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Abstract

The usability of high-precision and high-resolution 3D scanners is of crucial importance due to the increasing demand
of 3D data in both professional and general-purpose applications. Simplified, intuitive and rapid object modeling
requires effective and automated alignment pipelines capable to trace back each independently acquired range
image of the scanned object into a common reference system. To this end, we propose a reliable and fast
feature-based multiple-view alignment pipeline that allows interactive registration of multiple views according to an
unchained acquisition procedure. A robust alignment of each new view is estimated with respect to the previously
aligned data through fast extraction, representation and matching of feature points detected in overlapping areas
from different views. The proposed pipeline guarantees a highly reliable alignment of dense range image datasets on
a variety of objects in few seconds per million of points.

Keywords: 3D modeling pipelines, Geometric feature extraction, Feature description and similarity, Partial shape
matching, Range image datasets, 3D scanner usability

Introduction
In the last years, 3D datasets acquired with modern opti-
cal scanning devices (either based on structured light
projection or laser beams) increased their spatial res-
olution. Other primary features, such as accuracy and
acquisition speed, have also been improved. Scanner
are decreasing their size and weight and their usage is
expected to become more and more intuitive and uncon-
strained, such as the use of digital cameras. This would
be desirable in response to an increasing demand of “3D”
for today professional applications (industry and design,
medicine, cultural heritage, robotics, mechanics, build-
ing constructions. . . ) as well as for soon to come web
applications.
The first step toward the 3D modeling of a physical

object is the acquisition of multiple scans from different
viewpoints of the surface of interest. After the acquisition,
each set of 3D data (either composed by range images or
point clouds) needs to be accurately aligned (or registered)
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into a common coordinate system [1-3]. Aligned datasets
are then fed to a subsequent step of the object modeling
pipeline [4], with the initial alignment quality influencing
the accuracy and fidelity of the resulting object model.
Under the basic hypothesis of a certain degree of over-

lap among different views, the registration problem can
be conceptually split into a cascade of coarse and fine
alignments. Even if they can be considered as instances
of a more general class of problems called ‘shape corre-
spondence’ [5], they are different in nature and require
distinct solving approaches. The goal of coarse alignment
is to roto-translate each independently positioned scan
(an example is shown in Figure 1) so that the entire dataset
can be roughly brought into a common reference system
(as shown in Figure 2). This takes place without making
any assumption on the initial viewpoints. A second stage
fine alignment is then used to accurately register the scans
from the first approximate alignment.
Both coarse and fine approaches can be performed pair-

wise or multi-view). Solutions within the first class only
exploit the information present in the overlapping area
with respect to a single range image to determine sep-
arately the alignment between each pair of views, while
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Figure 1 A set of scrambled views composing the Dolphin object prior coarse alignment application.

multi-view alignment integrates all the available overlap-
ping information collected from all acquired scans and
exploits it in order to estimate the correct alignment.
Even though pairwise and multi-view coarse alignment
approachesmay seem equally effective to accomplish their
role, this is not true anymore in a practical acquisi-
tion settings. In fact, pairwise coarse alignment requires
each couple of subsequent views in a dataset to possess
a certain amount of overlap (from now on we address
such requirement as the overlap constraint). This can
be obtained by either forcing the operator to devise in
advance an acquisition path which complies with the
overlap constrain (thus limiting the scanner usability),

or by manually reordering the original acquisition path
as a preprocessing step (which may represent a tedious
and time consuming process). On the contrary, multi-
view approaches allow a more unconstrained usage of the
acquisition devices, in that the overlap condition can be
relaxed so that each incoming scan is only required to
possess a certain overlap with respect to any of the pre-
viously aligned range data. This effectively extends the
applicability of automated coarse alignment to a greater
number of less constrained acquisition paths. From now
on, we shall address as unchained path any acquisi-
tion path which abides by the previously stated relaxed
requirement.

Figure 2 The realigned Dolphin after application of the coarse alignment.
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In this work, our main focus is on the description of
a new multi-view coarse alignment method suited for
high-resolution datasets, specifically designed to fulfill the
following requirements: (1) it should improve the scanner
usability by allowing the operator the freedom to choose
the acquisition path, (2) it should prove to be equally effec-
tive regardless to the nature of the acquired object as well
as its size, (3) the alignments should be fast so as to give
the user on-the-fly visual feedbacks during object digital-
ization. We will see that effective multi-view alignment
solutions can be designed starting from an efficient pair-
wise alignment technique. In this paper we present the
proposed solutions in two main parts: pairwise alignment
(Section “Pairwise alignment technique ’’) and multi-view
alignment (Section “Multi-view alignment pipeline”). In
particular we propose:

– for Pairwise alignment:

(1) a multiscale feature extraction technique capable
of identifying feature points and their scale
(Section “Feature extraction”);

(2) a lightweight feature signature devised to quickly
reduce the matches space (Section “Feature
description”);

(3) a matching chain developed to progressively skim
the correspondence space (Sections “Feature
matching” and “Correspondence test and
selection”);

– for Multi-view alignment:

(1) the definition of a feature database for the
multi-view alignment (Section “Feature database
update”);

(2) the use of a global adjustment solution to optimize
the alignment obtained through the proposed
multi-view pipeline (Section “Global adjustment”);

Each block of the pipeline has been tested in isola-
tion (Section “Comparative tests”). An evaluation of
the entire pipeline performance is proposed (Section
“Experimental results”) on a set of range image datasets,
presented in Section “Acquired datasets”, represent-
ing different objects taken during real acquisition
campaigns. In particular, in-depth comparative tests
with respect to alternative solutions have been made
both on the feature extraction and description phases
(Section “Feature extractor and descriptor comparison ’’)
and on the correspondence test and selection solutions
(Section“Correspondence test technique comparison ’’).
Overall performance evaluations are presented in
(Section “Experimental results”) and organized accord-
ingly to the structure of the proposed solutions:
Section “Pairwise alignment results ’’ presents a quantita-

tive evaluation of the pairwise alignment performance in
terms of success rate and computational complexity, while
Section “Multi-view alignment pipeline” presents a quan-
titative evaluation of the multiview alignment in terms
of success rate, computational complexity and alignment
error. Conclusion are drawn in Section “Conclusions”. The
present paper builds on our conference paper [6], extend-
ing it in several parts. The experimental section has been
widened considerably, while performance evaluation of
each pipeline block in isolation has been performed.

