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Abstract

This article applies PARAllel profiles with LINear Dependencies (PARALIND) model to analyze identifiability of
parameter estimation in the presence of incoherent multipath via uniform linear array (ULA). New identifiability results
are derived based on the uniqueness property of PARALIND model and structure property of ULA. With the strong
properties of trilinear model, the proposed identifiability conditions for propagation parameter identification are
superior to early studies. We give a new tradeoff between the number of receiving antennae and sampling diversity
to ensure parameter identification. Furthermore, a new lower bound of the number of receiving antennae for
identifiability is derived. It also shows that the identifiability results is not only determined by traditional factors, such
as the number of receiving antennae, oversampling factor or the total number of transmitting paths, but also related
to the structure of multipath of sources.
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Introduction
Deterministic parameter estimation is one major prob-
lem in multi-sensor array system to effectively locate and
track various types of signals to minimize interference and
maximize intended signal reception, capitalizing various
structure property of source signals or (and) received sig-
nals [1-4]. The identifiability issue of parameter determi-
nation signifies the existence of a unique desired solution
under ideal operating conditions and lays the foundation
of the capability of estimation techniques. Identifiabil-
ity results are usually related to the analysis method of
the data model and a given algorithm. ESPRIT algorithm,
which takes advantage of the rotational invariance prop-
erty of the uniform linear array (ULA), can be valid to
estimate direction of arrivals (DOAs) uniquely only if the
number of calibrated receiving antennae is more than the
number of sources and all single path signals follow dis-
tinct direction to the receiving end [5]. Fonvard/backward
spatial smoothing techniques pointed out that 3K/2 sen-
sor elements should be enough to identify K DOAs of
coherent signals [6,7]. In multipath scenario, wireless
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channel is characterized not only by its DOA but also time
delay of the different propagation paths. Van der Veen
proposed a joint angle and delay estimation algorithm
based on the smoothing method and joint diagonaliza-
tion technique. A lower bound of number of receiving
antennae and oversampling diversity for parameters iden-
tification has been presented for the given algorithm
[1,8,9]. Recently, Sidiropoulos and Liu [10] linked trilinear
decomposition to array signal processing and guaranteed
several improved identifiability results of parameter esti-
mation based on PARAFAC analysis, which introduces a
new perspective to parameters estimation.
Trilinear data analysis models, such as Tucker3,

PARAFAC and PARAllel profiles with LINear Dependen-
cies (PARALIND), were applied into signal processing
area in recent years [11-17]. PARALIND model is a kind
of trilinear model that was first proposed by Bro et al.
[18-20]. It can further be viewed as a new family of
PARAFAC models and was developed to extend its
usage to problems with linearly dependent factors.
Then De Lathauwer and A.L.F. de Almeida intro-
duced the ’Block term decomposition’ and ’Constrained
block PARAFAC’, respectively, which have similar
formulations but natural extensions to PARALIND
[21,22]. This article links PARALIND analysis to
model identifiability of parameter estimation via ULA.
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Received signals of the ULA, transmitted through inco-
herent multipath rays of sources with distinct angles and
delays, are constructed into PARALIND model. New
identifiability results are presented based on the unique-
ness issue of PARALIND. The main contributions of this
article are listed in the following:

(i) A new ‘space-time’ tradeoff between the number of
receiving antennae and sampling diversity for
parameter identification is derived based on the
strong uniqueness properties of
trilinear model.

(ii) We give a new lower bound of the number of
receiving antennae to identify parameters in
multipath propagation scenario, which is more
superior to early studies.

(iii) Our work shows that the identifiability results for
parameters identification are not only determined by
some traditional factors, such as the number of
receiving antennae, sampling diversity or the number
of paths, but also related to the structure of
multipath of sources, which was not considered in
previous work.

