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This article investigates the possibility and convenience of a filtering operation in the joint time/chirp-rate (TCR)
domain, and proposes a novel linear TCR filter for decomposing multicomponent signals into their quadratic and/
or cubic phase chirp components with monotonic instantaneous chirp-rate (ICR) laws only. The TCR domain mask
of the filter is selected on a display of a TCR representation of an input signal to isolate the desired chirp
component. Projecting the input signal onto the phase signal associated with the TCR mask and approximating
the phase difference in this projection operation in terms of ICR values result in the proposed TCR filter that
recovers the selected component. Simulations illustrate the proposed filtering in recovery of undersampled cubic
phase signals and in resolving back-to-back objects from in-line holograms for which cases it is easier to design
filter masks in the TCR domain than in the time-frequency domain.
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1 Introduction
Multicomponent nonstationary signals are widely
encountered in many applications including radar,
sonar, communications and optics. Parametric methods
mostly based on polynomial phase modeling may be
used to analyze and estimate such signals and separate
them into their components; such as nonlinear least
squares techniques [1,2], a maximum likelihood algo-
rithm [3], an expectation-maximization based method
[4], an array processing approach based on state estima-
tion via an extended Kalman filter [5], a cyclic moment
based method for polynomial phase signals with inde-
pendent random amplitudes [6], techniques using trans-
forms like high-order ambiguity function [7-9] and
time-frequency (TF) Hough transform [10-12], and an
approach for chirplet approximation [13], among other
such methods.

The above methods require the number of compo-
nents in the analyzed signal and/or orders of their poly-
nomial phases to be known or estimated beforehand,
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although some of them are able to estimate these para-
meters along the way [1]. Besides, for some applications
it is sufficient to decompose the analyzed signal into its
chirp components, as in object reconstruction from in-
line Fresnel holograms [14], without much need for sig-
nal model parameters. Nonparametric signal separation
methods may be more suitable for such applications,
such as a periodicity-based algebraic separation algo-
rithm [15] and an automatic signal separation method
based on difference equation representation of chirp sig-
nals [16]. The first method requires the number of sig-
nal components and relies on inequality of component
periodicities [15]. The second one has been reported to
give better performance in instantaneous frequency (IF)/
amplitude estimation when applied to monocomponent
signals especially for low SNR cases, and, has been sug-
gested to be used after signal component separation by
TF filtering in such cases [16]. Hence, TF filtering is still
indispensible for many signal separation applications, as
reviewed in [17].

There are various linear TF filter types; such as Zadeh
[18], Weyl [19,20] and generalized Weyl filters [21,22]
encompassing these two, TF projection filters [23-25],
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short-time Fourier transform (FT) filter by means of an
analysis-masking-synthesis procedure [26,27], local poly-
nomial FT filter [28], S-transform filters again based on
analysis-masking-synthesis approaches [29-31], and a
method for chirp signal reconstruction from ridges of
Gabor and wavelet transforms of the analyzed signal
[32-34], among others.

As maintained in [35,36], if TF support region of a
signal component is nearly disjoint from those of other
components and the background noise in an input sig-
nal, then, TF transfer function of the Wiener filter that
optimally estimates that component reduces to the indi-
cator function of its TF support region. Hence, TF
transfer function or pass region of such a filter is
selected on a display of a TF representation of the input
signal to isolate the desired component [17].

Kozek and Hlawatsch [37] compares linear TF filters
to nonlinear TF analysis-masking-synthesis methods
based on the Wigner distribution (WD) and the
smoothed WD, with prescribed TF pass regions, in TF
signal separation problems, and finds that TF filters, in
general, yield improved performance with reduced com-
putational cost. Indeed, our simulations indicate that
especially Weyl and TF projection filters separate chirps
with excellent accuracy. They usually give several per-
cents of error in the noiseless case, where percentage
error is defined as the energy of the deviation of the fil-
ter output from the desired chirp component normal-
ized by the energy of that chirp.

Despite the good performance and convenience of lin-
ear TF filters in chirp separation applications, it may
still be more convenient to prepare the mask function
of a time-varying separating filter in the joint time/
chirp-rate (TCR) domain, rather than in the TF domain,
for some of those applications. One such application is
reconstruction of back-to-back objects from in-line Fres-
nel holograms [14]. Each such object is represented by a
pair of lines with opposite slopes in an associated space/
spatial-frequency (or TF) representation obtained from
the hologram, intersecting at the object coordinate.
Magnitude of the slopes is inversely proportional with
the object depth, i.e., the distance of the object to the
hologram plane [14]. Thus, linear tracks associated with
back-to-back objects overlap in the space-frequency (SF)
domain, making it tedious to design SF filter mask func-
tions to resolve such objects. In the space/chirp-rate
(SCR) plane, those objects are represented by distinct
horizontal strips corresponding to different slopes or
depths. Hence, if the mask function of a separating filter
can be prepared in the SCR plane to isolate such strips,
that would further ease the filter design task.

Motivated by the above application, we propose a
novel linear time-varying filter in the TCR domain,
reminiscent to TF (filtering, for decomposing
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multicomponent signals to reconstruct their chirp com-
ponents of the form a(t) exp(j2m4(t)), where ¢(¢) is a
quadratic or cubic phase with a monotonic instanta-
neous chirp-rate (ICR) law (given by its second deriva-
tive). Aside from the mentioned problem, it is also more
beneficial to use the proposed TCR filter with its mask
function prepared in the TCR plane to recover under-
sampled quadratic or cubic phase chirps if their ICR
curves change more slowly than their IF curves. We pre-
sent simulations illustrating separation and reconstruc-
tion of severely undersampled cubic phase signals with
IF curves traversing the discrete TF plane many times
within the signal duration while their ICR laws vary
much more slowly and exhibit single linear tracks in the
TCR plane. For such signals, it is almost impossible to
design a TF mask function for a separating TF filter, but
a TCR mask can be easily prepared for the proposed
TCR filter.

The idea of filtering in the joint TCR domain is novel.
Filtering schemes based on domains other than fre-
quency and TF domains have been developed before;
however, they are not directly related to the TCR
domain. As a previous work of this kind, [38,39] have
proposed an extended FT (EFT) matching a known IF
function and have developed a time-varying filter for
reconstruction of signals with that known IF, by mask-
ing in the EFT domain and then taking the inverse EFT.
Similarly, a filtering operation in the frequency modula-
tion (FM) rate parameter domain has been performed
for suppressing interference chirp signals with nonlinear
phase functions in direct sequence spread spectrum
communication systems [40]. A linear transform with a
kernel that matches these phase functions maps these
signals to impulses in the FM rate domain. Then, unde-
sired chirps can be masked out and desired chirp com-
ponents or the spread spectrum sequence can be
recovered after an inverse matched signal transform
[40]. Both methods employ an analysis-masking-synth-
esis approach.

Although mask design in the parameter domain is
time-invariant in these methods, they yield time-varying
filters with suitable TF transfer functions for separation
of selected signal components. The former method
requires a positive IF function [38,39], whereas the later
does not have this restriction [40]. Both of them require
the IF function of the signal to be reconstructed to be
known up to a scaling constant. Another filtering
approach has been developed in [41] to filter dispersive
guided wave signals, based on unitary operators match-
ing this kind of signals; however, proposed TF filters are
specifically tailored for and limited to these Pekeris
guided waves [41].

