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Abstract

We propose a statistical covariance-matching based blind channel estimation scheme for zero-padding (ZP) multiple-
input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) systems. By exploiting the block
Toeplitz channel matrix structure, it is shown that the linear equations relating the entries of the received covariance
matrix and the outer product of the MIMO channel matrix taps can be rearranged into a set of decoupled groups. The
decoupled nature reduces computations, and more importantly guarantees unique recovery of the channel matrix
outer product under a quite mild condition. Then the channel impulse response matrix is identified, up to a Hermitian
matrix ambiguity, through an eigen-decomposition of the outer productmatrix. Simulation results are used to evidence
the advantages of the proposed method over a recently reported subspace algorithm applicable to the ZP-based
MIMO–OFDM scheme.
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1 Introduction
Orthogonal frequency division multiplexing (OFDM)
combined with guard intervals, in the form of cyclic pre-
fix (CP) or zero-padding (ZP), is an effective transmission
scheme through frequency selective fading channels [1].
By further leveraging the spatial resource, the multiple-
input multiple-output (MIMO)–OFDM system has been
the key technique for realizing high-rate transmission
in modern wireless communications [2]. Toward reliable
coherent symbol decoding in MIMO–OFDM systems,
accurate channel state information is crucial. Blind chan-
nel estimation is a technique that alleviates the need
for training sequences to identify the unknown chan-
nel impulse response from the received signal. Since the
requirement of extra bandwidth for training overhead is
reduced, this technique has received great research inter-
est [3] and many blind estimation algorithms have been
developed for various transmission systems [3-21]. In this
article, we will focus on blind estimation of ZP-based
MIMO–OFDM systems.
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For ZP-based single-input single-output (SISO) OFDM
systems, a subspace algorithm is proposed to blindly iden-
tify the channels in [20], and is then generalized to MIMO
cases [21]. However, this approach is known to suffer a
sever performance degradation when the signal-to-noise
ratio (SNR) is low or moderate [5]. To solve this problem,
a statistical covariance-matching (SCM) based method
which exploits some priori knowledge of the signal struc-
ture to improve channel estimation/equalization perfor-
mances against harsh SNR conditions, is developed for
SISO cases [6]. In this article we will propose an SCM
based blind channel estimation for ZP-based MIMO–
OFDM systems. By exploiting the block Toeplitz channel
matrix structure, we show that the linear equations relat-
ing the entries of the received covariance matrix and
the products of the channel matrix taps can be rear-
ranged into decoupled groups. The outer product of the
MIMO channel matrices can be obtained by solving these
decoupled linear equation groups. The channel impulse
response is then identified, up to a Hermitian matrix
ambiguity, through an eigen-decompostion of the com-
puted outer product matrix. The proposed approach has
the following distinctive features: (i) The identifiability
condition is very simple and is more relaxed than the
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irreducible or column reduced condition [8]; (ii) It can
apply to the more transmit antennae case under a certain
condition; (iii) Through numerical simulation, it yields
improved BER performance in the low-to-moderate SNR
region. The rest of this article is organized as follows.
Section 2 is the system model and basic assumptions. In
Section 3, we propose a blind channel estimation method
for the ZP based MIMO–OFDM systems. Simulation
results are given in Section 4. Section 5 concludes this
article.
Notations used in this article are quite standard: Bold

uppercase is used for matrices, and bold lowercase is
used for vectors. AT represents transpose of the matrix
A, and A∗ represents conjugate transpose of the matrix
A. IM is the identity matrix of dimension M × M, and
A ⊗ B is the Kronecker product of matrices A and B.
In addition, we define the following operations that will
be used in the derivation of the main result. First, for
any m × m matrix A =[ ak,l]0≤k,l≤m−1, define �j(A) =
[ a0,ja1,j+1 . . . am−1−j,m−1]T for 0 ≤ j ≤ m − 1, i.e., �j(A)

is the vector formed from the jth super-diagonal of A.
Second, for any Jn × Jn matrix B =[Bk,l]0≤k,l≤n−1, where
Bk,l is a block matrix of dimension J × J , define ϒj(B) =
[BT

0,jB
T
1,j+1 . . .BT

n−1−j,n−1]T for 0 ≤ j ≤ n− 1, i.e., ϒj(B) is
the matrix formed from the jth block super-diagonal of B.