Related work
Multiple scan alignment without prior knowledge of the
scanning viewpoints is a classic problem in 3D mod-
eling which have found several solutions in the com-
puter vision literature [7]. Some representative works are
[1-3,7-9]. Being the first step of a modeling chain, its per-
formance is of crucial importance for the attainment of
the final object model, since a certain degree of accuracy
is strongly required by the subsequent fine registration
steps to converge to the correct solution. In fact it is
well known that, for fine alignment, classic solutions (e.g.
ICP [10] and its variants [11]) are based on optimiza-
tion routines which often suffer from convergence to local
minima which should be maximally reduced by proper
initialization of each view referencing. Coarse alignment
solutions can be traced back to one of the two main
philosophies that have emerged during these years, i.e.
with or without the exploitation of feature descriptors.
The first approach exploits the ever-increasing computa-
tional capabilities of modern calculators to find, within a
large solution space, the affine transform that better aligns
two views. The main advantage of the techniques which
fall into this category is that they are independent from
the input data and are more robust to noisy data. On
the other hand, they are usually computationally expen-
sive. The progenitor of this family is considered to be
the RANSAC, devised by Fischler and Bolles [12]. Dur-
ing the years, improvements to this algorithm have been
proposed in order to reduce the computation time, also
by exploiting point neighborhood descriptors [13,14]. A
second approach for coarse registration relied on the
extraction and subsequent matching of (global, local or
multiscale) shape descriptors [7,15]. Advantages with
respect to brute-force approaches aremainly related to the
computational gain achieved through an accurate selec-
tion and skim of descriptive features. On the other hand,
they usually fail in describing featureless surfaces, and
are more sensitive to noise. Feature-based approaches are
widely used in several application fields such as similarity
search, object retrieval and categorization [16-18], shape
correspondence and analysis [5,15]. Multiscale feature-
based approaches (such as the one we propose in this
work) allow a better adaptation to features of different
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kind and dimension. Related works are those presented by
Li and Guskov [19] and Lee et al. [20] which introduced
extensions of Lowe’s 2D SIFT [21] to 3D datasets. Their
approach has been subsequently exploited by Castellani
et al. [22] and Bonarrigo et al. [6]. SIFT-related feature
description distinctiveness against Spin Images has been
compared in [23]. Thomas and Sugimoto [24] proposed
to use the reflectance properties for images registra-
tion to better perform on featureless images. In feature-
based approaches, feature points are usually associated to
descriptors, which ideally should associate an unambigu-
ous signature to each feature, which is fast to compute and
robust to any viewpoint rotation as well as to variations
of point density on the image. Li and Guskov [19] pro-
posed a descriptor based on a combination of local Dis-
crete Fourier transform and Discrete Cosine transform to
describe the neighborhood of each feature point. Gelfand
et al. in [3] proposed the use of volumetric descriptors,
that is the estimation of the volume portion inscribed
by a sphere centered at a point of the surface. Castellani
et al. [22] proposed a statistical descriptor based on a
hiddenMarkov chain that is trained through its neighbor-
hood. Despite scan alignment and similar problems have
been thoroughly explored in the literature, meaningful
comparisons remain somehow difficult to accomplish for
several reasons: the heterogeneity of each approach, the
different way in which they are combined into functional
alignment pipelines, the variability of the addressed per-
formance and application requirements, the differences
of test datasets both in terms of representation primi-
tives (range images, point clouds, meshes, etc.) and data
characteristics (resolution, noise, etc.) related to the dif-
ferences in data acquisition setup and scanning hardware.
In particular, even if each block of a feature-based align-
ment pipeline (feature extraction, description, matching,
correspondence selection and transform estimation) can
be tested in isolation with respect to alternative solutions
(we will do this in Section “Comparative tests”), criti-
cal interdependencies exist among the different pipeline
blocks. In this work we adopted design criteria which
take full account of such interdependency, according to
what has been recognized in reference reviewing work
[15,17]. Bustos et al. [17] indicated that a complete and
fair comparison of feature extraction and description
techniques is unfeasible and that the specific application
requirements should inspire and provide guidance for the
design of application-driven solutions. Bornstein et al.
[15] concluded their review by suggesting to avoid the
design of pipelines composed by unnatural block com-
binations. Another relevant aspect is that multiple-view
coarse alignment solutions are usually proposed in liter-
ature as simple extensions of pairwise approaches. This
leads to a serious limitation on the usability of the acquisi-
tion devices. The increased complexity of a multiple-view

coarse alignment has been recognized in [1] with a solu-
tion proposed by model graphs and visibility consistency
tests. An approach based on view trees has been adopted
in [9] where multiple-view coarse alignment is obtained
bymaximization of inlier point pairs. However, these solu-
tions do not allow interactive acquisition because they
work on a graph of the pairwisematches once all the align-
ments are completed, and this conflicts with the need of
on-the-fly visual feedbacks. By exploiting the possibility of
some range scanners to acquire views at high frame rate
(e.g. Kinect and alike sensors), hand-held on-the-fly acqui-
sition and alignment solutions have been proposed [25,26]
with specific solutions for handling loop closure problems
[27] or computational burden [28]. However, these inter-
esting applications are still too far from today professional
requirements of high point density and metric precision.

Pairwise alignment technique
Overview and notation
In this section we shall introduce some notation, as well as
briefly summarize the alignment process. A range image
can be conceived as the projection of a 2D image grid
on a 3D target object surface and the acquisition of
depth-related information from that surface. The result-
ing dataset is a “structured” point cloud, that is a set of
points lying in a 3D space, and associated to a pixel of
the acquisition grid. We define a range image as a map
I ⊂ Z

2 → R ⊂ R
3, where the domain I is a rectangu-

lar grid (usually corresponding to the CCD matrix), while
the co-domain R corresponds to the set of 3D points rep-
resenting the acquired surface. Due to the limitations of
the acquisition procedure (limited measure range, occlu-
sions due to the object shape, etc.), not all pixel positions
i ∈ I may have a valid corresponding point pi ∈ R, there-
fore only a subset IV ⊆ I of valid points is acquired for
each image.We take advantage of range images data struc-
ture in order to speed up the processing: in particular,
by exploiting the image domain I, neighborhood informa-
tion can be retrieved quickly and efficiently, while data
processing is performed over the 3D target space R. An
example of efficient processing obtained by exploitation
of the 2D grid is the normal field estimation method we
employ. For a given point c we exploit the 2D grid to
identify its 8 closest neighbours pk , with k ∈[ 0, 7], to esti-
mate the normal n̂c. At first, for every valid point pk the
vectors vk = pk − c are computed. Then the outer prod-
ucts between each valid couple of vectors (vk , v(k+2)%8) are
determined. Once normalized, they are summed together
and their average is set as the normal for point c.
Figure 3 describes the pipeline we adopt for the pair-

wise alignment between the pair of range images RIa
and RIb. All the building blocks highlighted in red are
recalled in subsequent sections, while in the following
we briefly summarize the alignment process. Given a
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Figure 3 The pairwise alignment system, composed by: feature extraction (Section “Feature extraction”), feature description
(Section “Feature description”), feature matching (Section “Feature matching”), correspondence test and selection
(Section “Correspondence test and selection”).

pair of range images RIa and RIb, the first step in the
pipeline applies a multi-scale feature extraction method
thoroughly described in Section “Feature extraction”, such
that meaningful points MPa and MPb are identified on
the respective surfaces. Following, each point in the sets
MPa and MPb is associated with a signature, described in
Section “Feature description ’’, which encodes neighbor-
hood information with respect to the meaningful point.
The signature is designed to be suitably discriminative and
fast to compute. This way, two sets of feature points FPa
and FPb are obtained. Correspondences between these
2 sets are then established through the matching pro-
cess described in Section “ssec:featureMatching ’’, which
exploits the signatures in order to identify pairs of com-
patible feature points so that a correspondence set Cab
is determined. Each correspondence c is constituted of
a pair of feature points, one taken from FPa and the
other from FPb. In the next phase, correspondences are
grouped to form triplets, as described in Section “Cor-
respondence test and selection”, and the ones which are
most likely to be correct are collected in a triplet set
Tab. We resort to triplets of correspondences since they
contain the minimum number of points (that is, 6 3D
coordinates, 3 of which lie in the reference system associ-
ated to RIa while the others lie in the one associated with
RIb) for which a roto-translation matrix can be estimated,
for instance applying the method described by Horn in
[29]. The triplet set Tab is then evaluated so that a sin-
gle roto-translation matrix RMab is identified and verified
with respect to its correctness.

Feature extraction
The feature extraction technique we adopt here is a mod-
ified version of the approach proposed by Castellani et al.
[22]. His approach is similar to the one introduced by Lee
et al. [20], which can be in turn considered as a 3D exten-
sion of the 2Dmulti-scale analysis proposed by Lowe [21].
Hereafter we shall summarize Lee’s approach, then we will
highlight the modifications introduced by Castellani, as
well as our own.
The approach from Lee et al. requires that: (a) given

a range image RI, M filtered images G(r), at scales
r ∈[ 1,M], are derived by applying Gaussian kernels of

growing dimension; (b) a set of M − 1 saliency maps S(r)
is derived from pairs of G(r) at consecutive scales, from
which a set of MP is identified. These MP are candidate
features, and are associated with the scale at which they
have been detected. To produce the filtered imagesG(r) at
various scales r ∈[ 1,M], a geometric Gaussian filtering is
applied to each valid point pi in the RI, obtaining gi(r):

gi(r) =

∑
pj∈B2σr (pi)

pj · e
−‖pi−pj‖2

2·σ2r

∑
pj∈B2σr (pi)

e
−‖pi−pj‖2

2·σ2r

(1)

where B2σr
(pi) identifies the points within a euclidean

distance 2σr from pi. A filtered image G(r) is thus defined
as the set of points gi(r), with i ∈[ 1, |IV |]. As the kernel
radius σr increases, details which size is smaller than σr are
smoothed out from G(r) and, when the kernel size dou-
bles, computations are performed on images subsampled
by a factor two.
Once the filtered versions G(r) have been calculated,

M − 1 saliency maps are derived. A saliency map is a
2D array of scalar values, obtained by pairwise subtrac-
tion ofG(r) at adjacent scales. This retains only the details
comprised between the two bounding scales r and r + 1,
in other words it highlights features which dimension is
comprised between the kernel sizes σr and σr+1. Saliency
maps S(r) = {si(r)} are calculated as follows:

si(r) = ∥∥gi(r) − gi(r + 1)
∥∥ (2)