Unlike the two methods above [38-40], our proposed
TCR filter does not employ an analysis-masking-
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synthesis procedure. Instead, a TCR domain mask func-
tion H(t, o) is prepared to enclose the TCR signature of
the desired signal component, where o denotes the
chirp-rate (or frequency-rate) parameter. Then, this
mask function is transformed to yield a time-varying
impulse response, as TF transfer functions are trans-
formed to obtain time-varying impulse responses of lin-
ear Weyl and Zadeh TF filters [17]. To enable such a
TCR filtering operation, firstly, a TCR representation of
an input signal should be computed and displayed so
that a desired chirp component of it can be identified
on the TCR display and can be selected by a TCR mask
that encloses its linear ICR trace.

Our proposed filter is more flexible than the above
ones in that it does not require the knowledge of the IF
or ICR functions of the desired component up to a con-
stant but works for any linear strip-shaped TCR pass
region. However, it can separate only quadratic or cubic
phase signals with monotonic ICR laws exhibiting single
linear tracks, as will be verified in the article. Piecewise
linear ICR components can be recovered with repeated
use of the filter for each linear segment.

Several TCR representations that can facilitate a TCR
filter can be found in the literature. A generalized WD
that serves as a joint time-phase derivatives representa-
tion for monocomponent, constant-amplitude polyno-
mial phase signals has been proposed in [42], based on
decomposition of polynomial derivatives in terms of
shifted versions of the involved polynomial. O’Neill and
Flandrin [43] has presented a quartic, shift-invariant
TCR representation. O’Shea [44,45] have proposed the
cubic phase function (CPF) for estimating phase para-
meters of cubic phase signals. A product CPF has been
proposed for multicomponent chirps, in [46], to elimi-
nate spurious peaks appearing in the CPF when applied
to such signals. Extended versions of the CPF have been
developed [45,47,48] to estimate polynomial phase sig-
nals with higher order phases. Finally, a class of joint
time-phase derivatives distributions highly concentrated
along phase derivative curves has been derived in [49].

Among the above, [43,49], beyond estimation of phase
parameters, have also used their transforms as joint
TCR representations or distributions in the form of
two-dimensional (2-D) images that display ICR curves
of analyzed signals.

In our article, we employ the CPF [44,45], the quartic
TCR distribution of [43], a bilinear TCR distribution in
[49], and a shifted version of a quadratic local polyno-
mial periodogram [50-52] to obtain our TCR displays
on which desired signal components are identified and
masked.

Section 2 derives the proposed TCR filter by approxi-
mating the phase difference in terms of the second
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derivative of the phase, i.e., ICR values, while projecting
an input signal onto the phase signal associated with the
TCR pass region of the filter. One of the terms in the
derived time-varying impulse response requires an
approximate knowledge of the IF value of the desired
signal component at a reference time instant, in the
form of an IF distribution at that time instant. It should
be selected on a TF display of the input signal. Hence,
the proposed TCR filter is based on joint use of a TCR
representation with a TF representation displayed as
images.

Section 3 derives the equivalent Weyl TF transfer
function for the filter with an infinitesimally narrow lin-
ear pass region in the TCR domain, and verifies that it
correctly recovers the corresponding quadratic or cubic
phase signal. An expression for the noise power at the
filter output is also presented in this section. Section 4
addresses discrete implementation of the proposed TCR
filter and its computational cost. Section 5 presents
simulations that illustrate this filtering scheme in
separation or recovery of quadratic and cubic phase sig-
nals, including how to resolve back-to-back particles
from in-line Fresnel holograms. Separation performance
of the proposed filter is compared with those of Weyl
and TF projection filters. Section 6 concludes the article.

2 Derivation of the proposed TCR filter

Let x(¢) be an input signal involving amplitude modu-
lated chirp (AM/FM) signal components and possibly a
background noise component. Let s(£) = a(t) exp
(j2m(¢)) be the desired signal component with a narrow
support region in the TCR plane that is nearly disjoint
from those of other components and the noise in the
input signal x(¢). Then,

H(t, o) ~ §(a — ¢P(1)) (1)

can be viewed as the approximate TCR mask function
of a separating filter. a denotes the chirp-rate (or fre-
quency-rate) parameter, and, #@(¢t) is the second deriva-
tive of the phase of s(¢) yielding its ICR curve. In the
above, we assume that the ICR curve of s(¢) is correctly
and accurately read on a TCR display of the input signal
x(t) and is taken as the TCR domain mask of the filter.

Let 5(t) be an estimate of s(f) obtained from the input
signal x(¢) as

3(0) = [ h(t, D)t 2

where k(¢, ¢) is the time-varying impulse response of
the separating filter. Integrals are from —oo to oo in this
article unless indicated otherwise. Under the disjoint,
narrow support region assumption, the optimal estimate
5(¢) in the sense of minimizing mean-square error will
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be close to the projection of the input signal x(¢) onto
the phase signal exp(j2m¢(t)) [23,25]:

5(t) ~ 27900 fx(t’)e_jz”‘ﬁ(t/)dt’. 3)

t/
Comparison of Equations (2) and (3) reveals
h(t, t') oc @27 [9(0)=0 ()] (4)

in order to recover s(t). Hence, TCR domain filtering
for signal separation consists of (i) displaying a TCR
representation of the input signal x(¢), (ii) selecting the
TCR mask function of the filter so as to isolate the TCR
signature of the desired component s(t) on this display,
as in Equation (1), (iii) and obtaining the impulse
response of the filter given in Equation (4) from the
selected mask function in Equation (1). Then, obtaining
Equation (4) from Equation (1) reduces to estimating
the phase difference ¢(f) — ¢(t') associated with desired
s(¢) from the second derivative of its phase function ¢(2)
(®).

The Taylor series expansion of the phase ¢(¢) at the
time point ¢ is

¢(1) = d(!) + ¢/ ()t — 1) + 'sz(ﬂ) (t—r)+ ¢(3)6(t’) (t—t)+--(5)

By taking the first three terms in Equation (5) and
substituting the trapezoidal approximation

o'(¢) — ¢/ (10) = f ¢ (0)dr ~ [pA(¢) + P (1)I(f — )2 (6)

into it, we obtain
B(1) = $(£) = ¢/ (10)(t — 1) + §P(00) (¢ = t0)(t = )2+ ¢ (1)t — t0)(t = )2 (7)

where £, is a reference time instant.

We then seek a transform that maps a TCR mask
function H(¢, o) to the corresponding time-varying
impulse response A(t, t). When Equation (1) is substi-
tuted into this transform as the TCR mask, Equation (4)
should be obtained as the impulse response with the
exact phase difference replaced by its approximation
given in Equation (7). Such a transform is given by

h(t, ) = { / H(Y, a)ef”(w)(“')da} { / H(to, a)ei”("fux“’)da}
x { f Hs(to, f)eiz”f("']df:|,
f

where H(ty, f) accounts for an estimate of the IF
value of the desired signal s(¢) at the reference time ¢ =
to, f (to) = ¢'(to).

H{to, /) in Equation (8) serves as a reference IF distri-
bution around the given IF value. If it is taken as Hy (to, f

(8)
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) = o(f — ¢'(to)), then, substitution of it and Equation (1)
into Equation (8) gives Equation (4) as the impulse
response where the phase difference is replaced by its
approximation given in Equation (7). This reference IF
distribution of the desired component is indispensable in
our proposed TCR filter given by Equations (8) and (2).

The proposed filtering procedure is given as follows:

Step. 1. A TCR representation and a TF representation
of the input signal x(¢) are displayed as 2-D images.

Step. 2. The TCR mask function H(¢, @) is prepared on
the TCR display to isolate the ICR strip of the desired
component s(£). This is idealized by Equation (1).