2 Systemmodel and basic assumptions
Consider the K-input J-output discrete time
ZP-OFDM baseband model shown in Figure 1.
At the transmitter, for k = 1, 2, . . . ,K , each
input signal sk(n) is stacked as a block s̄k(i) =
[sk(iM)sk(iM + 1) . . . sk(iM + M − 1)]T ∈ C

M, which is
multiplied by the inverse FFT matrix F∗, and then padded
with P trailing zero entries to form the N = M + P

dimensional vector ūk(i) =
⎡⎣(F∗s̄k(i))T︸ ︷︷ ︸

M entries

0 . . . 0︸ ︷︷ ︸
P entries

⎤⎦T

=

⎡⎣uk(iN) . . .uk(iN + M − 1)︸ ︷︷ ︸
M entries

0 . . . 0︸ ︷︷ ︸
P entries

⎤⎦T

. The zero-padded

ūk(i) is parallel-to-serial converted to obtain uk(n), which
is then transmitted through the MIMO finite-impulse-
response (FIR) channel. At the receiver, the jth received
signal is xj(n) = ∑K

k=1
∑Ljk

l=0 hjk(l)uk(n − l) + wj(n) for
j = 1, 2, . . . , J , where wj(n) is the channel noise seen at the
jth receiver, and {hjk(0)hjk(1) . . . hjk(Ljk)} is the impulse
response from the kth transmitter to the jth receiver.
Let x(n) =[ x1(n)x2(n) . . . xJ (n)]T ∈ C

J , w(n) =
[w1(n)w2(n) . . .wJ (n)]T ∈ C

J , and H(l) =[ hjk(l)]∈ C
J×K

be the channel coefficient matrix for l = 0, 1, . . . , L,
where L = maxj,k{Ljk} is the order of the MIMO chan-
nel. Assume P ≥ L and group the sequence of x(n) as
x̄(i) =[ x(iN)Tx(iN + 1)T . . . x(iN + N − 1)T ]T ∈ C

JN .
Then due to zero padding, the input-output channel char-
acteristics can be expressed in the following form [21]:

x̄(i) = Hf uf (i) + w̄(i), (2.1)

where w̄(i) ∈ C
JN is similarly defined as x̄(i), and

Hf ∈ C
JN×KM is a block Toeplitz matrix with

[H(0)TH(1)T . . .H(L)T0 . . . 0]T ∈ CJN×K being its first
block column and [H(0)0 . . . 0]∈ CJ×KM being its first
block row. uf (i) =[u(iN)Tu(iN + 1)T . . .u(iN + M −
1)T ]T ∈ C

KM with u(n) ∈ C
K being similarly defined as

x(n).
The problem we study in this article is blind estimation

of the MIMO channel matrix taps H(m), 0 ≤ m ≤ L,
by using second-order statistics of the received data. The
following assumptions hold throughout the article.

(A) The source signal s(n) = [ s1(n)s2(n) . . . sK (n)]T∈C
K

is a zero mean white sequence with E[ s(m) s (n)∗] =
δ(m−n)IK , where δ(·) is the Kronecker delta function.
The noise is white zero mean with E[w(m)w(n)∗]=
δ(m − n)σ 2

wIJ . In addition, the source signal is

Figure 1 A ZP-based MIMO–OFDM basebandmodel.
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uncorrelated with the noisew(n), i.e., E[s(m)w(n)∗]=
0K×J , ∀m, n.

(B) The concatenated channel impulse response matrix
H =[H(0)TH(1)T . . .H(L)T ]T ∈ C

J(L+1)×K is full
column rank, i.e., rank(H)=K.

3 Blind channel estimation
We first introduce the proposed method, assuming the
noise is absent in Section 3.1; the case when noise is
present and some distinctive features regarding the pro-
posed method are discussed in Section 3.2.

3.1 Proposed approach: noiseless case
When noise is absent, (2.1) can be expressed as x̄(i) =
Hf uf (i). By further defining the block source signal
sf (i) =[ s(iM)Ts(iM+1)T . . . s(iM+M−1)T ]T ∈ C

KM, we
have uf (i) = (F∗ ⊗ IK )sf (i) [9], which is a zero mean vec-
tor with E[uf (i)uf (i)∗]= (F∗ ⊗ IK )(F∗ ⊗ IK )∗ = (F∗F) ⊗
(IK IK ) = IKM according to assumption (A). Then taking
expectation of x̄(i)x̄(i)∗, we get