The rest of this article is organized as follows: Section
“Data model” lays the data model of array signals in mul-
tipath propagation channel. Section “Uniqueness of par-
alind” gives the basic uniqueness property of PARALIND
model. Section “Paralind-based identifiability results for
parameter estimation” proposes the main results of
parameters identifiability. Some lemmas and theorems
will be guaranteed and analyzed. In the last section, we
draw the conclusion.
Some notations will be used in this article. diag([ a, b,

. . . ] ) denotes the diagonal matrix with scalar entries
a,b,. . .while blockdiag([A, B, . . . ] ) denotes the block

diagonal matrix with matrix entries A, B, . . . . (·)T and
(·)† stand for transpose and pseudo-inverse, respectively;
vec(·) stacks the columns of its matrix argument in
a vector; unvec(·) is the inverse operation of vec(·),
unvec(c, I, J) =[ c(1 : J), c(J + 1 : 2J), . . . , c((I − 1)J : IJ)].
⊗ is Kronecker product; � denotes the Khatri-Rao prod-
uct, which is a column-wise Kronecker product. Define
A =[ a1, . . . , aR]∈ C

I×R, B =[b1, . . . ,bR]∈ C
J×R, The

Khatri-Rao product of A and B is:

A � B = a1 ⊗ b1, . . . , aR ⊗ bR

Datamodel
Figure 1 gives a schematic communication scenario with
multipath channel. F sources are transmitting to an array
with K antennae through multipath scattering propaga-
tion channel. g(t) is the impulse response which collects
all temporal aspects, such as pulse shaping, transmitting
filter and receiving filter. Signals of f th user follow rf dis-
tinct paths on its way from source to receiver, referred as
multipath rays with distinct DOA, transmitting delay and
attenuation. The jth path of source f is parameterized by
a triple (θf ,j,βf ,j, τf ,j), where

θf ,j: DOA
βf ,j: complex path attenuation
τf ,j: transmitting delay

Assume that the ULA is used in the receiving end and
the distance d between adjacent elements is equal to
(or less than) half of the wavelength of signals. Define r
to be the total number of paths of all sources, as r =∑F

f=1 rf . Let us conveniently index the multiple rays of
sources from 1 to r, starting with all rays associated
with the first source and then rays associated with the
second source, and so on. Index r parameter triples as{
(θ1,β1, τ1), . . . , (θr1 ,βr1 , τr1), . . . , (θr ,βr , τr)

}
. The array

Figure 1Multipath transmitting channel model.
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manifold matrix Aθ , time manifold matrix Gτ and path
attenuation matrix � are defined as:

Aθ = [a(θ1), . . . , a(θr1), . . . , a(θr)] ∈ C
K×r

Gτ =[ g(τ1), . . . , g(τr1), . . . , g(τr)]∈ C
P×r

� = diag(β1, . . . βr1 , . . . ,βr) ∈ C
r×r

(1)

where

a(θ) =
[
1, ej

2πd
λ

sin(θ), . . . , ej
2π(K−1)d

λ
sin(θ)

]T
g(τ ) = [g ( 1P − τ

)
, g
( 2
P − τ

)
, . . . , g

(
1 − 1

P − τ
)]T

(2)

Received signals can be formulated as follow [1]:

X = (Gr � Aθ )�(SJ)T (3)

where

X =
⎡
⎢⎣
x(0) · · · x(N − 1)
...

...
...

x(P−1
P ) · · · x(N − 1 + P−1

P )

⎤
⎥⎦ (4)

is aKP×N space-time data matrix collecting samples dur-
ing N symbol periods with oversampling factor P in the
receiving end. x is a K×1 array receiving signal. S is a data
matrix of size N × F , collecting N symbols of all users.
J is a selection matrix that joins multipath associated with
a given source.

J =
⎡
⎢⎣
1Tr1 0, . . . , 0

. . .
0 . . . , 1TrF

⎤
⎥⎦ (5)

where 1m denotes an m × 1 vector with elements 1.
Equation (3) is a classical parameterized data model
named “incoherent multipath with small delay spread”
[1,10]. The propagation parameters, θi and τi, i = 1, . . . , r,
are involved in array manifold matrix Aθ and time man-
ifold matrix Gτ . The multipath structure is indicated
by J.
The time delay τ is usually difficult to estimate from

g(t − τ) directly. An alternative approach is to map τ

into phase shift φ in the frequency domain by discrete
Fourier transform (DFT) method [8]. Assume that g(t)
is band limited and the sample rate is at or above the
Nyquist rate. Take P points DFT of each antenna output
over single symbol period. Then the following model is
obtained [1]:

X̄ = (Fφ � Aθ )�(SJ)T (6)

where

Fφ =

⎡
⎢⎢⎢⎣
1 . . . 1
φ1 . . . φr
...

...
...