The maximum values of each saliency map S(r) are con-
sidered to be MP and located through an iterative search
where, once the greatest valid saliency value for S(r) is
found, no other maximum can be selected within an inval-
idation neighborhood region B2σr+1

(pi). This prevents
the selection of feature points which descriptors would
partially overlap, since the descriptor size for features
detected at scale S(r) is σr+1.
With respect to Lee’s approach, Castellani et al. pro-

posed that, for each valid 3D point, its saliency is esti-
mated by calculating the projection norm between the
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pairwise difference and the normal associated to the orig-
inal 3D point:

si(r) = ∥∥〈
n̂i, gi(r) − gi(r + 1)

〉∥∥ (3)

This correction should help in reducing the saliency val-
ues associated to points that, after the filtering, have
moved away from their normal direction. We have found
out, however, that such saliency correction (originally pro-
posed for mesh data) needs to be corrected in order to
apply it to range images and point clouds. Since these
types of data usually contain a greater number of 3D
points than mesh vertices, their normal field is more sub-
ject to vary due to the filtering process. Therefore, in order
to obtain a reliable saliency estimation, we propose to use
the normal field associated to the filtered data itself:

si(r) = ∥∥〈
n̂i(r), gi(r) − gi(r + 1)

〉∥∥ (4)

Although such a modification requires an estimation of
the normal field for every filtered image G(r), we will
demonstrate in Section “Feature extractors comparison”
that it brings a significant performance boost with respect
to feature localization.
This saliency estimation described in (4), brought a

slight increment in performance with respect to the
approach initially proposed in [6]. Once the set of MP
has been computed, a number of tests on each meaning-
ful point is performed in order to make sure that: (1) its
neighbour points are well distributed and (2) it is not close
to a border or hole, otherwise the associated descriptor
would be incomplete; (3) it does not lie over a saliency
ridge, because in such cases small variations in saliency

estimation may cause great variations of maximum local-
ization. If any of these conditions is not met, the point
is discarded from the set MP. Hereafter, for a neater and
more compact notation we will omit unnecessary indices
when things have general validity.

Feature description
In order to search for correspondences between feature
points belonging to different range images we rely on fea-
ture descriptors. We propose to associate to each feature
point f ∈ MP detected at scale σr a descriptor which
encodes information extrapolated from both the normal
vectors and saliency data of the neighbour points pj ∈
Bσr+1 (f ). In summary, given a feature point f , we define
a polar grid spanning the tangent plane to f . This grid
is composed of M radial sectors and L angular sectors,
as shown in Figure 4. Every neighbour point pj within
Bσr+1 (f ) is associated to a grid sector, and for each sec-
tor we compute two score values derived by the normal
and saliency information. As a result, our descriptor is
composed by 2 × M × L real (floating point) values. Fol-
lowing, we describe in more detail how the descriptor is
computed.
At first, a local reference system x̂f , ŷf , ẑf is centered

on f . Versor ẑf is set toward the direction of the fea-
ture normal n̂f , while the span of {x̂f , ŷf } identifies Pf , i.e.
the plane tangent to f . The direction of x̂f is randomly
selected, while ŷf = ẑf × x̂f . A polar grid of radius σr+1
is then defined and subdivided into M radial and L angu-
lar sectors. We have empirically found that M = 3 and
L = 36 generate a distinctive signature, while allowing fast
computation. Each point pj belonging to Bσr+1 (f ) is then
associated to a given sector of the polar grid by mapping
pj on the plane Pf . This is represented in Figure 4 by the

Figure 4 Signature grid description.
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point p̃j = f + ‖v‖ · v̂xy, where v = pj − f . The sector
indexes (mj, lj) associated to pj are computed as follows:

mj =
⌊
‖v‖ M

σi+1
+ 0.5

⌋
lj =

⌊
θj

L
2π

+ 0.5
⌋

(5)

where

θj =
{

arccos(〈v̂xy, x̂f 〉) 〈v̂xy, ŷf 〉 ≥ 0
2π − arccos(〈v̂xy, x̂f 〉) 〈v̂xy, ŷf 〉 < 0

ϕj = arccos(〈v̂, ẑf 〉)
v̂xy = v − ‖v‖ cos(ϕj) · ẑf∥∥v − ‖v‖ cos(ϕj) · ẑf

∥∥
(6)

Once each point pj ∈ Bσr+1 (f ) has been associated to
a sector, it is possible to compute wf , the descriptor asso-
ciated to feature point f . At first, for each sector (m, l)
the average normal vector n̂(m, l) and saliency s(m, l) are
computed (if a sector does not contain any point, it is con-
sidered invalid). Then, given n̂f and sf respectively the
normal vector and the saliency value associated to the fea-
ture point f , the sector descriptor wf (m, l) is computed as
follows:

wf (m, l) = [�n(m, l),�s(m, l)]
�n(m, l) = 1.0 − ∣∣〈n̂(m, l), n̂f

〉∣∣
�s(m, l) = 1.0 − s(m, l)

sf

(7)

Each sector descriptor wf (m, l) will therefore contain
two scores (�n and �s, both ∈[ 0, 1]) related to how much
the average normal and saliency values in each grid sector
differ from the corresponding feature point values. The
feature descriptor wf is therefore the set of the M × L
sector descriptorswf (m, l) thus calculated. Once each fea-
ture point has been associated to its descriptor, they are
organized in the set FP for the subsequent processing
stages.
The proposed descriptor is fast to compute since both

normals and saliency information are already available
(the latter being a byproduct of the extraction procedure
described in Section “Feature extraction”) once the feature
points have been identified. Moreover, it is moderately
lightweight as it only requires 2 × M × L floating point
values. Nevertheless, it is enough selective as to allow to
skim the correspondence space to amore treatable dimen-
sion while retaining enough correct correspondences. In
Section “Feature descriptor comparison” we will complete
these observations by comparing our descriptor to the
Spin Images introduced by Johnson [30] and by demon-
strating its superior performance.

Feature matching
Given two feature sets FPa and FPb, estimated on differ-
ent range images, the objective of this pipeline block is to

calculate all possible feature correspondences by match-
ing the descriptors of each pair of features (f s ∈ FPa,
f d ∈ FPb), and subsequently select a subset of correspon-
dences Cab which is likely to contain the correct ones.
Figure 5 gives the reader an intuition on how feature
similarities can define relevant matches.
In Section “Feature description ’’ we stated that the

direction of x̂f is chosen arbitrarily for each feature
descriptor. This can be modeled with an unknown dis-
placement factor L̄, with L̄ ∈[ 1, L], between the signatures
of the same feature point on two different range images.
We therefore compensate this indetermination by per-
forming an operation similar to the circular correlation, in
that one of the descriptors remain fixed, while the other
is shifted along the circular direction for L times. At each
rotation step a score is computed, and themaximum score
value is selected as follows:

cscoresd = maxl̄∈[1,L]
{
cscoresd (l̄)

}
(8)

with

cscoresd (l̄) =
M∑

m=1

L∑
l=1

[
nscoresd (m, l, l̄) · sscoresd (m, l, l̄)

]
nscoresd (m, l, l̄) = (

1 − ∣∣�ns(m, l) − �nd(m, l̄)
∣∣)

sscoresd (m, l, l̄) = (
1 − ∣∣�ss(m, l) − �sd(m, l̄)

∣∣)

Once all possible matches between the two feature sets
FPa and FPb have been computed, we need to skim the
matches set from its original size |FPa| · |FPb| to a more
treatable dimension. We therefore define a correspon-
dence set Cab of size Q as the list of correspondences cq
found between FPa and FPb which possess the highest
correspondence score. We decided to retain the best Q
correspondences (in this work we use Q = 150), rather
than fix a hard threshold for the score, since the score dis-
tribution is not constant with respect to different image
pairs. Within the set of Q best matches we have also
verified that, in general, the majority of correct correspon-
dences share the top positions of the ranking together
with a small number of false matches (generated by inci-
dental signature similarities). This means that we cannot
“blindly” exploit the first correspondences of the ranking
to estimate the roto-translation matrix between the views.
We therefore introduce a robust selection step (described
in the following section) to determine the most reliable
correspondences within the set Cab.

Correspondence test and selection
In order to determine a roto-translation matrix that ref-
erences RIb to RIa, at least 3 correct correspondences
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Figure 5 Feature signatures. Upper part: two range images on which some feature points are highlighted with different colors. Below, graphical
visualization in a red-blue scale of the signatures, contoured with their corresponding colors. The first two features (yellow and red) as well as the
last two ones (orange and pink) have well matching descriptors.