Rf = E[ x̄(i)x̄(i)∗]= HfH∗
f . (3.1)

Let J ∈ R
N×N be a circulant matrix with the first row

equal to [ 00 . . . 01]∈ R
1×N and S =[ IN−L0(N−L)×L]T ∈

R
N×(N−L). Then the block Toeplitz structure ofHf allows

us to writeHf = ∑L
k=0(JkS) ⊗ H(k), and hence

Rf =
(

L∑
k=0

(JkS) ⊗ H(k)
)(

L∑
l=0

(JlS) ⊗ H(l)
)∗

=
L∑

k=0

L∑
l=0

(
(JkS) ⊗ H(k)

) (
(ST (JT )l) ⊗ H(l)∗

)
=

L∑
k=0

L∑
l=0

(
JkSST (JT )l

) ⊗ (H(k)H(l)∗) .

(3.2)

The following proposition, whose proof is given in
Appendix 1, shows that the matrix JkSST (JT )l has special
structures that allows for the decomposition of (3.2) into
a group of decoupled equations.

Proposition 3.1: Let 0 ≤ k, l ≤ L be two non-negative
integers. For l = k + j, where 0 ≤ j ≤ L− k, the upper tri-
angular part of JkSST (JT )l is zero with only the jth upper
diagonal nonzero and is given by

�j
(
JkSST (JT )l

)
= qk(1 : N − j, 1) ∈ R

N−j, (3.3)

where qk = Jkq0, 0 ≤ k ≤ L − j, and q0 =
[ 11 . . . 1︸ ︷︷ ︸
(N−L) entries

00 . . . 0︸ ︷︷ ︸
L entries

]T ∈ R
N .

Since ϒj
((
JkSST (JT )l

)⊗(H(k)H(l)∗)
)=�j

(
JkSST (JT )l

)
⊗H(k)H(l)∗, it follows from (3.2) and (3.3) that for
0 ≤ j ≤ L, ϒj

(
Rf

)
can be described as follows:

ϒj
(
Rf

) = ϒj
(
HfH∗

f

)
=

L∑
k=0

L∑
l=0

ϒj
((

JkSST (JT )l
)

⊗ (
H(k)H(l)∗

))

=
L∑

k=0

L∑
l=0

�j
(
JkSST (JT )l

)
⊗ H(k)H(l)∗

=
L−j∑
k=0

qk(1 : N − j, 1) ⊗ H(k)H(k + j)∗

=
L−j∑
k=0

(
qk(1 : N − j, 1) ⊗ IJ

)
H(k)H(k + j)∗

= MjFj,
(3.4)

where Fj = [ (H(0)H(j)∗)T (H(1)H(j + 1)∗)T . . . (H(L − j)
H(L)∗)T ]T ∈ C

J(L−j+1)×J is formed from the products
of channel matrix taps of the form H(k)H(k + j)∗,
and Mj =[q0(1 : N − j, 1)q1(1 : N − j, 1) . . .qL−j(1 :
N − j, 1)]⊗IJ ∈ R

J(N−j)×J(L−j+1).
Since N > L + 1, the (L + 1) equations in (3.4) are

overdetermined and consistent. Since it can be checked
that Mj is full column rank for j = 0, 1, . . . , L (see
Appendix 2), the solution Fj can be obtained as

Fj = (MT
j Mj)

−1MT
j ϒj

(
Rf

)
, j = 0, 1, . . . , L. (3.5)

Let Q be the Hermitian matrix defined by Q = HH∗.
Then we obtain Q from (3.5) since Q is Hermitian and
ϒj(Q) = Fj for j = 0, 1, . . . , L. Since rank(H) = K by
assumption (B), Q has rank K . Since Q is Hermitian and
positive semidefinite, Q has K positive eigenvalues, say,
λ1, . . . , λK . We can expandQ as

Q =
K∑
j=1

(√
λjdj

) (√
λjdj

)∗ , (3.6)

where dj is a unit norm eigenvector of Q associated with
λj > 0. We can thus choose the channel impulse response
matrix to be

Ĥ =[
√

λ1d1
√

λ2d2 . . .
√

λKdK ]∈ C
J(L+1)×K . (3.7)

