the “vector-cross-

product” direction-finding algorithm is the “Displaced
Dipole-Triad-Plus-Loop-Triad Pair” proposed in [44].
The “vector-cross-product” direction-finding algorithm
is found still applicable when the dipole-triad and loop-
triad are spatially spread in the space. Reference [44]
adopted the “vector-cross-product” to do the direction-
finding with this “Displaced Dipole-Triad-Plus-Loop-
Triad Pair”, and also compared the Cramér-Rao bounds

(CRBs) of this configuration with that of the collocated
electromagnetic vector-sensor to show that the displaced
pair can offer a lower CRBs. The advantages of the “Dis-
placed Dipole-Triad-Plus-Loop-Triad Pair” compared
with the collocated electromagnetic vector-sensor are
significant:
(1) The collocated antennas are reduced from six to

three, and thus the mutual coupling across the com-
posed antennas are reduced greatly.
(2) Since the dipole-triad and the loop-triad are spa-

tially spread and there is no constraint of their relative
locations, the spatially array aperture is extended and so
the estimation accuracy for DOA can be improved
distinctly.
Wong [44] proposed this configuration and presented

an example with CRBs to show that this configuration
can improve the direction finding accuracy. However,
the algorithm used in [44] was only the “vector-cross-
product” result, which is the same as the collocated elec-
tromagnetic vector-sensor. Therefore, the approach uti-
lized in [44] can not investigate the advantage (2)
described above. Based on this, the present article will
propose a new configuration based on the “Displaced
Dipole-Triad-Plus-Loop-Triad Pair” in [44], and will
investigate an enhanced algorithm to extract the aper-
ture extension property of the new configuration. This
enhanced algorithm will then improve the direction-
finding estimation accuracy by extracting the inter-sen-
sor phase factors across the sensors, which were ignored
in [44].
For the 2D elevation-azimuth angle estimation, two

phase-factors are necessary. Therefore, a constrained
sparse triangular-array is proposed in this article. The
triangular-array consists of a dipole-triad, a loop-triad,
and a single dipole/loop/scalar-sensor. It is worth noting
that an additional antenna is employed in this triangu-
lar-array, which is used to increase the array-aperture.
In the derived DOA estimation algorithm, it will provide
another inter-sensor phase factor, which is used to
derive the fine estimate of one direction-cosine. The
enhanced direction-cosines’ estimates will improve the
direction finding estimation accuracy. In addition, this
antenna can be a dipole, a loop, or a scalar-sensor with-
out polarization information. The single dipole or loop
can be oriented along any one of the three Cartesian
coordinate axes. The proposed array geometry is a
sparse array with inter-sensor spacings far larger than a
half-wavelength. Similar sparse vector-sensor arrays have
been investigated in [10,11,36,45].
Another remarkable innovation to adapt the “vector-

cross-product” direction-finding algorithm is the “non-
collocating electromagnetic vector-sensor” proposed in
[45]. The six antennas composed of the electromagnetic
vector-sensor are spatially spread in the space with

Δ

Δ

θ

θ

Figure 1 The geometry of the sparse triangular-array.
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some constrains. Then the “vector-cross-product” direc-
tion-finding algorithm can still be used. Furthermore,
the mutual coupling is reduced and the angular resolu-
tion is enhanced. In addition, it is also shown in [45]
that the “uni-vector-sensor ESPRIT” algorithm proposed
in [2] can still be utilized in the non-collocating electro-
magnetic vector for direction finding. This “uni-vector-
sensor ESPRIT” algorithm will thus be used in the pre-
sent article in the following derivation and also in the
simulation. However, the algorithm investigated in [45]
can only offer one fine estimate of the direction-cosine,
and this is not sufficient for the 2D direction finding.
Based on this reason, the present article proposes a new
configuration with seven sensors to form a triangular
array, in order to increase the array aperture and then
to improve the two dimensional DOA estimation accu-
racy. It is worth noting that the dipole-triad and loop-
triad can be non-collocating but need to satisfy the con-
ditions proposed in [45]. In order to simplify the exposi-
tion, the following derivation will be based on the
collocated case.
The dipole-triad and loop-triad have also been exten-