(a triplet) need to be identified within the set Cab. Each
triplet t is defined as follows:

t = {
cg , ch, cj

}
, with

⎧⎪⎨
⎪⎩
cg , ch, cj ∈ Cab

g, h, j ∈[ 1,Q]
g 
= h 
= j

(9)

Given the correspondence set Cab of sizeQ, the number
of possible non-repeating triplets is (Q3 − 3Q2 +2Q)/6.
Determining which (if any) of the triplets is correct is
a computationally expensive task: for Q equal to 150
we would obtain more than half million triplets, there-
fore brute-force approaches such as directly test each
of the possible roto-translations is not a viable option.



Bonarrigo et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:148 Page 9 of 24
http://asp.eurasipjournals.com/content/2012/1/148

Solutions such as RANSAC [12] and similar ones are
known to be effective solutions in performing these type
of searches, however it is also known that the number
of trials required to determine the correct model (in
our case, a triplet) grows exponentially with respect to
the proportion of outliers in the set. Unfortunately, in
our scenario the number of inliers within the set Cab is
likely to be small. Indeed, it is below 15% in more than
half of the considered cases, as we will show in Section
“Correspondence test technique comparison ’’. There-
fore we can expect the computational burden of
RANSAC-style approaches to be high for such scenario.
Alternatively, we propose a robust selection procedure

designed to progressively skim the correspondences so
that the computational cost is kept low at each stage. The
procedure consists of three steps: (1) every correspon-
dence within Cab is validated against each other and a
score is calculated for each pair of matches; (2) for each
triplet of correspondences a score is computed based on
the three pairwise scores previously calculated, and a sub-
set Tab of U best triplets is retained; (3) for each triplet in
Tab, a roto-translationmatrixRM is estimated and applied
to the feature set FPb, corresponding points are searched
within image RIa. The triplet which collects the highest
number of such corresponding points is considered as the
more reliable estimate. The above three steps are now
described in detail.
(1) In order to validate each correspondence with

respect to the others we exploit the rigidity constraint,
which states that the distance between two points subject
to an Euclidean transformation remains constant. We also
introduce the concept of relative distance between a pair
of correspondences, illustrated in Figure 6, and defined as
follows:

dgh ≡ d
(
cg , ch

) =
∣∣∣ ∥∥∥pAg − pAh

∥∥∥ −
∥∥∥pBg − pBh

∥∥∥ ∣∣∣
max

(∥∥∥pAg − pAh
∥∥∥ , ∥∥∥pBg − pBh

∥∥∥) (10)

Due to the normalization term at the denominator, the
relative distance is bounded between 0 (same distance)
and 1 (maximum distance). The evaluation of the rela-
tive errors allows to perform a more unbiased ranking
than that it would be with absolute errors (which tend
to favor correspondence pairs of features which are close
together). Once the relative distances have been esti-
mated, they are organized into a Q × Q matrix DM:

DM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 d12 d13 · · · d1Q
d21 0 d23 d2Q
d31 d32 0 d3Q

...
. . .

...
dQ1 dQ2 dQ3 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

DM is symmetric (dhg = dgh), and possesses zeros over its
main diagonal (dgg = 0,∀g ∈[ 1,Q]). An example of how
such matrix looks like is presented in Figure 7.
(2) Once DM is calculated, the triplet space is skimmed

by determining the set Tab of U triplets (we set U to 25)
which present the maximum value of the following score:

tscore = 1 − dgh + dhj + djg
3

{
g, h, j ∈[ 1,Q]
g 
= h 
= j

(12)

Similarly to the skim procedure described in the previous
section, this triplet skim procedure is able to retain the
triplets made of correct matches in the highest positions
of the ranking.
(3) In order to determine the most correct triplet within

the set Tab, for each tu ∈ Tab,u ∈[ 1,U] the following
steps are performed:

• the roto-translation matrix RMu associated to triplet
tu is estimated through Horn method [29];

• the feature set FPb is roto-translated through
application of RMu;

• corresponding points between FPb and RIa are
identified.

Figure 6 Example of correspondences distance dgh of (10).
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Figure 7 A distance matrixDM: blue dots represent low relative
distance, while red ones identify distant matches. The red square
clusters present along the diagonal are generated whenever
evaluating pairs of correspondences that share one feature point
(leading to a relative distance of 1).

The triplet t̄ which is found to possess the higher num-
ber of corresponding points is considered as the one that
is most likely to be correct. Its associated roto-translation
matrix ¯RM is thus refined by taking into account all the
corresponding points just estimated. At last, the obtained
alignment is tested by selecting a subset of points from
RIb, roto-translating them through ¯RM, and verifying that
at least a given percentage of points find a correspondence
in RIa. If the number of matches is above this threshold,
image RIk is considered as successfully aligned to the pre-
vious one. Coherently with the view overlap constraint
we set that threshold to 20%. As we will demonstrate
in Section “Correspondence test technique comparison ’’,
given the typical proportion of inliers for the set Cab, the
speed of our approach outperforms both RANSAC [12]
as well as its descendant PROSAC [31] in determining the
best triplet.

Multi-view alignment pipeline
As we will see in the experimental sections, the described
pairwise alignment pipeline, even compared to other
solutions, presents good performance and is suitable for
automatic alignment of dense range scans in terms of
computational speed and robustness (successful align-
ment rate). Nevertheless, in order to reconstruct an entire
object through such a pipeline, we would need to either
define a chained acquisition path for which every con-
secutive image pair complies with the overlap constraint

(thus limiting the scanner usability), or manually reorder
the scans prior to applying the alignment (a tedious, time
consuming and necessarily off-line operation). Therefore,
from both a conceptual and practical point of view the
chained path assumption turns out to be a limitation to
the scanner usability.
For instance, imagine that an operator is using a scanner

to acquire a human statue, trying to abide by the policy
imposed by the overlap constraint. He starts acquiring the
front of the statue (chest, belly, etc.), then progressively
moves toward the back. At a certain point, however, he
realizes that some region on the belly was not acquired
properly, creating a “hole” in the digital model. He there-
fore decides to acquire another range image on the front
so that the hole can be properly filled. However, in order
to comply with the overlap constraint he would need
to capture more range data in regions he has already
scanned to create a path between the back and the belly
of the statue. It would be much simpler if he could fol-
low an unchained acquisition path, as defined in Section
“Introduction”. Another advantage of an unchained path
multi-view alignment with respect to the pairwise
approach is the fact that overlapping regions from pre-
viously aligned views can be cumulated to improve
the chances of alignment: one view may not present
enough overlap with respect to all the previously acquired
ones, in such case any pairwise alignment attempt is
likely to fail due to lack of reliable correspondences or
because the 20% overlap requirement stated in Section
“Correspondence test and selection ’’ is not met although
the union of overlapping regions taken from different
views may contain enough overlap (as well as reliable
correspondences) to achieve the alignment.
We then extend the pairwise approach by working with

a database of features (indicated with FPdb) which collects
the feature sets associated to all the previously aligned
range images, so that the feature set associated to the cur-
rent range image FPk is matched to the database FPdb.
Figure 8 illustrates the block diagram of the multi-view
alignment pipeline we propose. With respect to the stages
described in Section “Pairwise alignment technique ’’, we
need to introduce a new block (in red in Figure 8), which
is responsible of updating the feature database.

Feature database update
Ideally the feature database FPdb could be simply defined
as the union of all feature sets FPk associated to the previ-
ously aligned range images, each one brought in the abso-
lute reference system through its own roto-translation
matrix. However, such an approach would create plenty
of redundancy in the database, since every corresponding
feature (the ones on which we rely in order to assess the
alignment between the views) would appear as replicas. A
better approachwould require us to realize an intersection
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Figure 8 Block diagram representing the multi-view alignment system.

between the feature sets, in order to effectively curbing the
database growth:

FPdb =
k−1⋂
i=1

FPi (13)

To do so, for each feature set FPk that needs to be
inserted in inserted in the database FPdb we identify any
corresponding appears in the same 3D position (that is,
closer than 1/3 of the feature signature radius). For each
pair of concurrent features we select a single represen-
tative based on the similarity of the feature normal with
respect to the acquisition direction. In fact, we assume
that such features possess better signatures, since their
neighborhood is usually less afflicted by occlusion issues.
We also associate to each representative a presence list,
that is a list of all the range images in which that feature
appears: this list is exploited during the triplet verifica-
tion phase (described in Section “Correspondence test
and selection”) to determine on which range images the
test has to be performed.