φP−1
1 . . . φP−1

r

⎤
⎥⎥⎥⎦ ,φi = e−j2πτi/P (7)

The advantage of (7) versus (3) is that, by using DFT
method, delays are transformed into certain phase pro-
gressions andGτ is converted into a Vandermonde matrix
Fφ , which can provide facility for parameters estimation.
Although DFTmethodmay cause some extra error during
parameter estimation, van der Veen et al. [8] has informed
that this kind of error is very small comparing to the
estimation errors that will occurred in the presence of
noise.
According to [18], Equation (6) can be viewed as one

slice formulation of PARALIND model. The link to PAR-
ALIND implies that generic PARALIND model fitting
algorithms are directly applicable to deterministic param-
eter estimation [20]. However, the identifiability of the
model pertains to the capability of recovering parameters
in the absence of noise. The main work of this article is to
investigate new identifiability results for parameter esti-
mation in PARALIND decomposition perspective. Some
novel results, such as the tradeoff between the number of
receiving antennae and sampling diversity and the lower
bound of receiving antennae for parameter identification,
are also derived. Firstly, we give the basic uniqueness of
PARALIND model.

Uniqueness of PARALIND
The uniqueness of the PARALINDmodel lays the founda-
tion of its applications. Because of the linear dependence
of the loading factors, PARALIND model does not fol-
low directly from the uniqueness property of PARAFAC,
but only has partial uniqueness (or essential uniqueness,
defined in [23]), which depends on the specifics of the
imposed dependency structure along with the adequacy
of the factor variation information provided by a given
set of data [19]. The uniqueness property of PARALIND
was first proposed in [18] and improved by Stegeman and
de Almeida [24]. De Lathauwer [23] has given an essen-
tial uniqueness theorem more quantitatively. Two new
concepts are needed in this theorem.

Definition 1 (k-rank) [25]: Consider a matrix B of size
I × J . If every l columns of B are linearly independent,
but this does not hold for every l + 1 columns, then the
k-rank of B is l, denoted as kB = l.

Definition 2 (k′-rank) [23]: Assume a partitioned matrix
A =[A1, . . . ,AM]. The k’-rank of A, denoted as rankk′(A)
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or k′
A, is the maximal number r such that any set of r sub-

matrices ofA yields a set of linearly independent columns.

Theorem 1 [23]: Rewrite one slice matrix of PARALIND
model

X = (A � B)(CH)T

where A ∈ C
I×r ,B ∈ C

J×r ,C ∈ C
K×F . H is dependence

matrix

H =

⎡
⎢⎢⎢⎢⎣
1, . . . , 1, 0, . . . , 0, . . . , 0, . . . , 0
0, . . . , 0, 1, . . . , 1, . . . , 0, . . . , 0
· · ·
0, . . . , 0︸ ︷︷ ︸

r1

, 0, . . . , 0︸ ︷︷ ︸
r2

, . . . , 1, . . . , 1︸ ︷︷ ︸
rF

⎤
⎥⎥⎥⎥⎦ = [H1,H2, . . . ,HF ]

(8)

where Hf ∈ C
F×rf , f = 1, .., F are sub-matrices of H and

r = ∑F
f=1 rf . A,B are partitioned as: A =[A1, . . . ,AF ],

B =[B1, . . . ,BF ] with the sub-matrices Af ∈ C
I×rf ,Bf ∈

C
J×rf , f = 1, . . . , F , compatible with the block structure of

H. Suppose that the condition:

k′
A + k′

B + kC ≥ 2F + 2 (9)

holds and we have an alternative decomposition of X,
represented by (Â, B̂, Ĉ) with k′

Â
and k′

B̂
maximal under

the given dimensionality constraints. Then there holds
Â = A�a�a, B̂ = B�b�b, where �a, �b are block
permutation matrices and �a, �b are square nonsingu-
lar block-diagonal matrices, compatible with the block
structure of A and B.
Theorem 1 presents the uniqueness properties of A and

B. The uniqueness of matrix C is also studied in [18,21].
Bro et al. [18] gives a demonstration of the uniqueness
property of C, provided that A, B and C are full rank. Fur-
thermore, de Lathauwer [21] gives the identifiability result
of C more quantitatively in terms of high-order block
tensor decomposition.
Consider Theorem 1 in sub-matrix formulation. Parti-

tion Â and B̂ to be compatible with the block structure of
A and B, as: Â =[ Â1, . . . , ÂF ], B̂ =[ B̂1, . . . , B̂F ]. Accord-
ing to Theorem 1, it directly follows:

[ Â1, . . . , ÂF ] =[A1, . . . ,AF ]�a�a

=[A1, . . . ,AF ] blockdiag(U1, . . . ,UF)

(10)

[ B̂1, . . . , B̂F ] =[B1, . . . ,BF ]�b�b

=[B1, . . . ,BF ] blockdiag(V1, . . . ,VF)

where Uf ∈ C
rf ×rf ,Vf ∈ C

rf ×rf , f = 1, . . . , F are 2F
nonsingular square matrices. It follows

Âm = AmUm
B̂m = BmVm, m = 1, . . . F

(11)

Equation (11) gives another representation for unique-
ness property of PARALIND model. It shows that the
column space of Am and Bm are unique. However, it also
implies when condition (9) is satisfied, mode matrices A
and B are suffered from rotation ambiguity, characterized
by Uf and Vf . Bro et al. [20] has pointed out that PAR-
ALIND model can also give uniqueness results if some of
its mode matrices have theoretically motivated structural
constraints. Due to the structure property of multi-sensor
array, we give the PARALIND-based identifiability results
for parameter estimation in the next section.

PARALIND-based identifiability results for
parameter estimation
As we mentioned, data model (6) can be linked to PAR-
ALIND analysis. Array manifold Aθ , time manifold Fφ ,
data matrix S and selection matrix J play the roles of A,
B, C and H in Theorem1, respectively. Since the attenua-
tion matrix � only leads to column scaling of Aθ and Fφ ,
which will not affect the identifiability results. Therefore,
we simplify� to be an identity matrix during the following
discussion. Then the data model is simplified as:

X̄ = (Fφ � Aθ )(SJ)T (12)

With the structure of Aθ and Fφ , if these two matrices
are uniquely determined, parameters θ and τ are deter-
mined naturally. According to Theorem 1, k-rank and
k’-rank play important roles in the uniqueness issue of
PARALIND. Firstly, we present two lemmas to determine
the k-rank and k’-rank of a Vandermonde matrix.

Lemma 1 (k-rank of Vandermonde matrix) [26]
Consider an I × r Vandermonde matrix A with distinct

nonzero generators α1,α2, . . . ,αr ∈ C

A =

⎡
⎢⎢⎢⎣
1, . . . , 1
α1, . . . , αr
...
αI−1
1 , . . . , αI−1

r

⎤
⎥⎥⎥⎦ (13)

A is not only full rank but also full k-rank, and kA = rA =
min(I, r).

Lemma 2 (k’-rank of Vandermonde matrix)
Consider the Vandermonde matrix A in (13). Partition

A to F sub-matrices, as A = [A1,A2, . . . ,AF ], where Af is
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of size I × rf and r = r1 + r2 + · · · + rF . Resort r1, . . . , rF
in descent order and assume that r1 > r2 > · · · > rF . The
k’-rank of A can be determined as:

k′
A = K , where

K∑
f=1

rf ≤ I <

K+1∑
f=1

rf (14)

Note that the k’-rank of A is determined not only
by its dimension but also the partition structure.
If r1 = r2 =, · · · ,= rF = 1, kA = k′

A.

Proof. See Appendix.

PARALIND-based identifiability result
According to (6), both Aθ and Fφ are Vandermonde
matrices. Capitalizing on the property of PARALIND
model and Vandermonde structure, we have the following
theorem.

Theorem 2:
Consider data model (12)

X̄ = (Fφ � Aθ )(SJ)T

Partition Fφ and Aθ to F sub-matrices compatible with
the structure of J, as: Fφ =

[
F1φ , . . . ,F

F
φ

]
and Aθ =[

A1
θ , . . . ,A

F
θ

]
, where Ffφ is P× rf andAf

θ is K × rf . Suppose
that the condition

k′
Aθ

+ k′
Fφ

+ kS ≥ 2F + 2 (15)

holds. Then Fφ and Aθ can be uniquely determined from
X̄. The related parameters, DOA θ and delay spread τ , are
identifiable.

Proof. See Appendix.