Step. 3. TF display of the input x(£) is examined and a
convenient reference point (to, f (Z)) is selected on the
IF curve or in the TF support region of the desired s(z).
Then, a reference IF distribution Hf (to, f) is prepared
around the value f () at the reference time £,. This is
idealized as Hy (¢, f) = o(f - f (to)).

Step. 4. The TCR mask H(¢, o), its slice at £,, and the
reference IF distribution Hy (o, f) are substituted into
Equation (8) to obtain the filter impulse response /(t, £).

Step. 5. Time-varying impulse response h(t, t') is
applied to the input signal x(t) by Equation (2) to yield
an estimate of the desired component s(&).

Higher order derivatives in Equation (5) could also be
retained and approximated by differences of second
derivatives evaluated at different time points. This leads
to alternative forms of the TCR filter in place of Equa-
tion (8). For example, third derivative in Equation (5)
can be approximated by a difference of second deriva-
tives. The remaining terms can be discarded. Alterna-
tively, the integral in Equation (6) can be approximated
at three time points t, (t, + ')/2 and ¢, instead of two.
Both approaches lead to time varying impulse responses
with four product terms in them.

These alternative filters can also successfully recover
quadratic and cubic phase signals with monotonic ICR
laws exhibiting single linear tracks, as the one proposed
in Equation (8) does. This can be verified by showing
that their equivalent Weyl TF transfer functions are also
concentrated around IF curves of desired signals, as we
show for the proposed TCR filter in the next section.

However, our simulations indicate that their perfor-
mances in chirp signal recovery are worse than that of
the proposed one, since their equivalent TF transfer
functions exhibit more severe peaks near the origin of
the TF plane. Moreover, their discrete implementations
require more than one discrete TCR mask functions to
be prepared and used, each for a different product term
in the filter impulse response. This further complicates
their discrete implementations. Our proposed filter in
Equation (8) has the best separation performance and is
easiest to implement, among them.
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3 Equivalent Weyl TF transfer function and
output noise power
3.1 Equivalent Weyl TF transfer function
Equivalent Weyl TF transfer function of the proposed
TCR filter in Equation (8) will be derived below for a
linear TCR pass region approximated as a line impulse
as given by Equation (1) and a rectangular pulse-shaped
IF distribution at a reference time. For a more realistic
case of a linear strip-shaped TCR pass region, we could
not evaluate the resulting complicated integral to obtain
an analytical expression for the TF transfer function.
We assume that the TCR mask is selected on a TCR
display to follow the ICR curve of the desired compo-
nent accurately and it is approximated by Equation (1).
We also assume that the IF value of the desired compo-
nent at time ¢ = £, is read from an accompanying TF
display. Then, substitution of Equation (1) and an initial
impulsive approximation for the reference IF distribu-
tion Hy (to, f) = o(f — ¢'(to)) into Equation (8) gives

h(t, ¢) = &P O g1 @) —10) (1) 279 (0)(=0) (9)
where

() =at® + bt +ct+d (10)

is assumed to be the cubic phase of the desired signal
s(¢) or that of the phase signal underlying the filtering
operation. We have to verify that the TF transfer func-
tion of the filter given by Equations (9) and (10) is con-
centrated along the IF curve f = ¢'(¢) of s(¢), in the TF
plane, so that this filter will recover the desired s(£).

The Weyl TF transfer function of a linear, time-vary-
ing filter is given by [17,19,20]

Hw(t, f) = /h(t+r/2, t—1/2)e 2 dr, (11)

in terms of its impulse response. By substituting Equa-
tions (9) and (10) into Equation (11), we obtain

Hw(t, f) _ /e7j3nar3/2e7j2n[ff(Sat2+2bt+c)]rd_L,’ (12)

which is the FT of the above CPF. It is concentrated
around the IF curve f = 3at® +2bt+c of the desired sig-
nal, as required for its recovery.

The above integral can be expressed in terms of Bessel
functions [53] and can be related to an Airy function
[54] to roughly characterize its TF pass region along the
IF curve:

[ et tar - [af (3v3)] Virlatko (8717119l 3

= [(47/3)*7/1al'®] Ai([(47/3)*7/1al'*]If1)
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for f>0,a>0o0rf<0,a<0.Kjs() and Ai(-) above
denote the modified Bessel function of the second kind
with order 1/3 and the related Airy function, respec-
tively. For f> 0, a < 0 or f< 0, a > 0, we have

/ e P ey = (ar/9) Ifalllys + 13|81/ (9V1al)) 14

= [(47/3)*3/1al'®] Ai(— [(47/3)*/lalP]If1),

where J;,3 and J_;,3 are Bessel functions of the first
kind with given orders.
By combining Equations (12), (13) and (14), we obtain

Hw(t, f) = [(47/3)2P/1al] Ai ([(47/3)23/a"B1If — (3a> + 2bc + ))  (15)

as the Weyl TF transfer function for the case of an
impulsive reference IF distribution.

We now take a rectangular reference IF distribution:
Hy (Lo, f) = rect [(f - ¢'(ty))/BJ, where rect(x) = 1 for ||
< 1/2 and zero otherwise. When it is substituted into
Equation (8), together with Equation (1), the filter
impulse response becomes

h(t, t') = &Y Bysinc[By(t — t')] (16)

where sinc(x) = sin(zx)/(7zx) and the phase term above
is as given by Equation (9) together with Equation (10).
Substitution of Equation (16) into (11) yields

Hw(t, f) _ /e_j3"”3/zstinc(Bft)e‘jmv—(“‘z*zb”c)]rdr,(17)

T

that can be evaluated by convolving the right side of
Equation (15) with the FT of Bsinc(Bp), i.e., rect(f / By )
in the frequency direction. Then,

Hw(t, f) = H(f — 3at® — 2bt — ¢) (18)

where the profile of the TF pass region of the filter
around the IF f = 3at> + 2bt + ¢, at a fixed time, is
obtained as

f+B,/2
H() = [(47/3)1al ) f

f=Bi/2

2/3 2/3
= sign(a) [ch ((4’;/173) + Bf/2)> -G ((47;/33) (F+ Bf/z)) (19)

2/3 2/3
—ar (“’;/33 ¢- Bf/z)) e (“”af? ¢- Bf/z))]

Ai([(47/3)%3/a'P] v)dv

with sign(a) denoting the sign of a.
The integral above has been evaluated by using [54]

f
/Ai (v)dv = c1F(f) — c2G(f),

0

where

¢1 = 0.355028053887817, ¢, = 0.258819403792807, (20)
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and
1, 1-4. 1-4.7
F(fy=f+ _f*+ 7+ 0+
41 71 10! 1)
1, 2,4 2.5, 2:5:-8,
CH =t g7+ g ey T

Time-frequency pass region profile H(f) of the pro-
posed TCR filter is plotted in Figure 1a,b for the scale
factor taken as (477/3)*3/a*? = 1 and -1, respectively. By
= 4 Hz and 62 terms are included in power series
expansions given in Equation (21), for both cases. These
plots reveal that the profile function is concentrated
around f = 0; hence the Weyl TF transfer function Hy,
(t, f) given by Equations (18)-(21) is concentrated
around the IF curve f = 3at® + 2bt + ¢ correctly.