We note H can only be identified up to a unitary
matrix ambiguity U ∈ C

K×K [8], i.e., Ĥ = HU, since
ĤĤ∗ = HH∗ = Q. The ambiguity matrix can be solved
using a short training sequence [21].
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3.2 Discussions
(1) The noisy case: When noise is present, the received

covariancematrix becomesRf = HfH∗
f +σ 2

wIJN based
on (2.1). Since the matrix Hf ∈ C

JN×KM is of full col-
umn rank, the rank of HfH∗

f is KM. This implies that
the assoicated smallest (JN − KM) eigenvalues of Rf
are equal to the noise variances σ 2

w. Hence, in prac-
tice we can obtain the estimated noise variance σ̂ 2

w as
the average of the smallest (JN − KM) eigenvalues of
the sample covariance matrix R̂f . Then the proposed
channel estimation algorithm can directly apply by
substracting σ̂ 2

wIJN from R̂f . Alternatively, σ 2
wIJN can

also be estimated via the method given in [7].
(2) Channel identifiability: For the proposed method, the

channel identifiability condition is assumption (B),
i.e., rank(H) = K . Hence the channel needs not be
irreducible, column reduced [8], or full column rank
of H(0) required in the subspace method ([21], p.
1422). Thus the channel identifiability of the proposed
method is more relaxed than that of the subspace
method.

(3) Application to the more-input case: A necessary con-
dition for the concatenated channel matrixH to be of
full column rank (assumption (B)) is

J(L + 1) ≥ K , (3.8)

i.e., the product of the number of receive antennae (J)
and the channel length (L+ 1) should be no less than
the number of transmit antennae (K). Hence, unlike
the subspace method [21], which is exclusive for the
more-output case, the proposed method is also capa-
ble of identifying more-input channels (K > J), as
long as the condition (3.8) is fulfilled.

(4) Computational complexity: Compared with the sub-
space method [21], the proposed method requires
fewer computations. Detailed flop counts for these
two methods are given in Appendix 3.

(5) Algorithm: We now summarize the proposed
approach as the following algorithm:

(1) Collect the received data as x̄(i), and then
estimate the covariance matrix Rf via the fol-
lowing time average

R̂f = 1
S

S∑
i=1

x̄(i)x̄(i)∗, (3.9)

where S is the number of symbol blocks.
(2) Use the method given in this subsection to

eliminate the noise component σ̂ 2
wIJN impos-

ing on R̂f to get Rc = R̂f − σ̂ 2
wIJN .

(3) Form the matrix Mj and compute Fj using
(3.5) for j = 0, 1, . . . , L. (Here we use Rc
instead of Rf in (3.5).)

(4) Form the matrix Q using F0, F1, . . . ,FL, and
obtain the channel impulse response matrix
(3.7) by computing the K largest eigenvalues
and the associated eigenvectors ofQ.

4 Simulation
In this section, we use several numerical simulations to
demonstrate the performance of the proposed method.
We first consider two 2-input 2-output test channels, both
with L = 2. Channel A is shown as follows:

H(0) =
[
0.36 + 0.21j 0.48 + 0.29j
0.26 + 0.16j 0.5 + 0.17j

]
,

H(1) =
[ −0.49 − 0.36j 0.93 + 0.06j
0.88 + 1.30j 0.87 + 0.68j

]
,

H(2) =
[
0.73 − 0.14j −0.13 − 0.27j
0.29 − 0.4j −0.44 − 0.55j

]
,

and channel B is the same as channel A except H(0) =[
0.48 + 0.24j 0.32 + 0.12j
0.24 + 0.13j 0.18 + 0.06j

]
. The length of symbol blocks

is M = 18, which is zero padded to blocks of length M +
P = 20. It means P = 2(= L) and transmission efficiency
is 90%. The number of symbol blocks is S = 100. The
channel normalizedmean-square error (NMSE) is defined
as NMSE = (1/I)

∑I
i=1 ‖Ĥ(i) − H‖2F · ‖H‖−2

F , where I =
200 is the number of Monte Carlo runs, and ‖ · ‖F denotes
the Frobenius norm. Ĥ(i) =[ Ĥ(i)(0)TĤ(i)(1)TĤ(i)(2)T ]T
is the ith estimate of the channel impulse response matrix
H after removing the unitary matrix ambiguity by the
least squares method [8]. The input source symbols are
i.i.d. QPSK signals. The SNR at the output is defined as
SNR = E[‖x(n)−w(n)‖22]