sively investigated in other literature. The anti-jamming
performance of the dipole-triad (a.k.a. tripole) has been
investigated by Comption Jr. [46,47]. The dipole-triad
(array) was used for direction finding in [48-52]. The
performance of a dipole-triad array for 1D direction
finding and polarization estimation has been evaluated
in [48] through the CRBs derivation, and it showed that
the quality of the DOA estimate depends strongly on
the polarization state. Zhang [49] investigated an
ESPRIT based algorithm for direction finding and polar-
ization estimation for uniform circular dipole-triad
array, and Zainud-Deen et al. [50] adopted the radial
basis function neural network to the uniform circular
dipole-triad array (and also cross-dipole array) for direc-
tion finding and polarization estimation. Daldorff et al.
[53] combined unitary matrix pencil method and a least
squares solver to do the direction finding with a single
dipole-triad. The linear dependence and uniqueness of
dipole-triad (dipole-triad array) was developed in
[54-57]. An H∞ approach was proposed in [58] to track
polarized cochannel sources with dipole-triad array, and
a new quasi-cross-product algorithm was proposed in
[59] for tracking the direction of a moving and nonli-
nearly polarized electromagnetic source using a dipole-
triad. Zhang and Xu [60] explored blind beam-forming
of the dipole-triad array and the parallel factor model
was adopted. Ravinder and Pandharipande [61,62]
showed that a dipole-triad could minimize bit error rate
better through polarization diversity when the desired
user and other interfering users arrived from the same
direction or were very close to the desired user direction
but with different polarization states. Theoretical

performance bounds for direction finding using the
dipole/loop triad were derived in [63].
The remainder of this article is organized as follows.

The geometry of the sparse triangular-array is provided
in Section 2. The enhanced “vector-cross-product”
direction-finding algorithm based on the proposed con-
figuration is derived in Section 3. Section 4 presents the
simulation results of the enhanced algorithm, and Sec-
tion 5 concludes the whole article.

2. Spatial geometry of the sparse array used in
this work
Wong [44] investigated the “vector-cross product” for
direction finding with spatially spaced dipole and loop
triad but ignored the effect of spatial phase-factor,
which can improve the accuracy of direction finding. In
order to get the finer estimate for the DOA, at least two
finer direction-cosines’ estimates should be obtained.
The dipole-loop triad pair can present three coarse
direction-cosines’ estimates from the “vector-cross pro-
duct” result and one finer direction-cosine’s estimate
from the inter-triad spacing phase. Thus, another
antenna is employed to provide the other finer direc-
tion-cosine’s estimates from the inter-sensor spacing
phase factor and at the same time to increase the array
aperture. Figure 1 depicts the array geometry used in
this work.
Figure 2 illustrates the six different sparse array com-

positions, and each composition is made up of seven
dipoles/loops. The seven dipoles/loops are categorized
into three different units: (1) one collocated dipole-triad,
(2) one collocated loop-triad, and (3) one single dipole/
loop of various orientations.
The array-manifold of the compositions in Figure 2

can be classified into two groups:
(A) Cases (i)-(iii), the dipole-triad is located at the ori-

gin of the Cartesian coordinate system, the loop-triad is
located at (Δx, 0, 0) on the x-axis, and the single dipole
is located on the y-axis at (0, Δy, 0). The array-manifold
can be shown as:

a =

⎡
⎣ e
q1h
q2b

⎤
⎦ =

⎡
⎢⎢⎣

e

e−j2π
�xux

λ h

e−j2π
�yuy

λ b

⎤
⎥⎥⎦ (3)

where
q1

defe
−j2π

�xux

λ , q2
defe

−j2π
�yuy

λ
, and b is one of

{ex, ey, ez} corresponding to the different cases.
(B) Cases (iv)-(vi), the loop-triad is located at the ori-

gin of the Cartesian coordinate system, the dipole-triad
is located at (Δx, 0, 0) on the x-axis, and the single loop
is located on the y-axis at (0, Δy, 0). The array-manifold
can be shown as:
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a =