Global adjustment
After having successfully applied the describedmulti-view
coarse registration technique to a given dataset, we have
the possibility to complete the alignment process toward
a high-precision object modeling with a fine alignment
and/or global adjustment step. Considering the multiple
view nature of our problem, a multi-view fine alignment
technique should be used to prevent residual errors to
propagate along the alignment path (e.g. closure problems
for objects with cylindrical symmetry). Among several
methods present in literature we used an approach we
recently proposed [32] which is suitable to accurately
align sets of high-resolution range images, also directly
starting from the coarse aligned dataset. This is particu-
larly suitable in cases a chained pairwise fine alignment
(e.g. using ICP) is prevented by the absence of a chained
path. Our approach is based on the ‘Optimization-on-a-
Manifold’ framework proposed by Krishnan et al. [33], to
which we contribute with both systemic and computa-
tional improvements. The original algorithm performs an
error minimization over themanifold of rotations through

an iterative scheme based on Gauss–Newton optimiza-
tion, provided that a set of exact correspondences is
known beforehand. As amain contribution we relaxed this
requirement, allowing to accept sets of inexact correspon-
dences that are dynamically updated after each iteration.
Other improvements were directed toward the reduc-
tion of the computational burden of the method while
maintaining its robustness. The modifications we have
introduced allow to significantly improve both the con-
vergence rate and the accuracy of the original technique,
while boosting its computational speed [32].

Acquired datasets
In order to compare each new building block of our
pipeline in Section “Comparative tests”, as well as to
evaluate both the pairwise and multi-view alignment per-
formances in Section “Experimental results”, we consider
a number of meaningful datasets that we acquired with
a commercial high-resolution structured-light scanner
(1280 × 1024 pixel CCD, i.e. potential 1.3M points/RI).
The acquired datasets correspond to 14 scanned objects
for a total of 300 range images, that is 286 RI pairs.
They are shown in Figure 9, as they appear after suc-
cessful alignment, with different colors associated to each
range scan (naturally high color mixing due to scan inter-
penetration is present). To make the pairwise and multi-
view approaches fully comparable, among all the possible
unchained acquisition paths a chained path has been
determined and followed for each dataset. It is worth not-
ing that for multi-view alignment a chained path can be
considered as a regular element (with no special proper-
ties or distinction) of the set of unchained paths (accord-
ing to the definition given in Section “Introduction”). In
addition, we will also consider alternative unchained paths
to further evaluate the multi-view pipeline. The consid-
ered objects are related to cultural heritage (statues and
high-reliefs) and biomedical (orthodontic moulds) appli-
cation fields, they have been chosen to represent well dif-
ferentiated aspects and geometric properties, variegated
feature dimensions, morphology and numerosity.
Objects size range from 50 up to 600 mm over their

main dimension. Despite the acquisition paths aimed to
minimize the number of scans while covering the entire
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Figure 9 The test datasets: Decoration, Angels, Mould 1, Mould 2, Dog, Cherub, Dolphin, Mould 3, Mould 4, Platelet, Capital, Rose,
Hurricane, Venus.

surface of interest, the amount of overlap between the
images can vary a lot due to the implicit characteris-
tics of the surface that is being acquired: if the surface
is quite planar, as for the Angels dataset, the maximum
overlap is limited to 30%, whereas for datasets particu-
larly affected by occlusion phenomena, such as the Rose
dataset, many images cover the same area from different
viewpoint angles, thus increasing the region overlap up to
80%. However, in these cases, an higher overlap does not
necessarily imply an easier alignment, since the views can
be heavily affected by holes which may cause instability in
the feature localization as well as a degraded reliability of
the computed descriptors for the features close to the hole
borders.

Comparative tests
The pipeline we proposed in Section “Pairwise alignment
technique” may appear to be constituted by independent
blocks, thus easily interchangeable with alternative ones.
However, as anticipated in Section “Related work”, a cer-
tain degree of interdependency is present. In fact, our
descriptor incorporates the saliency information, which
is obtained during the multi-scale analysis performed
during the extraction phase. A more subtle dependency
regards the correspondence skim procedure: the number
of correct correspondences that is obtained at the end
of the matching block can be very limited, therefore the
skim procedure has to be very reliable. This is the rea-
son for which we came out with our own skim procedure
rather than relying on heuristic approaches, which usu-
ally have more stringent assumptions with regard to the
number of inliers within the correspondence set. These
considerations are to be taken into account when trying
to compare the performance of each pipeline block: sub-
stituting a given technique for another one, extrapolated
from a different framework, may result in performance
degradation. With these considerations in mind, we now
propose a number of comparisons of our pipeline stages
with respect to other works presented in the literature.
We tried to identify solutions that may individually fit into

our pipeline in order to reduce performance degradation
effects due to technique unsuitability.
In Section “Feature extractor and descriptor compari-

son” we evaluate both the feature extractor (proposed in
Section “Feature extraction”) and descriptor (introduced
in Section “Feature description”) with respect to simi-
lar approaches on a number of different scenarios we
devised, while in Section “Correspondence test technique
comparison” we evaluate our correspondence skim pro-
cedure (described in Section “Correspondence test and
selection”) with respect to other solutions by comparing
both precision and computational efficiency. All the com-
parisons presented in this section have been performed on
the same platform described in Section “Pairwise align-
ment results”.

Feature extractor and descriptor comparison
In order to assess the performance of the extraction and
description blocks of our pipeline, we devised a number of
test scenarios. Hereafter we state what is the objective we
pursue for each block; then we describe the test scenarios.
In order to compare our feature extraction technique

with respect to the others, we aim to assess the capabil-
ity to detect salient points in the same position, regardless
to the possible variations that the surface may undergo
due to various effects. We therefore devised three differ-
ent scenarios in which we assess the feature repeatability
with respect to: (1) noise added to the surface; (2) holes
carved in the data; (3) acquisition viewpoint variation.
For the feature description stage, our objective is to

assess how well our descriptor compares with others. To
do so, given two aligned range data we extract features
from both of them, match them, and count the ones that
are correct (i.e. the ones for which the Euclidean distance
is below a given threshold). Out of all possible correspon-
dences, we retain the ones that present the best score
values in the set Cab, which size Q is set to 150, and count
the correct correspondences that survived the selection
step. Intuitively, the better the descriptor is, the greater its
correspondence survival rate will be. Similarly to the pre-
vious assessment, we plan the same scenarios in which we
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Figure 10 Angels particular with added noise at different σ .

measure the correspondence survival rate. Following, we
describe in detail each test scenario.
Noise scenario: for a given range image RI we generate

a number of replicas RIknoise, with k ∈[ 0, 10], where each
replica is smeared with Gaussian noise with zero mean
and standard deviation σ = k · �s, where we set �s equal
to the average grid spacing. In order to collect enough
information to infermeaningful statistics, for this scenario
six different datasets were used, for a total of 105 test
images. In Figure 10 an example of noisy data is shown.
Hole scenario: for a given range image RI we generate a

number of replicas RIkholes, with k ∈[ 1, 4]. For each replica
we add holes which size varies randomly following a Gaus-
sian distribution with mean μ = (10 · k · �s) − 5 and
standard deviation σ = (5 · k · �s)+10, where�s is again
the average grid spacing. Similarly to the previous sce-
nario, the same datasets were used during the comparison.
Figure 11 reports an example of carved data.
Viewpoint variation scenario: in this particular setup,

we acquired a planar high-relief object surface (the repre-
sented in the Angels dataset) from a number of different
viewpoints. We acquired 33 range images varying the
acquisition angle with respect to the plane normal within
a range of [−45◦, 45◦] at step angle of almost 3◦. The
image acquired at 0◦ is then tested with all the other
scans separately and, for each of these image pairs, use-
ful test statistics are gathered, according to the kind of

comparison that needs to be performed (see below). Due
to occlusions and limited acquisition volume, the overlap-
ping area between the two scans will vary. To provide a fair
comparison, we estimate the overlapping area of each scan
pair and apply proper normalization factors. This scenario
is of particular interest for our application, since relative
viewpoint variations are very likely to occur during object
acquisition. In Figure 12 we display the surface, acquired
from different viewpoints, used as a test for this scenario.