E[‖w(n)‖22]
. The channel noise is zero mean,

temporally and spatially white Gaussian.
In the first experiment, we compare the performance of

the proposed method with that of the subspace method
[21]. Figures 2 and 3 are the simulation results of zero-
forcing equalization for channels A and B, respectively.
Figure 2 shows that the proposed method outperforms
the subspace method from low to medium SNR, whereas
the subspace method gives better performance for high
SNR; and Figure 3 shows that the performance of the pro-
posed method is better than that of the subspace method.
From Figures 2 and 3, we observe that the performance
of the subspace method deteriorates for channel B. This
is expected since by computation, the condition num-
ber of H(0) for channel B(=47.18) is larger than that of
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Figure 2 Channel A: Bit error rate versus output SNR.

channel A(=12.69), which means H(0) for channel B is
closer to singularity (rank deficiency) and tends to violate
the identifiability condition of the subspace method ([21],
p. 1422).
In the second experiment, we generate 100 3-input 2-

output random channels with L = 2 to illustrate the esti-
mation performance of the proposed method for channels
with more transmitters than receivers. We use M = 18

and P = 2. Each channel coefficient in the channel matrix
is generated according to the independent complexed-
valued Gaussian distribution with zero mean and unit
variance. Figure 4 shows that for different numbers of
symbol blocks, the proposed method is capable of iden-
tifying the more-input channels. In addition, the NMSE
decreases as SNR increases and is roughtly constant for
high SNR. A possible explanation is that for sufficiently
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Figure 3 Channel B: Bit error rate versus output SNR.



Chen and Wu EURASIP Journal on Advances in Signal Processing 2012, 2012:139 Page 6 of 9
http://asp.eurasipjournals.com/content/2012/1/139

0 5 10 15 20 25 30
−22

−20

−18

−16

−14

−12

−10

−8

−6

SNR

C
ha

nn
el

 N
M

S
E

(d
B

)

 

 
100 blocks
300 blocks
500 blocks

Figure 4 Channel NMSE versus SNR (more-input channel case).

high SNR, the channel NMSE is contributed mainly due
to numerical error than by channel noise. The existence
of the error floor at high SNR due to numerical error is
a well-known result, and this common phenomenon can
also be observed in some previous works related to blind
channel estimation [9-14].
In the third experiment, we apply the proposed method

to 200 2-input 4-out random channels with L = 4 to

demonstrate the performance. We use M = 36 and P =
4 to maintain the transmission efficiency at 90%. Each
channel coefficient in the channel matrix is still generated
according to the independent complexed-valued Gaussian
distribution with zero mean and unit variance. Figures 5
and 6 show that as the number of symbol blocks (used
to obtain the covariance matrix R̂f ) increases from 200
to 400, the BER approaches to the ideal case. In addition,
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Figure 5 Bit error rate versus output SNR (200 symbol blocks).
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Figure 6 Bit error rate versus output SNR (400 symbol blocks).

these two figures also show that the proposedmethod out-
performs the subspace method from low to medium SNR,
and the subspace method performs better for high SNR.
In the literature of blind channel estimation, it is well-

known that subspace methods, such as [18,21], enjoy the
so-called “finite sample convergence” property [15-19,21],
that is, in the noiseless case (or sufficicently high SNR),
the channels can be almost exactly identified by using
a finite number of samples for covariance estimation.
This is the reason why the subspace-based solution can
yield improved channel estimation accuracy and the
resultant BER in the high SNR region. The proposed
method, like most of other solution branches, e.g., [9-14],
can be classified as the “SCM” approach, by which exact
channel identification is achieved whenever the exact
covariance matrix is available. Hence, it is not unexpected
that our method is susceptible to finite-sample errors
in covariance matrix estimation, which leads to an MSE
floor in the high SNR region. Such a phenomenon is not
uncommon in the literature, and has been seen in many
studies, e.g., [9-14]. Despite this, the proposed method
can outperform the subspace algorithm in the low SNR
region, and hence could be a potential candidate in harsh
communication environments.

5 Conclusion
We propose an SCM based blind channel estimation
method for zero padding MIMO–OFDM systems. By
exploiting the block Toeplitz channel matrix structure,
we solve the channel product matrices from a series of

decoupled linear equations obtained from the covari-
ance matrix of the received data. Then the channel
impulse response matrix can be obtained by taking
eigen-decomposition of a Hermitian matrix formed from
the channel product matrices. The identifiability condi-
tion is more relaxed than that of the subspace method
[21]. Unlike most of existing solutions that are only
applicable for the more-output channels, the proposed
approach can also identify the more-input channels under
a quite mild condition. Simulation results are used to
demonstrate the performance of the proposed method.
Compared with the subspace method [21], the pro-
posed method is shown to have better performance
form low to medium SNR or when H(0) tends to be
singular.