⎡
⎣q1e

h
q2b

⎤
⎦ (4)

where b is one of {hx, hy, hz} corresponding to the dif-
ferent cases.
Remarks:
• The single dipole/loop can be replaced by one

dipole/loop triad and thus the compositions will have
three dipole/loop triads: (a) one dipole-triad and two
loop-triads, (b) one loop-triad and two dipole-triads.
Under those configurations, the “vector-cross-product”
can be obtained three times and hence the average value
can be used. Also the two fine estimates of direction-

cosines are both obtained from the inter-triad phase fac-
tors of the “vector-cross-product” results.
• The single dipole/loop in Figure 2 can be located at

an arbitrary position (x2, y2), but not collinear with the
dipole-triad and loop-triad.
• The relative locations of dipole-triad, loop-triad and

the single dipole/loop can be changed, Figure 2 just pre-
sents six examples.
• The single dipole/loop in Figure 2 can be replaced by

a scalar-sensor, and this scalar-sensor will not include
the polarization information of the incident source. In
this case, the b in (3)-(4) will be replaced by 1.
• The proposed sparse-array is different from the

sparse-array in [10,11], where the array is composed of

Figure 2 The six different compositions of the sparse triangular-array.
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six-component electromagnetic vector-sensors. The pro-
posed array pioneers the geometry with three different
sensors and it has two advantages compared with the
sparse array in [10,11]: (a) The triad only has three col-
located antennas, thus the new array configuration can
reduce the mutual coupling; (b) The new array config-
uration can diminish the hardware cost as only the triad
and single dipole/loop is used. Furthermore, the single
dipole/loop can be replaced by the simple scalar-sensor.
As the following analysis is similar for all the six cases,

case (i) will be taken as an example to derive the
enhanced “vector-cross product” algorithm for direc-
tion-finding. Please note that the classical far field and
narrow-band assumption is made throughout the article.

3. The enhanced “vector-cross product” algorithm
for direction finding
From various eigenstructure-based parameter estimation
algorithms cited in Section 1, the steering vector of the
kth incident source can be obtained, within an unknown
complex number c [44,45]. That is:

âk
def≈ cak. (5)

All the following derivation for the enhanced “vector-
cross product” algorithm will be based on (5). The deri-
vation steps are similar to the algorithm proposed in
[45]. First, the course but unambiguous estimates of
direction-cosines are derived from the “vector-cross-pro-
duct” result. Then, the fine but cyclically ambiguous
estimates of direction-cosines are obtained from the
inter-sensor phase factors. Finally, the coarse estimates
of direction-cosines are used to disambiguate the fine
but cyclically ambiguous estimates to derive both fine
and unambiguous estimates of direction-cosines.

3.1. Get the coarse but unambiguous estimates of
direction-cosines from the “vector-cross-product” result
From (5), for case (i) in Figure 2, in the multiple source
scenario with K incident sources,

âk = c

⎡
⎣ ek

q1,khk

q2,kex,k

⎤
⎦ , (6)

and from the vector-cross product [44],

ũk =
(cêk) × (cq1,kĥk)

∗

||(cêk) × (cq1,kĥk)
∗||

= q∗
1,k

⎡
⎣ux,k
uy,k
uz,k

⎤
⎦ . (7)

Note that ũk is different from the Poyting vector uk

(see Figure 1), but it can be seen as an estimate of uk,
ũk = q∗

1,kuk . It follows that uk can be estimated from
this ũk. Separately consider the following two cases:

(1) If θ2, k Î [0, π/2], which means uz, k ≥ 0, then:

ûk = ũke−j� [ûk]3 =

⎡
⎣ ûcoarsex,k
ûcoarsey,k
ûz,k

⎤
⎦ , (8)

where [·]i is the ith element of the vector in [ ], and ∠
denotes the complex angle of the following complex
number.
(2) If θ2, k Î [-π/2, 0), which is uz, k ≤ 0, then:

ûk = −ũke
−j� [ũk]3 =

⎡
⎣ ûcoarsex,k
ûcoarsey,k

ûz,k

⎤
⎦ . (9)

It follows that:

ûcoarsex,k = [ûk]1, (10)

ûcoarsey,k = [ûk]2. (11)

3.2. Obtain the fine but cyclically ambiguous estimates of
direction-cosines
The inter-sensor phase-factors {q1, q2} can offer the fine
estimates for the direction-cosines. However, they will
suffer the cyclically ambiguous because of the periodicity
of the phase. From the vector-cross product result in (7),
(1) if θ2, k Î [0, π/2],

ûfinex,k =
λk

2π

1
�x

� [ũk]3; (12)

(2) if θ2, k Î [-π/2, 0],

ûfinex,k =
λk

2π

1
�x

( � [ũk]3 + π). (13)

From (6), ûfiney,k can be obtained by:

ûfiney,k =
λk

2π

1
�y

�
{
[âk]1
[âk]7

}
. (14)

Remarks:
• The cases (1) and (2) in (8)-(9) and (12)-(13) are

based on the condition whether uz, k is positive or nega-
tive, which leads to that the validity region of direction-
finding is the upper hemisphere or lower hemisphere in
the polar coordinate system. Therefore, the ∠[ũk]3 is
used in (12) and (13).
If the condition changes to be based on the positive or

negative of ux, k, the validity region of direction-finding
will be the front hemisphere or back hemisphere in the
polar coordinate system. In this case, the ∠[ũk]1 will be
used in Section 2.
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If the condition changes to be based on the positive or
negative of uy, k, the validity region of direction-finding
will be the left hemisphere or right hemisphere in the
polar coordinate system. In this case, the ∠[ũk]2 will be
used in Section 2.

• ûcoarsex,k , ûcoarsey,k , ûfinex,k are the same for all the six cases

in Figure 2, but the ûfiney,k varies for different cases based

on the array-manifold. For cases (i)-(vi) in Figure 2, ûfiney,k

can be estimated from ûfiney,k = λ
2π

1
�y

�
{

[âk]i
[âk]7

}
, ∀i = 1, 2,

..., 6, corresponding to each case.
• If the scalar-sensor is used to replace the single

dipole/loop, since the response of hz is a positive real

number, ûfiney,k can be estimated from

ûfiney,k = λk
2π

1
�y

�
{
[âk]6
[âk]7

}
.

• The single dipole/loop/scalar-sensor in Figure 1 can
be located at an arbitrary position (x2, y2), but not colli-
near with the dipole-triad and loop-triad. Then the
array-manifold will be

ak =

⎡
⎢⎣ek, q1,khk, e

−j
2π

λk
(x2ux,k+y2uy,k)

bk

⎤
⎥⎦

T

. In this case, after

the ûx, k is derived, ûfiney,k can be obtained through{
λk
2π

1
y2

�
{

[âk]i
[âk]7

}
− x2

y2
ûx,k

}
, where i = 1, 2, ..., 6 corre-

sponds to the number of element in the array-manifold.
The disadvantage of this arbitrary location configuration
is that it will increase the computation workload of the
estimation algorithm.