Although condition (15) in Theorem 2 and condition
(9) in Theorem 1 are identical, the identifiability results of
these two theorems are different. Theorem 1 shows that
Aθ and Fφ only have “column-space” uniqueness due to
the rotation ambiguity in their sub-matrices when con-
dition (9) is satisfied. However, Theorem 2 indicates that
Vandermonde matrices Aθ and Fφ can be uniquely deter-
mined from X̄ (no rotation ambiguity) under condition
(15). According to the structure of array-manifold matrix
Aθ and time-manifold Fφ , the elements of the first row in
these two matrices are equal to 1. The scaling ambiguous
of the estimated matrices can be removed by normalizing
the elements of Aθ and Fφ with respect to elements of the
first row during parameter estimation.

Remark 1: As a special case of (15), we assume that
data matrix S is full k-rank, as kS = F . It is achiev-
able when the receiving antennae collect enough symbols

for parameter estimation. Then condition (15) becomes
k′
Aθ

+ k′
Fφ

≥ F + 2. According to the definition of k’-rank,
the maximum k’-rank of Aθ or Fφ is F . Then it requires
that min(k′

Aθ
, k′

Fφ
) ≥ 2. This lower bound is similar to

the identifiability requirement of PARAFACmodel, which
uses k-rank instead of k’-rank (see Ref. [11]). Furthermore,
according to Lemma 2, the k’-rank of Aθ and Fφ can be
represented by r1, . . . , rF . Then the minimum value of P
and K can be determined as:

min(P,K) ≥
2∑

i=1
ri (16)

where r1, . . . , rF are descent sorted. Condition (16) shows
an interesting result that, to ensure identifiability of
parameters estimation, the minimum number of receiv-
ing antennae K and oversampling factor P is related to not
only the number of sources, but also the number of paths
of “some” sources.

Remark 2: Condition (15) shows that the identifiability of
data model is determined by k′

Aθ
and k′

Fφ
. Lemma 2 also

indicates that the k’-rank of Aθ and Fφ are related to the
structure of their sub-matrices, which is compatible with
the multipath structure of sources. Therefore, the identi-
fiability result based on PARALIND analysis are not only
determined by traditional factors, such as P,K and r, but
also related to the structure of multipath, denoted as J.
The following example can show this phenomenon:

Assume that the number of receiving antennae K = 4
and the oversampling factor P = 6. Six paths from three
sources are arriving at the receiving end. Consider the
following two cases:

(1) The number of paths of each source is:
r1 = 2, r2 = 2, r3 = 2. In this case, k′

Aθ
= 2 and

k′
Fφ

= 3. It has

k′
Aθ

+ k′
Fφ

= 5 ≥ F + 2 = 5

According Theorem 2, parameter identification is
achievable.

(2) The number of paths of each source is:
r1 = 3, r2 = 2, r3 = 1. In this case, k′

Aθ
= 1 and

k′
Fφ

= 3. It has

k′
Aθ

+ k′
Fφ

= 4 < F + 2 = 5

Theorem 2 is violated.

It shows that, although the receiving antennae num-
ber, oversampling factor and the multipath remain the
same, the identifiability results may be different due to
the multipath structure. Furthermore, [20] has shown that
the dependence matrix J can be uniquely obtained in the
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PARALIND model by trilinear decomposition method.
Therefore, the receive array can get the information of
multipath directly from the data model.

PARALIND-based identifiability result with smoothing
technique
The identifiability result of (15) can be alleviated by
introducing spatial and temporal smoothing techniques
from taking advantage of Vandermonde structure in array
manifold matrix Aθ and time manifold matrix Fφ . Take
’temporal smoothing’ for example. Rewrite (15)

X̄ = (Fφ � Aθ )(SJ)T

Construct Lmatrices of sizeMK × N

X̄(l) = X̄((l − 1)K + 1 : (M + l − 1)K , :)

=

⎡
⎢⎢⎢⎢⎢⎣

X̄((l − 1)K + 1 : lK , :)
X̄(lK + 1 : (l + 1)K , :)
X̄((l + 1)K + 1 : (l + 2)K , :)
...
X̄((l + M − 2)K + 1 : (l + M − 1)K , :)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Fφ(l, :) � Aθ

Fφ(l + 1, :) � Aθ

Fφ(l + 2, :) � Aθ

...
Fφ(l + M − 1, :) � Aθ

⎤
⎥⎥⎥⎥⎥⎦ (SJ)T

= (Fφ(l : l + M − 1, :) � Aθ )(SJ)T, l = 1, . . . , L
(17)

where A(a : b, :) stands for rows a to b (inclusive) of A. L
is defined as smoothing factor andM = P− L+ 1. Due to
the Vandermonde structure, it holds that

Fφ(l : l + M − 1, :) =
⎡
⎢⎣

φl−1
1 . . . φl−1

r
...