Time-frequency pass region can be determined from
first zeros of H(f) given by Equation (19) along the IF
@'(t) = 3at* + 2bt + c as

@'(t) — Byj2 — 1.50a"3/(47/3)%3 < f < ¢'(t) + By/2 + 21al 3/ (a7 /3)722)
for a > 0, and

®(6) — Be/2 — 21al'P[(4m[3)* < f < ¢'(1) + By/2 + 1.5)a]'*/ (47 /3){23)
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resolved, where both a, g > 0. If the TCR mask is
selected to isolate o = 6at in the TCR plane to recon-
struct the first signal s(z), then the segment of the sec-
ond signal 3(t) around the point (t,3at?) in TF plane
can not be resolved from the desired s(¢) provided that

1.5|a|'/? By 2la|'3

By _
— <a<a+ + .
3(4n/3)?3r2 612 3(47/3)*312

a—
612

(24)

The slope range above is obtained from Equation (22)
by substituting ¢’(¢) = 3at” and f = ¢'(t) = 3at? into it.
B> 2/T should be maintained above.

If a = 0, corresponding to a quadratic phase desired
signal or reference signal onto which the input signal is
projected in our filtering scheme, then Equation (12)
reduces to the FT of the unity signal:

Hw(t, f) = 8(f — 2bt —c),

a line impulse along the linear IF law of the desired
quadratic phase s(£), in the case of an impulsive refer-
ence IF distribution Hy (to, f) = o(f — ¢'(to)).

When a rectangular reference IF distribution, H (to, f)
= rect [(f - ¢'(to))/B/, is assumed, Equation (17) reduces
to

(25)

for a < 0.
Equations (22) and (23) determine the resolution limit Hw(t, f) = f Bysinc(B f.[)e—]'27'r[f—(2bt+c)]r dr
of the TCR filter for separation of cubic phase signals (26)
T
with respect to slopes of their ICR lines in the TCR ~ b B
plane. Suppose that two such signals, s() = exp(j2mat®) = rect|(f — 2bt — c)/By]
and 5§ = (t) = exp(j2wat’), -T/2 < ¢t < T/2, are to be
1(a) 1(b)
14 T 14 T
1.2} 1.2}
c 1 B - 1 L
‘© ‘©
O o8t O o8t
c c
i) ie]
c 067 S 06}
c c
S S
L 04t L 04t
QL L
2 027 2 027
o o
= o} = o}
-0.2} -0.2}
-0.4 : ' : -0.4 . . .
-10 -5 0 5 10 -10 -5 0 5 10
Frequency (Hz) Frequency (Hz)
Figure 1 Profiles of time-frequency pass regions of the proposed filter for a cubic phase reference signal: (a) and (b) time-frequency
pass region profiles of the proposed filter around a quadratic instantaneous frequency curve at a fixed time, for the scale factor taken as 1 and
—1, respectively, in Equation (19). Bandwidth parameter: B = 4 Hz.
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as the Weyl TF transfer function for this more realis-
tic assumption.

Then, portions of a signal 5(t) = exp(j2rbt?), -T/2 < t
< T/2, around the point (¢, 2bt) in TF plane can not be
resolved from a desired signal s(f) = exp(j2bt®) if

b — By/(4t) < b < b+ B//(41), 27)

following from Equation (26). By > 2/T should hold
for recovery of s(t), for the signal duration -7/2 < ¢ <
T/2.

For higher order polynomial phase signals, where
Equation (6) is neither exact nor a good approxima-
tion, equivalent TF transfer function of the proposed
filter does not capture the correct IF curve. This is
also the case for segmented quadratic or cubic phase
signals for which Equation (6) is again not valid for
the whole signal duration. Components of such a sig-
nal should be recovered one by one by repeated use of
our filter with a different TCR mask each time. Exact-
ness of the trapezoidal approximation in Equation (6)
is the key to our proposed TCR filter. It is valid only
for a single, linear pass region in the TCR plane corre-
sponding to a quadratic or cubic phase signal with a
monotone ICR curve.

3.2 Output noise power

If we take a uniform strip-shaped TCR pass region and
a pulse-shaped reference IF distribution, then the TCR
mask function and the IF distribution of the proposed
filter are given as

H(t, @) = rect [(@ — ¢)(1))/Ba] and Hy(to, f) = rect [(f — ¢'(t0))/B),  (28)

respectively. Substitution of Equation (28) into Equa-
tion (8) gives the filter impulse response as

h(t, 1) = & B2Bysinc|Bu(t — to)(t — ¢')/2] sin [Ba(t' — o) (t — ¢)/2] sinc [By(t — )] (29)

where the phase term above is as given in Equation
9).

Let x(¢) = s(t) + w(t) be a noisy input signal for the
proposed filter with the impulse response given in Equa-
tion (29), where s(t) is the desired signal component and
w(t) is additive, zero-mean, white noise with power
spectral density S,,(f) = 1.

An estimate §(t) of the desired component s(f) is
obtained at the filter output as given by Equation (2).
The noise component at the filter output, denoted as n
(¢), corrupting this estimate is given by

n(t) = [h(t, Vyw()dr. (30)

The variance, i.e., the average power of the noise at
the filter output can be obtained as
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Bl = [ 1, O)Par
/ (31)

= nBzBfZ/sincZ[Ba(L—tO)(L—L’)/ZI sinc?[By (' — to)(t — t')/2]sinc? [By(t — t')]dt’

The first line above is obtained by substituting Equa-
tion (30) in the expectation, and, the second line is
obtained by substituting Equation (29) into the first line.

The output noise power given in Equation (31) does
not depend on the phase, ¢(£), of the desired component
or that of the phase signal associated with the TCR pass
region of the filter. It is determined by TCR and refer-
ence IF bandwidths, B, and By, respectively, current
and reference time values ¢ and ¢y, and input noise
power only, regardless of the phase being quadratic or
cubic.

4 Discrete implementation

Discrete implementation of the proposed filter is
described below. The three integrals in Equation (8) are
discretized by considering time samples h(nT, mT) of
the impulse response A(¢, t') and those of its three com-
ponents with a common sampling period 7. Taking T =
1, samples of the first filter component can be written as

o0
hi(n, m) = / H(m, a)eme=n0)n=m) g,

oa=—00

2 [o¢]
-/ [Z H(m, o - 2k)}j”“(""”("m>da_

a=0 |k=—00

(32)

The second expression above is obtained by writing
the first one as a sum of integrals over intervals of
length 2, changing the variable in each integral and
using the fact that the discrete complex exponential
above is periodic in the chirp-rate variable a with period
2. ny denotes the discrete reference time of the filter.

The term in square brackets in Equation (32) is
sampled in the time variable and is periodic in the
chirp-rate variable o with period 2. Hence, it can be
viewed as the discrete-time TCR mask of the filter,
denoted as H,(n, o).

Discrete version of the first integral in Equation (8) is,
then, given by

2
hy(n, m) = f Hy(m, a)emn=no)n=m)g,, (33)

a=0

where Hy(n, @), 0 <m < N - 1,0 < o < 2 is the dis-
crete-time TCR mask function of the filter, associated
with the term in Equation (32). o denotes the discrete
chirp-rate parameter above with an overuse of notation.
N is the length of the discrete-time input signal x(n),
0 < n < N - 1, of the filter.



Ozgen EURASIP Journal on Advances in Signal Processing 2012, 2012:122

http://asp.eurasipjournals.com/content/2012/1/122

M-point Riemann sum approximation of Equation
(33) gives the first filter component:
o M-I 2
hy(n, m)= " " Hy(m, 2k/M) m Hr=m)0=m) (34
M
k=0
O0<m,m<N-1.
Similarly, the second integral in Equation (8) can be
discretized as
2 M-l 2
ha(n, m)= " " Hy(ng, 2k/M)e s " =10 (35
M
k=0
O0<mm<N-1.
Discrete version of the third integral in Equation (8) is
obtained by similar steps, as

1
hs(n, m) = f Hya(no, f)e>™=mdf,
f=0

(36)

with Hy,(no, f) being the discrete reference IF distri-
bution. N-point Riemann sum for Equation (36) is com-
puted via N-point inverse discrete Fourier transform
(IDFT), as

N-1

1 2
Hy 4(no, k/N)& N Fi=m)
ng.; f,4(n0, k/N) 37)

= IDFTnN{Hf,4(no, k/N)}((n — m) modulo N),

hs(n, m) =

0<nmm<N-1.