Feature extractors comparison
In this section, we compare the feature extraction
approach described in Section “Feature extraction” with
respect to Lee et al. [20], here referred as Lea, Castellani
et al. [22], Cea, and Bonarrigo et al. [6], Bea. It is worth
to remember that the proposed approach is a variation
of Cea, and that both Lea and Cea were originally con-
ceived to work with mesh datasets, therefore they have
been adapted here to work with range images.
In the noise scenario, we assess the feature repeatabil-

ity with respect to synthetic noise added to the data. To
do so, for each pair of (prealigned) images (RI, RIknoise) fea-
tures are extracted and their position is matched in order
to determine the number of repeating features. Since on
data RI0n no noise is added, the number of repeating fea-
tures rF0

noise will coincide with the number of extracted
features. Therefore, for k 
= 0, rFk

noise will always result

Figure 11 Angels particular with carved holes at differentμ and σ .
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Figure 12 The planar surface taken from different acquisition angles θ .

less than rF0
noise. In Figure 13 we represent the feature

repeatability for increasing noise levels as the percentage
100 · rFk

noise/rF0
noise.

The graph shows that the proposed approach performs
best, while Lea approach fares slightly worse. The tech-
nique we proposed in [6] is around 10% worse, while Cea
shows a performance decrease of 20%. The main criti-
cal aspect here resides in the fact that noise corrupts the
reliability of the surface normal estimation. This is detri-
mental in Ceawhere original normals are used to improve
DoG saliency computation. This problem is mitigated
in Bea and in the proposed modified Cea approaches,
where we recompute the normal field on the Gaussian fil-
tered surfaces. The original Lea approach does not employ
normals, therefore it is more robust to noise effects. Inter-
estingly, even using (smoothed) normal information, the
proposed method is more robust than Lea to noise.
In the hole scenario, we assess the feature repeatabil-

ity with respect to holes carved in the data. To perform
such evaluation we first check the number of features
extracted from RIkholes, which corresponds to the num-
ber of repeating features rFk,k

holes that one would obtain
by matching RIkholes against itself. Then the (prealigned)
image pair (RI, RIkholes) is matched and the number of
repeating features rF0,k

holes is counted. In Figure 14 we rep-
resent the feature repeatability for different hole levels as
the percentage 100 · rF0,k

holes/rF
k,k
holes.

Again, the graph shows that the proposed approach per-
forms best. Bea approach performs 4% worse, while Lea
and Cea perform around 12% worse. Good performance
of the Bea solution are related to its inherent robustness
with respect to deformations of the DoGmaps induced by
unbalanced point density on range images [6] due to the
abnormal quantity of borders and holes present.
For the viewpoint scenario, we report the feature

repeatability rate with respect to variations of view-
point angle. For a given pair of prealigned scans
(RI0vpoint, RIθvpoint), we determine the number of repeating
features rF0,θ

vpoint and estimate the overlap ratio between
the views oR0,θ . As already stated in Section “Feature
extractor and descriptor comparison”, since the overlap-
ping area between the two scans is likely to vary, we apply
a normalization factor to the feature repeatability rate,
which is calculated as follows: 100 · rF0,θ

vpoint/(rF
0,0
vpoint ·

oR0,θ ). In Figure 15 the repeatability rate is displayed with
respect to viewpoint angle θ .
Once again, the proposed approach performs best, while

Bea approach obtains slightly inferior performance. In the
angle interval [−30◦, 30◦] Lea approach performs 30%
worse, while Cea falls around 50% under the proposed
one. For angle values greater than ±30◦, the performance
gap decreases, reaching a repeatability rate of 25% for
the proposed approach as well as Bea, and virtually no
repeating features for Lea and Cea.

Figure 13 Feature repeatability rate with respect to noise.
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Figure 14 Feature repeatability rate with respect to holes.

In conclusion, our tests have demonstrated that the pro-
posed extractor outperforms the other techniques with
respect to noise, holes and variation of the acquisition
viewpoint. The approach we first introduced in [6] turned
out to perform slightly worse than the proposed one for
holes and viewpoint variation, and to be vulnerable with
respect to added noise. A few considerations need to be
done with regard to the performances obtained by Lea
[20] and Cea [22] approaches. These approaches were
both originally introduced for meshes, which implicitly
smooth the data with respect to range images and point
clouds. Moreover, depending on the meshing algorithm
employed, small holes may be closed automatically, or no
holes may be present at all (for implicit surface recon-
struction approaches, such as [34]). The low performances
obtained for the noise and hole scenarios are therefore
understandable, nevertheless their modest results for the
viewpoint variation scenario remain a critical issue for our
particular application field.

Feature descriptor comparison
In the present section we assess the correspondence
survival rate of our feature descriptor (introduced in
Section “Feature description ’’) with respect to the pop-
ular Spin Images approach, introduced by Johnson [30].
Since we apply Spin Images for partial view range data
matching, we have to face the problem described in [35]
(for the case of model recognition in cluttered scenes)
about the determination of a good tradeoff between dis-
tinctiveness and robustness. The former is favored by
global or wide field Spin Images, while robustness to view
changes (in this case due to the nature of the data and
of the addressed problem) can be improved by adopt-
ing localized (short range) descriptors. Therefore we first
addressed this tradeoff by finding the optimal Spin Image
window size for our data: we experimentally found that
a window size of 15 and a bin size equal to the average
point spacing gave the best alignment results on all the
test datasets. Being calculated in a multi-scale framework,

Figure 15 Feature repeatability rate with respect to viewpoint variation.
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Figure 16 Correspondence survival rate with respect to noise.

the actual average extent of the Spin Images window
with respect to the original range images corresponds
to r · p · 15 points, depending on the scale parameter
r and the preemptive subsample parameter p. Moreover,
since we are interested in efficient feature-based recon-
struction, similarly to what we do with our descriptor
we only compute Spin Images on MP obtained from the
extraction phase.
In the noise scenario we assess the correspondence sur-

vival rate with respect to synthetic noise added to the data.
To do so, for each pair of (prealigned) images (RI, RIknoise)
all exact correspondences are counted (we can do this
because the image pair is prealigned), and their number
recorded as eCk

noise. Then, similarly to what we would
do if the images were unaligned, the entire correspon-
dence set is ranked and skimmed so that only the best
150 correspondences are retained, and the survived exact
correspondences are counted and registered as sCk

noise. In
Figure 16 we represent the correspondence survival rate
as the percentage 100 · sCk

noise/eCk
noise.

The graph shows that the two descriptors behave sim-
ilarly with respect to noise added to the data, with our
approach performing a bit better, especially for lower
noise values.
In the hole scenario, we assess the correspondence sur-

vival rate with respect to holes carved in the data. To
perform such evaluation, we first check the number of sur-
vived correspondences sCk,k

holes between RIkholes and itself.
Then the (prealigned) image pair (RI, RIkholes) is matched
and the number of survived correspondences sCk,k

holes is
evaluated. In Figure 17 we represent the correspondence
survival rate for different hole levels as the percentage
100 · sC0,k

holes/sC
k,k
holes.

In the graph we can see how the Spin Images perfor-
mance decreases faster than the proposed descriptor for
bigger holes. Considering the Spin Image descriptor itself
this is not surprising, since if a part of the data is missing,
this will have a (proportionally) greater effect on the Spin
Image histogram rather than on our grid descriptor, where
only a subset of the sectors will be affected.

Figure 17 Correspondence survival rate with respect to holes.



Bonarrigo et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:148 Page 17 of 24
http://asp.eurasipjournals.com/content/2012/1/148

Figure 18 Correspondence survival rate with respect to viewpoint variation.

For the viewpoint scenario, we determine the corre-
spondence survival rate with respect to variations of
viewpoint angle. For a given pair of prealigned scans
(RI0vpoint, RIθvpoint), we determine both the number of sur-
vived exact correspondences sC0,θ

vpoint and the overlapping
ratio between the views oR0,θ . We then apply a normal-
ization factor to the correspondence survival rate, which
is calculated as follows: 100 · sC0,θ

vpoint/(sC
0,0
vpoint · oR0,θ ).