...
...

φl+M−2
1 . . . φl+M−2

r

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣
1 . . . 1
φ1 . . . φr
...

...
...

φM−1
1 . . . φM−1

r

⎤
⎥⎥⎥⎦ diag([φl−1

1 ,φl−1
2 , . . . ,φl−1

r ] )

= FMφ diag(φl−1)

(18)

where φl−1 denotes [φl−1
1 ,φl−1

2 , . . . ,φl−1
r ] and FMφ =

Fφ(1 : M, :), Substitute (18) into (17)

X̄(l) =
((

FMφ diag(φl−1)
)

� Aθ

)
(SJ)T

=
((

FMφ � Aθ

)
diag(φl−1)

)
(SJ)T

(19)

Lay out L matrices X̄(l), l = 1, . . . , L vertically and
construct a new matrix X̃ of size LMK × N

X̃ =
⎡
⎢⎣
X̄(1)

...
X̄(L)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
((

FMφ � Aθ

)
diag(φ0)

)
...((

FMφ � Aθ

)
diag(φL−1)

)
⎤
⎥⎥⎥⎦ (SJ)T

=
(
FLφ �

(
FMφ � Aθ

))
(SJ)T (20)

where FLφ = Fφ(1 : L, :). Define AM
θ = FMφ � Aθ . It follows

that

X̃ =
(
FLφ � AM

θ

)
(SJ)T (21)

The smoothing data X̃ can also be modeled as PAR-
ALIND. The main difference between (21) and (15) is that
model matrices Fφ and Aθ in (15) is replaced by FLφ and
AM

θ . Parameters can also be determined if FLφ and AM
θ

are uniquely decomposed from X̃. Before discussing the
identifiability result of this smoothed model, we need the
following lemma:

Lemma 3 (k’-rank of Khatri-Rao product of Vander-
monde matrix)
Consider two Vandermonde matricesA ∈ C

I×r and B ∈
C
J×r with distinct nonzero generators. A and B are parti-

tioned as A = [A1,A2, . . . ,AF ] and B = [B1,B2, . . . ,BF ],
where Af is of size I × rf and Bf is of size J × rf , respec-
tively, and r = r1+r2+· · ·+rF . Resort r1, . . . , rF in descent
order, as r1 > r2 > · · · > rF . If

I + J ≥
K∑
f=1

rf + 1 (22)

then k′
A�B ≥ K .

Proof. See Appendix

Theorem 3: Consider the smoothed data model (21)

X̃ =
(
FLφ � AM

θ

)
(SJ)T

where AM
θ = FMφ � Aθ . FLφ and FMφ , presented in (31) and

(28), are of size L×∑F
f=1 rf andM×∑F

f=1 rf , respectively.
Assume that L is selected as L =∑R

f=1 rf ,R ∈ [2, F] and S
is full k-rank. Suppose that the conditions⎧⎨
⎩ P + K ≥

R∑
i=1

ri +
F+2−R∑
i=1

ri, R ∈[ 2, F]
min(K ,P) ≥ 2

(23)
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hold. Then FLφ , F
M
φ and Aθ can be uniquely determined

from X̃. Parameters are identifiable.

Proof. See Appendix

Remark 3: Theorem 3 is guaranteed by smoothing matrix
Fφ based on its Vandermonde structure. Note that array
manifold Aθ is also a Vandermonde matrix. Duality sim-
plifies to symmetry, similar formulation can be obtained
by smoothing Aθ , known as ‘spatial smoothing’:

X̂ =
(
AL

θ � FMφ
)

(SJ)T (24)

where FMφ = Fφ � AM
θ , AM

θ = Aθ (1 : M, :), and AL
θ =

Aθ (1 : L, :). Note that data model (24) has the same for-
mulation as (21). It implies that the identifiability results of
Theorem 3 is also available when Aθ is smoothed instead,
while R is the k’-rank of AL

θ .