Initially, discrete TCR mask Hy(n, 2k/M), 0 < n < N
-1,0 < k < M -1, is prepared to indicate TCR pass
region of the filter. Discrete reference IF distribution H
a(ng, kIN), 0 < k < N - 1, is selected according to an
estimate of the IF value of the desired signal component
at the reference time ny. Then, filter components are
computed by Equations (34), (35) and (37). Finally, the
output signal of the filter, y(n), is computed by

N-1
y(n) = Z hi(n, m)hy(n, m)hs(n, m)x(m) (38)

m=0

for 0 < m < N -1. M = 4N, 8N, 16N, etc., give good
results in the simulations presented below.

Computational cost: The proposed TCR filter can be
efficiently implemented by means of inverse fast Fourier
transform (IFFT) algorithms. Equation (34) can be eval-
uated by an M-point IFFT for each m value and by a
subsequent index-finding among the stored values using
the periodicity of the complex exponential kernel with
period M. Equations (35) and (37) require an M-point
IFFT and an N-point IFFT, respectively, and subsequent
index finding stages. Including the multiplication and
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addition operations in Equation (38), the computational
cost of the proposed filter becomes O(3N + M log M)
complex operations per output sample, close to those of
Weyl and Zadeh TF filters, which are O(N + NlogN)
per output sample [17].

However, the main computational expense of our fil-
tering scheme results from computing a TCR represen-
tation on which the filter TCR mask is selected. Such a
TCR representation either has a quadratic phase kernel
function, as the CPF [44,45], and thus can not be com-
puted by fast algorithms or it requires interpolation by
irrational factors, as in [43,49]. Hence, its computa-
tional cost is O(MN) operations per output sample,
instead of O(NlogN) per output sample required for
TF representations. Overall, our proposed filtering
scheme has an increased computational cost of
approximately O(MN + MlogM + NlogN) operations
per output sample, as compared to O(N + 2N logN)
operations per output sample required by conventional
TF filtering; which is approximately M/(2 log N) times
larger.

5 Simulations

5.1 Reconstruction of cubic phase signals

The use of the proposed TCR filter is illustrated for the
following noisy multicomponent input signal with three
cubic phase and one quadratic phase components:

x(n) = exp[jsz/(24N)] + exp[—jn(n2/2 + ns/(SON))]
+exp|jr (n/2 + n/(GON))]
+ exp[jrrnz/(4N)] +w(n)

(39)

for 0 < n < N - 1, where the signal length is taken as
N = 128 samples. w(n) denotes additive, zero-mean,
white Gaussian noise with variance ¢*, above. The
desired signal component to be estimated at the filter
output is the first cubic phase component:

s(n) = expljmn’/(24N)], (40)

0<nms<N-1
5.1.1 Noiseless input case
We first explain steps of the proposed TCR filtering
scheme when there is no noise in Equation (39).

(i) TF display of the input signal: Figure 2a,b display
spectrograms of the noiseless input signal in Equation
(39) with Hann windows of widths 23 and 11 samples,
respectively.

A quadratic IF curve that starts at zero frequency and
increases with time can be identified on the left part in
Figure 2a. That IF curve belongs to the first cubic phase
component in Equation (39), which is also given in
Equation (40) as the desired component to be recon-
structed at the filter output.
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Figure 2 Reconstruction of cubic and quadratic phase components of a multicomponent input signal: (a) and (b) spectrograms of the
input signal in Equation (39) with Hann windows of widths 23 and 11 samples, respectively. (c-e) Bilinear TCR distribution in Equation (41) for
the input signal in radian chirp-rate ranges [0, 71/2], [71/2, 1] and [2, 371, respectively. (f) Prepared TCR mask to include the ICR line with the
larger positive slope in Figure 2c.
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Two quadratic IF curves that start at frequencies of i
and 2mn radians and decrease with time can also be iden-
tified on the left part in Figure 2a. They belong to the
second cubic phase component in Equation (39). The
quadratic IF curve that starts at m/2 radians and
increases belongs to the third component. The quadratic
phase component is represented by the IF line starting
at zero and ending at 77/2 values in Figure 2a.

Each quadratic IF curve traverses the discretized TF
plane several times, in this simulated signal scenario;
hence, they become difficult to identify as time
increases, on the right part of Figure 2a. Figure 2b
reveals these quadratic curves more clearly, on the right
part.

In particular, it is difficult to identify the IF curve of
the desired component in Equation (40) and prepare a
TF mask to isolate it. TF filtering is difficult to use
for this signal separation task involving rapidly chan-
ging IF curves of undersampled signal components.
However, proposed TCR filter can handle it more
easily.

(i) TCR display of the input signal: TCR patterns of
the input signal x() are obtained by computing and dis-
playing a bilinear TCR distribution derived in [49],
which can also be viewed as a modified version of the
CPF:

(N-1)?
MCPFy(n, 2k/M) = Y x(n+v/m)x(n — \/m)efjﬁkm, (41)
m=0

0<m<N-1,0< k<M - 1. Discrete radian chirp-
rate range is taken to be [0, 47r) above to match that of
the discrete TCR mask H,(n, 2k/M), 0 < k < M - 1, of
the proposed filter, since the mask is prepared based on
a display of the TCR distribution given in Equation (41).
Thus, two periods of the discrete bilinear TCR distribu-
tion in the chirp-rate variable are computed and dis-
played. M = 8N is taken.

Figure 2c-e show segments of the absolute value of
the bilinear TCR distribution in Equation (41) computed
for the input signal in radian chirp-rate ranges [0, /2],
[/2, m] and [27, 37], respectively. Horizontal lines are
ICR lines of the quadratic phase chirp in Equation (39),
and, oblique lines with positive and negative slopes are
ICR lines of cubic phase input components in Equation
(39), in two periods of the modulus of the TCR
distribution.

Instantaneous chirp-rate lines with a larger positive
slope, in these figures, belong to the desired component
given by Equation (40). Those with a smaller positive
slope represent the third cubic phase component. ICR
lines with a negative slope that start at chirp-rate values
of m and 3m radians correspond to the second cubic
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phase component. Figure 2e shows all these ICR traces
together, in the second period.

(iii) Preparing the TCR mask: Figure 2f shows a seg-
ment of the prepared filter TCR mask H,(n, 2k/M), for
0 < n, k<N - 1, corresponding to the radian chirp-rate
range [0, 7z/2], that isolates the ICR line with the larger
positive slope in Figure 2c belonging to the desired sig-
nal in Equation (40). This linear mask is chosen to be 1
sample wide vertically.

The replica of this line in Figure 2e, located in the
range [27m, 47r], should not be included in the TCR
mask, since its inclusion would result in an additional,
undesired pass region in the TF plane for the equivalent
TF transfer function, in addition to the desired TF pass
region. If the second cubic phase component were
desired at the filter output, then the ICR line with nega-
tive slope in Figure 2e, located in the range [27, 4],
would be selected by the filter TCR mask, but its replica
in Figure 2d located in the range [0, 27] would be left
out.