3.3. Disambiguate the fine estimates by coarse estimates
of direction-cosines
In order to get the fine and unambiguous estimates of
the direction-cosines, the coarse estimates obtained in
Section 1 will be used as the reference to disambiguate
the fine estimates derived in Section 2. This disambigua-
tion approach has been derived by Zoltowski and Wong
[10], and has also been used in the other literature, i.e.
[11,45]. The main essence is summarized as follows [45].
Using {ûx, k, ûy, k} to denote the fine and unambiguous

estimates of the direction-cosines, there exist two inte-

gers {mo
x,k, m

o
y,k} leading to [45]:

ûx,k = ûfinex,k +mo
x,k

λk

�x
, (15)

ûy,k = ûfiney,k +mo
y,k

λk

�y
. (16)

{mo
x,k, m

o
y,k} can be derived by:

mo
x,k =

argmin
mx,k

∣∣∣∣ûcoarsex,k − ûfinex,k − mx
λk

�x

∣∣∣∣ ,
mo

y,k =
argmin
my,k

∣∣∣∣ûcoarsey,k − ûfiney,k − my
λk

�y

∣∣∣∣ ,
for

mx,k ∈
{⌈

�x

λk

(−1 − ûcoarsex,k

)⌉
,

⌊
�x

λk

(
1 − ûcoarsex,k

)⌋}
,

my,k ∈
{⌈

�y

λk

(
−1 − ûcoarsey,k

)⌉
,

⌊
�y

λk

(
1 − ûcoarsey,k

)⌋}
,

where ⌈a⌉ denotes the smallest integer not less than
a, and ⌊a⌋ refers to the largest integer not exceeding a.
However, in case that Δx ≤ lk, Δy ≤ lk, the spatial

aperture is not much extended. We can set ûx,k = ûcoarsex,k ,

ûy,k = ûcoarsey,k , directly.a

Lastly, after the unique {ûx, k, ûy, k} has been obtained,
the DOA of kth incident source {θ1, k, θ2, k} can be esti-
mated by [2,45]:

θ̂1,k = arctan
{
ûy,k
ûx,k

}
, (17)

θ̂2,k = arcsin
{√

û2y,k + û2x,k

}
. (18)

The polarization parameters can be estimated by âk:

θ̂3,k = arctan

∣∣∣∣ [âk]3[âk]6

∣∣∣∣ , (19)

θ̂4,k =

⎧⎨
⎩

�
(

[âk]3
q̂∗
1,k[âk]6

)
− π , for case (i)–(iii) in Figure 2;

�
(
q̂∗
1,k[âk]3
[âk]6

)
− π , for case (iv)–(vi) in Figure 2.

(20)

where
q̂1,k = e

−j
2π

λk
�xûx,k .

4. Monte Carlo simulation for the algorithm
obtained in Section 3
The proposed algorithm’s direction-finding efficacy and
extended-aperture capability are demonstrated by
Monte Carlo simulations and the accuracy is compared
with the conventional “vector-cross product” (CVC)
algorithm in [44]. In the plotted figures, the curves with
the proposed algorithm are labeled with EVC and the
curves with conventional “vector-cross product” algo-
rithm are labeled with CVC. The “uni-vector-sensor
ESPRIT” algorithm in [2] was adopted to estimate the
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steering vectors of the incident sources (to derive Equa-
tion (5)) in the following simulations and thus the
sources are modeled as uncorrelated pure tones with
different frequencies. The estimates use 400 temporal
snapshots and 500 independent runs. The root mean
square error (RMSE) is utilized as the performance mea-
sure. The RMSE for the direction-cosine of the kth
source is defined as

RMSE =

√√√√ 1
500

500∑
i=1

[(
ûix,k − ux,k

)2
+

(
ûiy,k − uy,k

)2
]
,

where {ûix,k, ûiy,k} are the estimate of direction-cosines

at ith run.