Remark 4: Condition (23) gives a new tradeoff between
the number of sensors K and oversampling factor P,
referred as “space-time” tradeoff, to achieve parameter
identifiability. As a special case of (23), two antennae are
sufficient for r path when the oversampling factor P is
more than

∑R
i=1 ri +∑F+2−R

i=1 ri − 2. In Theorem 3, The
lower bound of choice of receiving antennae K and sam-
pling diversity P is much superior to that in Theorem 2,
discussed in Remark 1. It implies that smoothing tech-
nique can further improve the identifiability results of data
model. It also shows that the system is capable of sup-
porting many more paths than sensors, provided enough
sampling diversity. As the complete symmetry in the roles
of P and K , limited samples are also available for r path
when enough antennae are used in the receiving end.

Remark 5: Rewrite condition (23)

P + K ≥
R∑
i=1

ri +
F+2−R∑
i=1

ri, R ∈[ 2, F] (25)

Similar to Remark 2, the value of P plus K is also related
to the structure of multipath, denoted as r1, . . . , rF . More-
over, it is of interest that the lower bound of P plus K is
varied along R, the k’-rank of FLφ (or AL

θ in (24)). Now,
we prove that the minimum lower bound of (25) can be
achieved in the condition of R = 2 or R = F . Define a
function of variable R: f (R) = ∑R

i=1 ri + ∑F+2−R
i=1 ri. Let

	f (R) = f (R) − f (2),R ∈ (2, F]. Then we wish to prove
that{

	f (R) ≥ 0, R ∈ (2, F)

f (F) = f (2)

It follows

	f (R) =
R∑
i=1

ri +
F+2−R∑
i=1

ri −
2∑

i=1
ri −

F∑
i=1

ri

=
(

R∑
i=1

ri −
2∑

i=1
ri

)
−
(

F∑
i=1

ri −
F+2−R∑
i=1

ri

)

=
R∑
i=3

ri −
F∑

i=F−R+3
ri

=
R−2∑
i=1

(rR−i+1 − rF−i+1)

Note that r1 ≥ r2 ≥, · · · ,≥ rF and R ≤ F . It is clear that
rR−i+1 ≥ rF−i+1, Therefore, 	f (R) ≥ 0. Since	f (F) =∑F

i=3 ri − ∑F
i=3 ri = 0, we have f (F) = f (2). This

result gives a relationship between the smoothing fac-
tor R and the minimum value of P plus K in parameter
estimation when r path is considered. Since the cost of
parameter estimation is usually related to the number of
receiving antenna and the oversampling factor, the result
also implies that the cost of parameter estimation can be
decreased when the smoothing factor is properly selected.

Remark 6: If the multiplication SJ is considered as a
whole matrix, the data model (12) can be modeled as
PARAFAC. However, since matrix multiplication SJ has
collinear columns due to the structure of J. According to
the uniqueness property of PARAFAC [25], uniqueness of
the given model cannot be guaranteed so that meaning-
ful results of parameter identifiability may not be derived
directly based on PARAFAC model. Sidiropoulos and Liu
[10] utilizes smoothing technique to improve the k-rank
of SJ and gives the identifiability results of (12) based
on PARAFAC model. Here we will show that condition
(23) is superior to that in [10]. Define matrix C = SJ.
Sidiropoulos and Liu [10] presented that the model (12) is
identifiable, provided that

K + P + kC ≥ 2r + 2 (26)

Note that C has collinear columns. According to the def-
inition of k-rank, the k-rank of C is equal to 1. Condition
(26) becomes K + P ≥ 2r + 1. Because r = ∑F

i=1 ri. We
have

2r + 1 >

R∑
i=1

ri +
F+2−R∑
i=1

ri

It can be concluded that condition (23) is more relaxed
than condition (26). The following example can guaran-
tee the above improvement. Assume that four users are in
consideration. The multipath of users are r1 = 5, r2 = 3,
r3 = 2, r4 = 1, respectively. Figure 2 depicts the mini-
mum requirement of receiving antennae K in these two
conditions along with oversampling factor P varied.
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Conclusion
This article has discussed identifiability issue of determin-
istic parameters estimation via multi-sensor array based
on trilinear decomposition theory. With the uniqueness
property of PARALIND model, new identifiability results
are guaranteed, which are more superior to early stud-
ies. According to the proposed identifiability conditions, a
new “space-time” tradeoff between the number of receiv-
ing antennae and sampling diversity for parameters iden-
tification is presented, and it shows that even two receiv-
ing antennae are sufficient for identifying parameters of
r path, provided sufficient sampling diversity available.
Besides, we find that the identifiability conditions is not
only determined by some traditional factors, such as the
number of receiving antennae, oversampling factors or
number of paths, but also related to the multipath struc-
ture of each source, which was not considered in previous
work.