(iv) Selecting the reference IF distribution: Figure 2a
indicates that the quadratic IF curve of the desired com-
ponent in Equation (40) starts from zero frequency at
time zero. Hence, we choose 1y, = 0 as the reference
time point and Hy;(0, k/N) = 1 for 0 < k < 5, and zero
otherwise, as the discrete reference IF distribution of the
filter around the zero frequency value. The width of the
distribution is determined by a search to maximize the
separation performance.

(v) Computing the filter output: The filter output sig-
nal y(n) is computed from the reference IF distribution
in part (iv) and the TCR mask in Figure 2f via Equations
(34), (35), (37) and (38).

Figure 3a displays the reassigned spectrogram of the
filter output y(n) with a Gaussian window of width 9
samples in the form w(n) = exp(-n*/20), -4 < n < 4,
showing only the quadratic IF curve of the desired
component given in Equation (40). Figure 3b plots
real part of this desired signal. Figure 3c plots real
part of the output signal y(n) of the proposed TCR fil-
ter, after it is scaled by a number chosen to minimize
the mean-square error between the desired and scaled
output signals. Comparisons of Figure 2a with Figure
3a, and, Figure 3b with Figure 3c indicate that desired
component is captured and reconstructed by this TCR
filter.

The scale factor that minimizes the mean-square
error, mentioned above, is calculated as

o Re[s(n)[Re[y(n)] + Yo" Im(s(n)[Im[y(n)]
St ()2 ’
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Figure 3 Reconstruction of cubic and quadratic phase components of a multicomponent input signal: (a) Reassigned spectrogram of the
output signal of the proposed TCR filter. Gaussian window width is 9 samples. (b) Real part of the desired signal in Equation (40). (c) Real part of
the normalized output signal of the proposed TCR filter. (d) AF-WD of the filter output signal when the TCR mask is selected to isolate the
horizontal line in Figure 2c. (e) Real part of the quadratic phase component in Equation (39). (f) Real part of the normalized output signal when
the TCR mask selects the quadratic phase component.
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where the desired signal s(n) is assumed to be known,
as in Equation (40) for this simulation example. Its esti-
mate $§(t), real part of which is given in Figure 3c, is
obtained from the filter output signal y(#n) by

§(n) = By(n).

Then, the normalized mean-square error (NMSE)
between the desired and scaled output signals, used as a
measure of the separation performance, is given as

Yo' Is(n) — §(n) 2
SN is(n)l”

The percentage NMSE of our proposed TCR filter
according to Equation (42) is 15.7655% for this noiseless
simulation example, as the best result achieved by our
filter. Best NMSE figures achieved by interpolated half-
band Weyl filter [17] and full-band suboptimal TF pro-
jection filter [24] are 25.9042 and 20.8597%, respectively,
for this case. They give worse results than our proposed
filter for this simulation example, because these filters
with TF masks that enclose IF traces of the desired
component traversing TF plane eight times as shown in
Figure 3a are no longer underspread systems. Their per-
formances deteriorate when they become overspread
[17,22], as in this case.

5.1.2 Noisy input case

The noise component w(n) is included in Equation (39)
and its variance is varied to give signal-to-noise ratio
(SNR) values listed in Table 1. The first cubic phase
component given in Equation (40) is separated from the
noisy input signal by the proposed TCR, Weyl and TF
projection filters. Average percentage NMSE figures
over 1,000 independent trials achieved by them are
listed for these SNR values, in Table 1.

The proposed TCR filter gives significantly better
results for this signal separation example except for
low SNR values, since the desired signal and the filters
designed to recover it are overspread. However, NMSE
figures for low SNR cases indicate that the TCR filter
is less robust against noise than others. At and below
SNR = 0 dB, the TCR filter seems to break down, and
is surpassed by the TF projection filter. This may be
due to the first and second terms in the integral in

NMSE = (42)

Page 12 of 21

Equation (31) that might have caused an effect of
amplifying the output noise power especially pro-
nounced when the reference IF bandwidth By is kept
larger to obtain a broader TF pass region for capturing
the rapidly varying cubic phase component in Equation
(40).

5.1.3 Resolution for cubic phase signals

To check validity of Equation (24) that indicates resolu-
tion limit of the proposed filter with respect to slope
parameter a in the TCR plane, we take a noiseless input
signal,

B LT ) 1 3 T
x(n) = exp (]24Nn )+exp |:]271 (48N+A)n +]4],

where the first component is the desired signal s(n)
given by Equation (40). When s(n) is passed through the
TCR filter described above only, the NMSE is 1.9841%.
Its slope parameter is a = 1/(48N).

When the signal above is given as input to the filter
including the second component with the slope differ-
ence

By 2|a|'3
o 7t 2/3 !
6N*  3(47/3)*° N2

obtained from the increment in the upper bound in
Equation (24) by substituting ¢ = N = 128 there and by
taking By /2 = 6/N for the designed TCR filter, the
NMSE becomes 30.4978%. Since the second compo-
nent falls inside the TF pass region of the filter given
by Equation (22), for the whole signal duration, the
TCR filter could not separate it from the desired
component.

When ¢t = N/2 = 64 is taken in the slope difference A,
the NMSE reduces to 18.2503%, since later parts of
these two components are resolved in this case. These
results suggest that Equation (24) accurately gives the
resolution limit of the proposed filter in the slope
parameter.

5.1.4 Recovery of a more slowly varying component
Suppose that the first cubic phase component, given
explicitly in Equation (40), is replaced by the following
half-band cubic phase signal in the noisy input signal
given by Equation (39):

Table 1 Percentage NMSEs in recovery of a cubic phase component from a noisy input signal: Percentage NMSEs
averaged over 1,000 independent trials that are achieved by the proposed TCR, interpolated half-band Weyl and full-
band suboptimal TF projection filters in recovery of the cubic phase component in Equation (40)

SNR (dB) o0 20 15 10 5 0 -3 -5

TCR 15.7655 15.9249 16.2175 17.1554 20.0022 27.8496 374899 45.0394
Weyl 259042 260012 263726 271147 29.5508 350153 41.1894 486307
TF projection 20.8597 20.9709 21.0623 21.6483 228426 276200 325246 387791

They are listed versus SNR values at filter inputs.
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s(n) = expljmn®/(6N?)], (43)

0 < n < N - 1. The above signal is now separated
from the noisy input signal by the proposed TCR, Weyl
and TF projection filters for this case where all filters
become underspread systems designed to recover this
more slowly varying desired component. Best average
percentage NMSE figures over 1,000 independent trials
achieved by them are listed versus given input SNR
values, in Table 2.

The TCR mask is prepared to be 1 sample wide along
the ICR line of the desired component given by Equa-
tion (43), with the number of chirp-rate bins taken as M
= 512N for this example to fully expose this ICR line on
the underlying TCR pattern, and Hy,(0, k/N) = 1 for k =
0, 1, N — 1, and zero otherwise, as the discrete reference
IF distribution of the TCR filter around the zero fre-
quency value, to yield best results achieved by the TCR
filter as listed in Table 2.

For high and medium input SNR values, NMSE fig-
ures of the TCR filter are slightly worse than those of
the Weyl filter, and slightly better than those of the TF
projection filter, as seen in Table 2. But differences are
not significant since all filters are underspread systems
for this case of a more slowly varying desired
component.

At and below SNR = 0 dB, results of the TCR filter
deteriorate again due to output noise amplification
caused by the first two terms in the integral of Equation
(31). However, this deterioration, i.e., the increase in
percentage error as input SNR is increased, is about half
of the increase observed in Table 1 for the rapidly vary-
ing desired signal in Equation (40). This is because the
reference IF bandwidth By is chosen to be 3 samples
wide for the desired signal in Equation (43), whereas it
was 6 samples wide for the one in Equation (40).