Appendix 1: Proof of Proposition 3.1
Let en be the nth column of the identity matrix IN . Then
for k = 0 case,

�j
(
J0SS2(JT )j

)
= �j

(
[ e1e2 . . . eN−L0 . . . 0] (JT )j

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�0 ([e1e2 . . . eN−L0 . . . 0]) = q0

�j

⎛⎝⎡⎣ 0 . . . 0︸ ︷︷ ︸
jcolumns

e1e2 . . . eN−jeN−j+1 . . . eN−L0 . . . 0

⎤⎦⎞⎠
= q0(1 : N − j, 1), 1 ≤ j ≤ L.

Hence �j(J0G2(JT )j) = q0(1 : N − j, 1) for 0 ≤ j ≤ L.
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For k = 1 case,

�j
(
J1SST (JT )1+j)

= �j
(
J[ e1e2 . . . eN−L0 . . . 0] (JT )1+j)

= �j
(
[e2e3 . . . eN−L+10 . . . 0] (JT )1+j)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�0 ([0e2e3 . . . eN−L+10 . . . 0]) = Jq0 = q1

�j

⎛⎝⎡⎣ 0 . . . 0︸ ︷︷ ︸
jcolumns

0e2e3 . . . eN−L+10 . . . 0

⎤⎦⎞⎠
= q1(1 : N − j, 1), 1 ≤ j ≤ L − 1.

Hence �j(J1G2(JT )1+j) = q1(1 : N − j, 1) for 0 ≤ j ≤ L.
Following the same process, we can obtain the cases

�j(JkG2(JT )k+j) = qk(1 : N − j, 1) for k = 2, 3, . . . , L,
through some straightforward manipulation, and assert
the result given in Proposition 3.1.

Appendix 2: Proof of full column rank ofMj
Let Pj =[q0(1 : N − j, 1)q1(1 : N − j, 1) . . .qL−j(1 :
N − j, 1)]∈ R

(N−j)×(L−j+1) for j = 0, 1, . . . , L. We note that
P0 is a Toeplitz matrix with q0 being its first column and
[ 100 . . . 0]∈ R

1×(L+1) being its first row. Hence P0 is full
column rank.
Also we observe that for j = 1, 2, . . . , L, Pj is obtained

from P0 by deleting its last j rows and the last j columns,
i.e., Pj is a Toeplitz matrix with q0(1 : N − j, 1) being its

first column and

⎡⎣1 00 . . . 0︸ ︷︷ ︸
L−j

⎤⎦ ∈ R
1×(L−j+1) being its first

row. Thus, for j = 1, 2, . . . , L, Pj is full column rank.
Since Pj is full column rank,Mj = Pj ⊗ IJ is full column

rank for j = 0, 1, . . . , L.

Appendix 3: Complexity evaluation
The proposed method is compared with the subspace
method [21] in terms of flops, where a “flop” is defined to
be a single complex multiplication or addition [22].

Proposed method: Estimate the (Hermitian) covariance
matrix Rf using (3.9); this requires (2S − 1) JN(JN+1)

2 + 1
flops. Estimate and eliminate the noise variance to obtain
Rc needs 3JN flops. Solving (L + 1) least square problems
usingQR factorization ([22], p. 254) requires 2J3

∑L
j=0(L−

j + 1)2[N − j − L−j+1
3 ] flops. Eigen-decomposition of a

J(L + 1) × J(L + 1) requires 12J3(L + 1)3 flops.
Subspace method: Estimate the covariance matrix
requires (2S − 1) JN(JN+1)

2 + 1 flops. Eigen-decomposition
of a J(L + M) × J(L + M) matrix requires
12J3(L + M)3 flops. Singular value decomposition of a
(JN − KM)N × J(L + 1) matrix ([22], p. 240) requires
4J2(L + 1)2[ J(2L + 2 + N2) − KMN] flops.

According to the above flop computation, for the first
experiment simulation in Section 4, the proposed method
and the subspace method require about 1.7 × 105 flops
and 9.44 × 105 flops, respectively. For experiment 3 using
200 symbol blocks, the proposed method and the sub-
space method require about 5.5×106 flops and 5.99×107
flops, respectively.
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