4.1. Compare the proposed algorithm (EVC) with the
conventional “vector-cross product” algorithm (CVC) and
CRBs
Figure 3a shows a two-source scenario results, whereas
Figure 3b shows a three-source scenario results. Both
the estimation bias and RMSE of the direction-cosine
are plotted in Figure 3. Figure 3 clearly demonstrates
that the performance of proposed algorithm (EVC) is
better than that of the conventional “vector-cross pro-
duct” algorithm (CVC), especially when SNR ≥ 5 dB.
The RMSE for direction-cosine with the proposed algo-
rithm is ten times lower than the RMSE with the CVC,
and they are very close to the CRBs.b Figure 4 plots the
standard deviations of estimates for the DOA (θ1, k, θ2,
k) versus SNR for each source in a two-source scenario
as in Figure 3a. It can be seen that when SNR ≥ 5 dB,
the standard deviations of the (θ1, k, θ2, k) with the pro-
posed algorithm are about 30 times lower than their
counterparts with the CVC, and they are very close to
the CRBs. Figures 3 and 4 clearly verify the performance
of the proposed array-geometry and also verify the effi-
cacy of the proposed algorithm.

4.2. The aperture extension of the proposed
configuration
It is well known that the larger is the array’s spatial
aperture, the finer would be the resolution of the arrival
angle estimates, so it is of interest to investigate the per-
formance of the proposed sparse array when the spatial
aperture becomes larger.
Figure 5a shows a two-source scenario, whereas Figure

5b shows a three-source scenario with the same setting
as in Figure 3 at SNR = 30 dB, by plotting the RMSE of
the direction-cosines estimates versus inter-sensor spa-

cing �
λ
, where l is the minimum wavelength of the inci-

dent sources. Figure 5 clearly shows that the RMSE of
the direction-cosines estimates with the proposed

algorithm decrease with the increase of the spatial aper-
ture and they are very close to the CRBs. This proposed
configuration and the enhanced algorithm lead to
orders-of-magnitude improvement in estimation accu-
racy. However, the RMSE of the direction-cosines esti-
mates with the conventional “vector-cross product”
algorithm remain the same with the increase of the spa-

tial aperture. It can also be observed that when�
λ

≤ 2 ,

the performance of the two algorithm is nearly the same
and it is better to use the conventional “vector-cross
product” algorithm since it needs less manipulation. It is
worth noting that a breakdown phenomenon initiates in
Figure 5 at an inter-sensor spacing of about Δ = 100l
(200 half wavelengths). This is because the coarse esti-
mates of direction-cosines begin to misidentify the esti-
mation grid. For further investigation of this breakdown
phenomenon, please refer to [10].
In order to investigate the increased aperture induced

by the additional scalar sensor, Figure 6 plots the CRBs
of the direction-cosines in a three sources scenario.
Both the CRBs with and without the scalar sensor are
plotted. “With the scalar sensor” means that the array
geometry in Figure 1 is used with the additional antenna
as a scalar sensor. “Without the scalar sensor” means
that only the dipole-triad and the loop-triad are Figure
1 is used. It can be found from Figure 6a that at each
point of SNR, the CRBs with the scalar sensor is about
20 times smaller than the CRBs without the scalar sen-
sor. Thus, the additional scalar sensor increases the
array-aperture significantly and following this, the DOA
estimation accuracy is improved. When SNR = 30 dB,
Figure 6b plots the CRBs versus the inter-sensor spacing
Δ/l. It can also be found that when the inter-sensor
spacings increase, the falling-rate of CRBs for the pro-
posed array geometry with the scalar sensor is much
faster than its counterpart for the array without the sca-
lar sensor. Again, the additional scalar sensor increases
the array aperture and so enhances the angular
resolution.