In Figure 18 the survival rate is displayed with respect to
viewpoint angle θ .
In the graph we can see that, within an angle inter-

val of [−30◦, 30◦], the proposed descriptor performs 20%
better than Spin Images, while for greater angle values
the performance gap decreases up to 10%. This outcome
could have been foresaw: viewpoint variations are likely
to introduce holes on the surface due to occlusion. As
we demonstrated for the previous scenario, Spin Images
descriptors appear to be more sensitive to holes than our
own, and these results confirm it.
We can conclude that both the descriptors perform

similarly with respect to the noise scenario, while the pro-
posed descriptor outperforms the Spin Images for the
holes as well as the viewpoint variation scenarios. With
regard to the time required for generating the descriptors,
we estimated that describing a single Spin Image (with a
window size of 15) costs us 0.61 ms, while our descrip-
tor only takes 0.34 ms to compute, thus demonstrating
the fact that our descriptor is extremely fast to compute.
Although such difference is small in absolute value, it
becomes significant when considering that the set of MP
is usually constituted of hundreds of elements.

Correspondence test technique comparison
For the correspondence skim procedure, our aim is to
assess the capability of different techniques to detect a
correct triplet in the correspondence set Cab, as well as

the time required to do that. We compare the approach
we introduced in Section “Correspondence test and selec-
tion” with respect to the RANSAC approach proposed
by Fischler et al. [12] as well as its descendant PROSAC
introduced by Chum et al. [31]. PROSAC should per-
form better when, as in our case, a correspondence
ranking criterion is available. In fact, while RANSAC
treats all correspondences equally (by choosing random
sets), PROSAC works its way progressively down the top-
ranked ones. Since the ranking we obtain through the
feature matching procedure is fairly good (for example, in
the Angels dataset the inlier ratio is on average around
70% for the first 25 top positions), in our case the PROSAC
requisite should be satisfied. In order to boost the compu-
tational speed for these two techniques, which is heavily
dependent on the inlier rate of the correspondence set, a
dynamic estimation of such rate is performed for each set
while running the techniques. This allows the algorithms
to terminate faster in case the inlier rate is superior than
in the worst case [36].
In order to perform the comparison, we apply the pair-

wise alignment pipeline over six different datasets, for a
total of 99 RI pairs. During the process we keep track

Table 1 Alignment errors for each skim technique

Dataset Number
of RI
pairs

Number of
errors for
proposed

Number of
errors for
RANSAC

Number of
errors for
PROSAC

Angels 7 0 0 0

Teeth 7 0 0 0

Dog 13 0 2 0

Dolphin 19 0 1 0

Capital 22 0 0 0

Hurricane 31 1 2 1

Total 99 1 5 1
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Figure 19 Execution times for each skim technique.

of the inliers rate within the set Cab, as well as the time
required by each technique to determine their best corre-
spondence triplet withinCab. Once the alignments are ter-
minated, we visually inspect the alignment outcome and
count the number of errors for each technique, reported
in Table 1. Given the same correspondence sets Cab, both
the proposed approach as well as the PROSAC performed
best, with a single error. On the contrary, the RANSAC
method introduced a considerable amount of errors. In
Figure 19 we also present in logarithmic scale the execu-
tion times required by each technique with regard to the
inliers rate. As expected, the time required by RANSAC
as well as PROSAC grows exponentially with the number
of outliers in the correspondence set Cab, ranging from 15
up to 8800 milliseconds for RANSAC, or 3400 millisec-
onds for PROSAC. On the contrary, the proposed skim
procedure has a balanced dynamic, ranging from a mini-
mum of 220 up to 330 milliseconds. It turns out that our
approach is up to 40 times faster than RANSAC and 15
times faster than PROSAC when the inlier rate is low,
whereas it gets down to 20 times slower for higher inlier

rates, with curve crossing rate of 16% for RANSAC and
12,5% for PROSAC. Such analysis may seem to favour the
PROSAC technique, however before drawing any conclu-
sion we also need to take into account the inlier rates
distribution, which we estimated from the six test datasets
(99 RI pairs). As we can see in Figure 20, the inlier rate
is usually very low: for more than half cases, its value is
below 15%, due to the nature of the partial view align-
ment problem we face. In fact, any variation of the relative
position between the scanner and the object is likely to
cause a variation in the overlapping area between suc-
cessive scans, with the possible creation of holes due to
occlusions, as well as variations on the distribution of 3D
points on the surface. All these factors concur in lowering
the number, as well as the similarity of repeating features,
thus causing an overall reduction of the inlier rate. Taking
into account the inlier rate distribution we estimated the
weighted average execution time for the three skim tech-
niques. It turns out that our approach is the fastest, since
it requires 240 milliseconds to compute its best triplet.
RANSAC needs 1460 milliseconds to obtain its guess,

Figure 20 Distribution of inlier rates for the test datasets.
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while PROSAC requires 660 milliseconds. In conclusion,
considering the results of Table 1 as well as the average
execution times, we can conclude that both our technique
as well as PROSAC obtained the best alignment perfor-
mances, while our approach is almost 3 times faster than
PROSAC, given the inlier distribution rates of the test
datasets.

Experimental results
We evaluated both the pairwise registration and the
complete multi-view alignment pipeline presented
in Section “Pairwise alignment technique ’’ and Section
Multi-view alignment pipeline, respectively through a
series of tests performed on the datasets presented in
Section “Acquired datasets”. Based on the feature size
of each object, we found suitable to define two differ-
ent parameter configurations, which we address as the
standard feature (std) and the small feature (sml) configu-
rations. The std one is configured as follows: a preemptive
factor 2 subsampling of the range image, feature extrac-
tion on 3 octaves, one saliency map for each octave and
a Gaussian kernel size set to 4, feature signature with a
number of angular sectors equal to 36; whereas the sml
configuration consists in: no preemptive subsample, 3

octaves, one saliency map for each octave, a Gaussian
kernel size set to 3 and a number of angular sectors equal
to 18.
Dataset characteristics are presented in the first 4

columns of Table 2, where they are listed in ascending
ordered in terms of number of RI pairs. Average number
of valid points per RI and configuration parameters are
also provided.

Pairwise alignment results
In order to evaluate the pairwise approach, we exe-
cuted the feature-based pairwise alignment procedure of
Section “Pairwise alignment technique ’’ on each RI pair
of each dataset and counted the number of successful
alignments. At first, we visually check the resulting align-
ment, and count the number of (manifestly) correct and
wrong occurrences. For dubious cases we run an ICP to
assert whether the coarse alignment is sufficient or not
for the ICP to converge. Quantitative results are presented
in columns 5 and 6 of Table 2. Considering the first 14
datasets, the technique demonstrated to be very robust in
that it correctly aligned 96.5% of the RI pairs. Further anal-
ysis performed over the few unaligned pairs concluded

Table 2 Experimental results summary

Pairwise alignment Multi-view alignment

Dataset Number of Avg. Number Param. Number of Avg. exec. Number of Avg. exec. Initial align. Final align.
RI pairs of points/RI config. RI pairs time/RI [s] clusters time/RI [s] error [μm] error [μm]

aligned created

Angels 7 1M std 7 3.6 1 4.9 62 27

Mould 1 7 410k std 7 2.0 1 2.6 39 14

Mould 2 9 400k std 9 1.7 1 2.2 66 11

Mould 3 9 370k std 9 1.5 1 1.7 103 11

Mould 4 9 360k std 9 1.6 1 2.0 165 12

Platelet 11 80k sml 11 1.5 1 1.8 28 9

Dog 13 130k sml 13 2.5 1 5.0 32 16

Cherub 19 650k sml 18 1.3 1 1.6 149 20

Dolphin 19 410k std 19 2.0 1 4.1 136 33

Capital 22 760k std 22 3.1 1 6.6 127 23

Rose 23 170k sml 23 2.8 1 6.1 67 13

Hurricane 31 690k std 30 2.9 1 9.0 188 35

Decoration 47 510k std 39 2.7 2 10.3 – –

Venus 60 835k std 60 3.1 1 12.1 152 17

Doga 13 130k sml 7 2.4 1 5.1 41 16

Capitala 22 760k std 11 2.9 1 7.5 176 23

Hurricanea 31 690k std 17 2.9 1 9.6 255 35

Carterb 92 550k std 64 2.5 18 16.8 – –

aAcquisition path for these datasets does not abide by the overlap constraint;
bParticularly featureless dataset.
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that main causes for failure were due to either an insuffi-
cient overlapping area (that is, close to the lower bound of
20%), or particularly featureless areas. A visual example of
the output produced by our pairwise alignment technique
is shown in Figure 21.
Computational performance (column 6) are related to a

C++ implementation and run on a PC equipped with an
Intel 2.4 GHz dual-core processor and 4GB of RAM; time
required for disk loading/saving of range data is excluded.
It is important to note that the code has not been fully
optimized for parallel execution yet, hence there is room
in this sense for further improvements of time perfor-
mance. Computational performance shows an average
alignment time of 2.5 s. As an example, time breakdown
for the Hurricane dataset is distributed as follows: 57%
for feature extraction, 1% for feature description, 32% for

feature matching, 8% for correspondence skim and roto-
translation estimation. Lightness of our feature signature
is testified by the fact that the feature description step
only takes 1% of the total time. The two main factors that
influence computation times are the number of points per
range image to be processed, and the number of features
detected over each image. In the “worst case” (that means,
images close to 1 million of points and many features
detected at all scales), alignment time reached a maxi-
mum of about 4 seconds. Comparisons of computational
speed with respect to the literature is somehow difficult
to infer since (1) not every work declare computational
speed, (2) only isolated blocks of the alignment chain are
usually considered (e.g. feature extraction) instead of the
entire pipeline, (3) hardware obsolescence. Nevertheless,
our computational time is at least one order of magnitude

Figure 21 Pairwise alignmet results for the Dolphin dataset.
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(comprising hardware obsolescence compensation) under
the times declared in the related works [2,19,20,22].