5.2 Reconstruction of quadratic phase signals

5.2.1 Noiseless input case

To recover the quadratic phase component in Equation
(39), the TCR mask of the proposed filter is selected to
isolate the horizontal ICR line shown in Figure 2c, in
the radian chirp-rate range [0, 2], corresponding to
this signal component. The replica of this line in Figure
2e, in the range [27, 4], is again left out of the TCR
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mask. The mask is chosen to be 1 sample wide vertically
for the best separation performance.

Figure 2a indicates that the linear IF curve of the
desired component also starts from zero frequency at
time zero, hence we choose ny = 0 as the reference time
point again, and Hy,4(0, k/N) = 1 for k = 0 and zero
otherwise, as the discrete reference IF distribution of the
filter as determined by a search to achieve the maxi-
mum separation performance.

Figure 3d displays the alias-free WD (AF-WD) [55] of
the output signal of our filter with the above TCR mask
and reference IF distribution, demonstrating that the
quadratic phase component is separated by the pro-
posed filter. Figure 3e,f plot real parts of the desired
quadratic phase component in Equation (39) and the
normalized filter output, respectively.

The percentage NMSE of the proposed TCR filter for
this separation problem, defined by Equation (42), is
0.2793%, whereas best NMSE results achieved by inter-
polated half-band Weyl filter and full-band suboptimal
TF projection filter are 0.2795 and 0.9992%,
respectively.

A noteworthy observation is that the filter TCR mask
should be kept as narrow as possible for a good separa-
tion performance. While recovering the quadratic phase
component in Equation (39), if a neighboring chirp-rate
bin is also included in the horizontal TCR mask making
it two samples wide, then the NMSE falls down to
14.5101%. Inclusion of the other neighbor for a three-
sample TCR mask results in a NMSE value of 17.6307%.

Hence, the chirp-rate value of the desired quadratic
phase signal component should be determined accu-
rately from the underlying TCR representation of the
input signal, and, the filter TCR mask should match this
value in order to recover that component with high
accuracy. Quadratic phase signals with chirp-rates differ-
ing less than 47/M radians are not resolvable by the
filter.

5.2.2 Noisy input case

When the input signal given in Equation (39) is noisy,
percentage NMSE values averaged over 1,000 indepen-
dent trials that are achieved by the proposed TCR, Weyl
and TF projection filters in recovery of the quadratic
phase component are listed in Table 3 for various SNR
values.

Table 2 Percentage NMSEs in recovery of a half-band cubic phase component from a noisy input signal: Average
NMSE values in percentage achieved by the proposed TCR, interpolated half-band Weyl and full-band suboptimal TF
projection filters in recovery of the cubic phase component given by Equation (43), listed versus input SNR values

SNR (dB) oo 20 15 10 5 0 -3 -5

TCR 3.9265 3.9853 41175 45345 5.7398 9.5243 14.5841 19.6874
Weyl 3.8059 3.8338 3.8851 40545 46053 6.2538 8.5276 11.4601
TF projection 4.7947 48126 4.9055 5.1421 5.7944 8.1065 11.3910 15.2093
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Table 3 Percentage NMSEs in recovery of a quadratic phase component from a noisy input signal: Average NMSE
values in percentage achieved by the proposed TCR, interpolated half-band Weyl and full-band suboptimal TF
projection filters in recovery of the quadratic phase component in Equation (39), listed versus input SNR values

SNR (dB) oo 20 15 10 5 0 -3 -5

TCR 0.2793 0.2965 0.3229 0.3814 0.7245 1.5819 2.7563 4.0977
Weyl 0.2795 0.2968 0.3255 04078 06722 1.5763 2.7162 42175
TF projection 0.9992 1.0166 1.0439 1.1320 14663 2.3844 3.7129 4.7296

The proposed TCR filter gives slightly better results
for this example except for SNR = 5, 0 and -3 dB
cases, but differences are not significant since all filters
are underspread for this case. TF projection filter gives
slightly worse results here only because its pass region
could not be chosen as narrow as those of others,
since it could not capture the desired component for
such a narrow pass region due to implementation
matters.

The TCR filter does not break down for low SNR
cases here, since the reference IF bandwidth By is only
one sample wide in this case, limiting noise leakage.

5.3 Recovery of back-to-back objects from in-line Fresnel
holograms
Formation of in-line Fresnel holograms can be modelled
by a linear, shift-invariant system with a quadratic phase
impulse response [56]. Hence, such a hologram can be
roughly viewed as a linear combination of chirp signals
centered at object plane locations of objects encoded in it.
For a discretized hologram, the normalized depth
parameter ¢ of an encoded object is defined by [56]

&2/N = X2/(A2),

where X is the spatial sampling period in hologram
plane coordinates, N is the discrete hologram image size
in samples taken to be N = 256 in our presented simula-
tions, z is the actual object depth, and 2 is the illumina-
tion wavelength.

Figure 4a shows a simulated hologram of two back-to-
back objects having one-dimensional (1-D) variation like a
long thin wire. The objects have the same object plane
coordinates, but are located at different normalized depths
@ = 1and 1/+/2, respectively. Horizontal profile of each
object, when viewed as a 1-D discrete signal, is a binary
rectangular pulse five samples wide. In Figure 4b, a row of
this hologram is plotted after eliminating its DC level.

Figure 4c displays the AF-WD of the signal in Figure
4b, as a SF pattern. The horizontal axis is the discrete
space axis; x = 0, 1, ..., 255. The vertical axis is the dis-
crete spatial radian frequency axis; w,, = (21/256)m, m
e [-128, 127]. Each object is represented by a pair of
lines with opposite slopes that intersect on the spatial
axis at the object coordinate. Magnitudes of the slopes
are inversely proportional with real object depths. As

can be seen in the figure, these pairs of linear tracks
associated with the two objects overlap in the SF plane,
making it tedious to design SF filter mask functions to
resolve them [14]. However, objects are represented by
distinct horizontal strips corresponding to different
slopes or depths in the SCR plane. Hence, it is easier to
design SCR mask functions isolating such strips and to
use our proposed filter to separate and recover these
overlapping objects.

The underlying SCR distribution for the proposed fil-
tering scheme is chosen to be the CPF [44,45]:

N-1
CPFy(n, 2k/M) = Z x(n+m)x(n — m)e_jﬁkmz, (44)

m=0

0<m<N-1,0<k<M-1. N denotes the input
signal length again, and, M = 16N is chosen for our
SCR patterns in this subsection. Discrete radian chirp-
rate range is, again, taken to be [0, 4m) above, encom-
passing two periods, to match that of discrete SCR
masks of the proposed filter that will be used in holo-
gram component separation.

Figure 4d-f display modulus of the CPF for the holo-
gram signal in Figure 4b in chirp-rate ranges taken near
the zero value, around 27, and near 4, respectively.
Longer horizontal lines in these figures correspond to
slope values of the line pair in Figure 4c with smaller
slope magnitude, for the object with normalized depth
& = 1/+/2. Shorter, less visible horizontal lines located
symmetrically above or below longer ones correspond to
the object with normalized depth @ = 1. We want to
recover the object pulse located at the normalized depth
@ = 1/4/2 by separating its hologram component from
the two-component hologram signal in Figure 4b by our
proposed filter. For this purpose, filter SCR masks
should be designed to isolate the longer ICR lines in
these SCR patterns.