5. Conclusion
A constrained sparse array composed of one dipole-
triad, one loop-triad and one single dipole/loop/scalar
sensor is investigated in this article. This new array con-
figuration can support better estimation accuracy in
direction-finding by synergizing the “vector-cross pro-
duct” algorithm and inter-senor spacing phase factors.
Aperture extension is achieved by spacing the three dif-
ferent sensors much greater than a half wavelength.
Monte Carlo simulation demonstrates the efficiency of
the proposed array configuration and the algorithm.
Unlike the sparse array investigated before, the aperture
extension and fine estimates of DOA are implemented
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by only one dipole-triad, one loop-triad and one single
dipole/loop/scalar-sensor. Therefore, the mutual cou-
pling across the sensors is reduced and additionally the
hardware cost is decreased.

Endnotes
aThe proposed array-geometry has an improved iden-
tifiability compared with the electromagnetic vector-

sensors in [2,44,45] since an additional antenna is
employed. The basic principle of the subspace-based
parameter estimation algorithms, such as ESPRIT, is to
separate the signal and the noise, into the different sub-
spaces (i.e. the signal subspace and the noise subspace),
which are derived from the data covariance matrix [64].
It follows that the number of incident sources should be
less than the maximal rank of the data covariance
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Figure 3 The estimation bias and RMSE of the direction-cosines estimates versus signal-to-noise ratio (SNR). (a) for two incident sources,

at digital frequencies f ′
1 = 0.2565 and f ′

2 = 0.3665 , respectively with (θ1,1, θ2,1, θ3,1, θ4,1) = (30°, 60°, 45°, 54°) and (θ1,2, θ2,2, θ3,2, θ4,2) = (20°,

80°, 63°, -90°) CVC denotes the conventional vector-cross productalgorithm while EVC symbolizes the proposed algorithm. The case (i) in Figure

2 is used. The inter-sensor spacing Δx = Δy = 10l, l = min{l1, l2}; (b) for three incident sources, at digital frequencies f ′
1 = 0.1055 ,

f ′
3 = 0.4315 , f ′

3 = 0.4315 , respectively with (θ1,1, θ2,1, θ3,1, θ4,1) = (40°, 20°, 45°, 90°), (θ1,2, θ2,2, θ3,2, θ4,2) = (30°, 60°, 63°, 54°) and (θ1,3, θ2,3,

θ3,3, θ4,3) = (20°, 80°, 45°, -90°). The inter-sensor spacing Δx = Δy = 10l, l = min{l1, l2, l3}.
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Figure 4 The standard deviations of the estimates for (θ1, k, θ2, k) versus SNR, in a two-source scenario with the same setting as in
Figure 3a.
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Figure 5 The RMSE of the direction-cosines estimates versus inter-sensor spacing Δ/l. (a) for two incident sources; same setting as in
Figure 3a at SNR = 30dB. l = min{l1, l2}, Δ = Δx = Δy; (b) for three incident sources; same setting as in Figure 3b at SNR = 30dB. l = min{l1,
l2, l3}, Δ = Δx = Δy.
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sensor spacing Δ/l, for three incident sources; same setting as in Figure 3b at SNR = 30dB. Both the CRBs with and without the scalar sensor are plotted.
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matrix. When the “uni-vector-sensor” algorithm [2] is
used in the present array-geometry, the maximal rank of
the data covariance matrix equals 7. On the other hand,
For the collocated electromagnetic vector-sensor [2],
non-collocating electromagnetic vector-sensor [45], or
the “Displaced Dipole-Triad-Plus-Loop-Triad Pair” [44],
it equals 6. Therefore, when the “uni-vector-sensor”
algorithm [2] is used with distinguishable DOAs and
polarizations, the resolvable monochromatic sources
number should be less than seven, which is one more
that the electromagnetic vector-sensors in [2,44,45].
Thus, the additional antenna improves the identifiability
compared with the electromagnetic vector-sensor. For
more investigations of this identifiability issue with the
electromagnetic vector-sensor, please refer to [65-67].
bThe CRBs plotted in the figures in this section is com-
puted by the same method as in [45], with the same sig-
nal model and noise model. Since the closed-form
results are too long to be listed here, we just plot the
corresponding curves in the graphs.
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