Multi-view alignment pipeline results
For the multi-view alignment pipeline, our aim is to pro-
gressively complete the object coverage with an uncon-
strained acquisition procedure. In order to do so, we
match the features extracted from the current image with
respect to the entire feature database. Therefore, when-
ever a single alignment error occurs, there is a chance that
erroneously aligned views may attract more range data,
creating clusters of correctly aligned views. This is the rea-
son for which, in order to assess the multi-view alignment
performance, in Table 2 col.7, we state the number of dif-
ferent clusters created, rather than counting the correct
image pairs. If the multi-view alignment succeeds in its
task, a single cluster will result, otherwise more clusters
will be created.
In this case we consider as correct an alignment where

the current range image is attached correctly to an exist-
ing cluster (that is, we consider as erroneous only the
alignment for which a new cluster is created, rather than
all the other images which may attach to it correctly).
To verify correct alignments we use the same criteria
stated in Section “Pairwise alignment results ’’. Quanti-
tative results are presented on the right side of Table 2.
Again, the technique demonstrated its robustness and
successful object reconstruction is reached in almost all
cases. With respect to the pairwise approach, the multi-
view approach solved the alignment failures of the Cherub
and the Hurricane datasets by exploiting the cumulative
information available. A single error occurred on the Dec-
oration dataset, generating two distinct image clusters, as
shown in Figure 22. In terms of correctly aligned RI pairs,
our multi-view alignment reaches a 99.7% performance.
As already stated, a major limitation for the chained

pairwise alignment is that it can succeed in obtaining a
correct reconstruction only if the range data sequence
follows an adequate acquisition path. To exemplify this,
and to assess the path-independence of the multi-view
approach, we performed a test on alternative acquisition
paths defined on the Dog, Capital and Hurricane datasets
(see the rows of Table 2 marked by a single asterisk). For
these datasets the acquisition path has been rearranged
(respecting the assumption of partial overlap with at least
one of the previous range images in the path). In such
unconstrained (unchained) condition the pairwise align-
ment cannot perform correctly (in fact only about half of
the total RI pairs were correctly aligned along the alterna-
tive paths) while the multi-view alignment still performs
correctly.
The last two columns of Table 2 present an estima-

tion of the root mean square error among the aligned

Figure 22 The Decoration clusters: a single error caused the
creation of two distinct clusters of correctly aligned views.

views, prior and after performing the global optimization-
on-a-manifold adjustment introduced in Section “Global
adjustment”. The alignment was performed only on the
datasets which were correctly reconstructed (all except
the Decoration and the Carter). As can be seen, all the
(coarsely aligned) datasets have been aligned finely, and
the residual error (generated by scanner miscalibration
and noise associated to the acquisition process) is never
greater than 35μm for an object which main diago-
nal is 40 cm long, thus a very good alignment. This
demonstrates that the coarse alignment obtained with
our approach is good enough to bring the multi-view
fine alignment stage to converge to the correct solution.
Interestingly, the three datasets that present an alternative
acquisition path result in the same residual error after the
global adjustment phase, which is another confirmation of
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the fact that the obtained coarse alignment is good enough
for the successive alignment stages to converge toward the
optimal solution. In Figure 23 the Venus dataset is shown
for three alignment stages: (a) is the initial image con-
dition for the dataset; (b) shows the alignment obtained
after executing our multi-view pipeline; (c) represents the
dataset after executing our global optimization method
[32].
As for limitations, our method presents essentially two:

a) performance degradation for featureless objects, and b)
complexity increase (although less than linear) with the
number of views. For point (a), the last row of Table 2
(the one with double asterisk) reports the alignment per-
formance for the additional dataset Carter. This is a
mechanical piece, with smooth planes and holes carved in,
thus a particularly featureless dataset. For this dataset the
alignment performance dropped considerably both for the
pairwise and the multi-view reconstruction. In Figure 24
the dataset is shown, as well as two examples for success-
ful alignments and one failure. Regarding point (b), the
benefits of multi-view alignment come at a cost in terms
of computational performance which can be easily real-
ized by evaluating how the time breakdown varies (again,
estimated for the Hurricane dataset): 19% for feature
extraction, negligible feature description time, 78% for

feature matching, 3% for correspondence skim and roto-
translation estimation. As the feature database grows, the
time required for matching correspondences between the
current dataset FPk and the database database FPdb grows
linearly (actually less than linearly, due to the removal
from the database of duplicated features) with the num-
ber of views. This cannot be easily inferred Table 2, since
each dataset has a different amount of features (for exam-
ple, the Cherub dataset is processed in less than one third
of the time required for the Dog, which is smaller in RI
size but richer in features). Feature organization solutions,
such as clustering or bags of words approaches [18], are
possible and should be studied to cope with this limita-
tion for bigger datasets. Possible solutions to this problem
could also stem from the application domain, for example:
(1) try a pairwise alignment before executing the align-
ment on the entire database (in fact, in many practical
cases unchained paths are made of chained fragments,
this could therefore save a lot of computation time); (2)
distribute the feature database in a feature space, so that
the matching for each new feature could be performed on
the subset of features which are closer to it in the fea-
ture space (3) try to clear out parts of the database in
order to lighten the matching by discarding those features
that belong to already well covered zones. Alternative

Figure 23 The Venus alignment phases: (a) initial condition, (b) after coarse multi-view alignment, (c) after global adjustment.
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Figure 24 (a) The Carter dataset: (a) global picture, (b) and (c) two successfully aligned views, (d) an alignment failure example.

solutions can be devised according to application-driven
requirements.

Conclusions
In this work we presented a fully automatic, fast and
feature-oriented 3D alignment pipeline for high-quality
object modeling from an unchained acquisition of dense
range scans. The proposed approach takes as input a set of
range images ordered according to a suitable user-defined
acquisition path, then (1) extracts a set of feature points;
(2) describes them through information extrapolated from
the local surface; (3) matches the set with respect to the
database of feature points associated to any previously
aligned range image; (4) identifies the reliable matches
and (5) tries to compute a roto-translation matrix out of
such correspondences. The multi-view framework allows
object alignment under the most reasonable assumption
that each new range image must possess an overlap with
respect to any other previously aligned range data, thus
weakening the requirement of having an overlap between
each sequential pair of range images. Several comparisons
have been performed to evaluate the performances of each
block of the pipeline we introduced with respect to com-
petitor solutions, for a variety of different use scenarios.

The pipeline performance has been evaluated on a group
of 14 datasets, for a total of 300 highly resoluted range
scans. Obtained results show a high degree of robust-
ness and reliability of the technique, and are relevant in
terms of improving the usability and the handiness of
modern 3D scanners by allowing interactive (on-the-fly)
object alignment and therefore fast modeling. In few cases
clusters of correctly aligned views appeared, mostly due
to possible inter-object feature similarities. However, the
detection of this kind of problem can be rendered auto-
matic or semi-automatic and deferred at an implementa-
tion level according to specific application requirements.
A major issue that we observed is the increased amount of
computational time due to the matching with a database
of features. Solutions can be devised by using feature
space organization approaches. However, this usually does
not impair an interactive usage of the scanner, except for
very big datasets. In conclusion, for the greatest part of
the considered real life datasets, the proposed method
guarantees competitive performance for a robust, fast,
accurate and automated object alignment, consequently
boosting the usability of high-end 3D scanners.
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