Figure 4c indicates that IF lines of the desired object
pass through the zero-frequency level at the intersection
point with spatial coordinate 7, = 101. Hence, reference
spatial point for our filter is chosen as #ny = 101, and the
discrete reference IF distribution for our filtering opera-
tions is taken as H4(101, k/N) = 1 for 0 < k < 3 and N
-4 < k<N -1 around the zero frequency value, and
zero elsewhere.
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Figure 4 Reconstruction of back-to-back objects from a 1-D hologram: (a) A simulated two-depth 1-D hologram. (b) A row of the DC-
leveled hologram. (c) AF-WD of the hologram signal in Figure 4b. (d-f) Absolute value of the CPF in Equation (44) for the signal in Figure 4b in
chirp-rate ranges taken near the zero value, around 27, and near 471, respectively.

Figure 5a shows a segment of the first SCR mask function [18] of the proposed filter, with this SCR
that selects the longer line in Figure 4d close to the mask and the reference IF distribution described
zero chirp-rate value. Equivalent Zadeh SF transfer above, is shown in Figure 5b. It isolates the IF line in
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Figure 4c with the smaller positive slope. The input
hologram signal in Figure 4b is, firstly, passed through
this SCR filter.

Figure 5c¢ shows a segment of the second SCR mask
that selects the longer line in Figure 4f close to the
chirp-rate value of 4m. Equivalent Zadeh transfer func-
tion of the proposed filter, with this SCR mask and the
same reference IF distribution, is shown in Figure 5d. It
isolates the IF line in Figure 4c with the larger negative
slope. The input hologram signal in Figure 4b is, then,
passed through this SCR filter.

The hologram component encoding only the desired
object is estimated as the sum of these two filter output
signals obtained with different SCR masks given in Fig-
ure 5a,c, respectively. Real part of the sum signal is
plotted in Figure 5e, as this separated component. The
desired object pulse with normalized depth & = 1/4/2 is
finally estimated by applying a Fourier synthesis algo-
rithm [14] to the separated hologram component. The
recovered object is plotted in Figure 5f.

Figure 6a,b show two simulated, planar objects over-
lapping in the object plane. Figure 6¢ displays their
simulated hologram, where square shaped and triangular
objects are located at normalized depths @ = 1/4/2 and
1, respectively. A row that passes through the diffraction
pattern in this discrete hologram image is selected and
its DC value is eliminated. Figure 6d shows the AF-WD
of the DC-levelled hologram row signal, as its SF
pattern.

In Figure 6d, two back-to-back objects are represented
by two pairs of lines with opposite slopes that intersect
on the spatial axis (zero-frequency axis) at the common
object coordinate ny = 130. Hence, this intersection
point is chosen as the reference spatial point for our fil-
ter and its reference IF distribution at this point is,
again, chosen as a rectangular pulse centered at the
zero-frequency value: Hg,(130, k/N) = 1 for 0 < k <7
and N - 8 < k < N - 1, and zero elsewhere.

We use a shifted version of the local quadratic period-
ogram (LQP) [50-52] to obtain SCR patterns for the
hologram row:

N-1
LQPy(n, kM) = Y x(m)w(m — n)e” M) (g5

m=0

0<n<N-1,0<k<M-1. M= 16N again, and the
shift amount is taken to be equal to the spatial coordi-
nate of the intersection point in Figure 6d, ny = 130,
since input chirp components are centered at this point.
Discrete radian chirp-rate range is, this time, taken to
be [0, 27), corresponding to a single period. By this way,
the computed transform peaks at chirp-rate index values
matching the correct chirp-rate values of the input
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components, which are twice the coefficient values of
the quadratic phases of input components.

Figure 6e,f display modulus of the shifted LQP in
Equation (45) for the DC-levelled hologram row, with a
rectangular window of width 141 samples, displayed in
chirp-rate ranges taken near the zero value and 27,
respectively. The lower smeared line in Figure 6e and
the upper smeared one in Figure 6f correspond to the
square shaped object. The upper horizontal line in Fig-
ure 6e and the lower one in Figure 6f are ICR lines cor-
responding to the triangular object, in the SCR plane.

Figure 7a,b show filter SCR masks that isolate hori-
zontal traces in Figure 6e,f, respectively, for the square
shaped object. The hologram image in Figure 6c is DC
levelled, then, its rows are passed through the proposed
filter with the described IF distribution and these differ-
ent SCR masks, separately. The two filter output images
are summed, and then a Fourier synthesis algorithm
[14] is applied to the resulting image, to recover the
square shaped object as shown in Figure 7c.

Similarly, Figure 7d,e show filter SCR masks that iso-
late horizontal traces in Figure 6e,f, respectively, for the
triangular object. Rows of the DC-levelled hologram
image are passed through the proposed filter with the
described IF distribution and these different SCR masks
given in Figure 7d,e, separately. The two filter output
images obtained with these two masks are summed, and
the triangular object is recovered from the sum image,
as shown in Figure 7f.

Object reconstruction procedure described in this sub-
section does not require prior knowledge of object
depths, or a manual search for them, in order to recover
the encoded objects from their holograms. It automates
this task.

6 Conclusion
We propose a novel linear time-varying filtering scheme
in the joint TCR domain for decomposition of multi-
component signals into their quadratic and/or cubic
phase components, in this article. It is valid only when
the approximation involved in Equation (6) becomes
exact, i.e., it can only separate quadratic or cubic phase
signal components with single linear pass regions in the
TCR plane corresponding to monotonic ICR laws. This
is verified by deriving approximate expressions for
equivalent Weyl TF transfer functions of the proposed
filter and by checking whether they contain IF curves of
such signal components or not, in Section 3.
Multicomponent quadratic or cubic phase signals can
be recovered by repeated use of our filter with a differ-
ent TCR mask, each time, designed to separate a parti-
cular signal component. Simulation results presented
in Table 1 suggest that our filter decomposes
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multicomponent quadratic and cubic phase chirps with
rapidly varying IF curves with significantly improved
accuracies over Weyl and TF projection filters for high
and medium input SNR values, albeit with increased
computational cost. The reason for this improvement
is that filters designed to capture such signals can no
longer be underspread systems and hence, Weyl and
TF projection filters can not perform so well in recov-
ery of such signals.

However, for low SNR cases, the proposed TCR filter
is less robust against noise in recovery of rapidly varying
signals since broader TF pass regions required to cap-
ture such signals leak more noise and the first and sec-
ond terms in the integral in Equation (31) further
amplify the output noise power.

Average percentage errors listed in Tables 2 and 3
show that the proposed TCR, Weyl and TF projection
filters give comparable accuracies in separation of more
slowly varying signal components, at least for high and
medium input SNR values, since all filters are under-
spread in such cases.

The idea of filtering in the joint TCR domain is novel.
However, since the proposed filter is linear with a time-
varying impulse response; it has an equivalent TF trans-
fer function and it can also be designed in the TF
domain in theory. The proposed TCR filter intends to
ease the filter design task for some applications where it
is more convenient to design the filter mask function in
the TCR domain than in the TF domain; such as recon-
struction of back-to-back objects from in-line holograms
for which SF masks have to overlap, whereas SCR
masks do not.

Another application involves separation and recovery
of undersampled chirps with rapidly varying IF curves
that are difficult to identify and enclose in the TF plane.
If ICR lines vary more slowly and hence are more read-
able in the TCR plane, then it is more convenient to
perform the filtering operation in the TCR plane by our
proposed filter. For example, received radar signals from
rapidly maneuvering targets can be modeled as multi-
component cubic phase signals [57]. They can be
decomposed by the proposed TCR filter first, for
improved estimation of phase parameters of each com-
ponent to obtain focused SAR or ISAR images of targets
as presented in [57].
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