Appendix
Proof of Lemma 2
According to the definition of k’-rank, if k′

A = K , it
means that any K sub-matrices of A yield a set of lin-
early independent columns but it cannot support K + 1
sub-matrices. Let Ã be an I × ∑K

i=1 r̃i matrix including
any K sub-matrices of A, as Ã =

[
Ã1, . . . , ÃK

]
, where

Ã1, . . . , ÃK are randomly selected fromA1, . . . ,AF and
Ãi �= Ãj, i, j ∈ [1, F] , i �= j. Note that Ãk is of size
I × r̃k with Vandermonde structure and in most cases we
have Ãk �= Ak and r̃k �= rk . With the assumption of
r1 > r2 > · · · > rF , it follows that

∑K
i=1 r̃i �

∑K
i=1 ri.

Since I �
∑K

f=1 rf guarantees I �
∑K

f=1 r̃f . According
to Lemma 1, Ã is full column rank. It implies that any K

sub-matrices of A are guaranteed to yield a set of linearly
independent columns so that k′

A � K . On the other hand,
define Â as Â = [A1, . . . ,AK ,AK+1]. Â is a I ×∑K+1

i=1 ri
Vandermonde matrix with K + 1 sub-matrices of A and,
kÂ = min

(
I,
∑K+1

i=1 ri
)

= I. It means that we can find
K + 1 sub-matrices of A which yields a set of dependent
columns, so that k′

A < K + 1. Therefore, k′
A = K . The

proof is complete.

Proof of Theorem 2
Before proving Theorem 2, we need the following Lemma:

Lemma 4 [27] Consider a matrix decomposition
X = ABT, where A ∈ C

I×F is a Vandermonde matrix
with distinct nonzero generator and B ∈ C

J×F is a
‘tall’ or ‘square’ matrix with full column rank. Suppose
that the condition I � F + 1 holds and then A and B
can be uniquely decomposed from X under permuta-
tion and scaling ambiguous. It means that any other
alternative decomposition of X, denoted as X = ĀB̄T

in which Ā ∈ C
I×F has Vandermonde strucure and

B̄ ∈ C
J×F is full column rank, is related to A and B via

Ā = A�A�A, B̄ = B�B�B, where �A,�B are permuta-
tion matrices and �A,�B are diagonal scaling matrices
with nonzero elements.

According to Theorem 1, when condition (15) is fol-
lowed, we have F̂fφ = FfφUf , Â

f
θ = Af

θVf , f = 1, . . . F ,
where U1,V1, . . . ,UF ,VF are 2F nonsingular square
matrices. Note that any subset of columns of a Vander-
monde matrix forms a Vandermonde matrix. Therefore,
Ffφ ,A

f
θ , f = 1, . . . , F are all with Vandermonde structure.

Lemma 4 provides that F1φ ,A
1
θ , . . . ,F

F
φ ,A

F
θ can be uniquely

determined from F̂1φ , Â
1
θ , . . . , F̂

F
φ , Â

F
θ only if the following

conditions are satisfied:

{
P � rf + 1
K � rf + 1 f = 1, . . . , F (27)

Assume that r1 > r2 > · · · > rF . Then conditions (27)
becomes{

P � r1 + 1
K � r1 + 1

(28)

Remark 1 derives that the minimum of P and K should
be larger than r1 + r2. Since r2 is no less than 1(multi-
ple source assumption), it means that min(P,K) � r1 + 1
so that (15) is a sufficient condition for (28). Therefore,
Ffφ ,A

f
θ can be uniquely determined from F̂fφ , Â

f
θ when

condition (15) is satisfied. Then Fφ , Aθ can be uniquely
obtained from Ffφ ,A

f
θ . The proof is complete.�
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Proof of Lemma 3
We need the following Lemma:

Lemma 5 (full rank of Khatri-Rao product) [28]
Consider A � B := [a1 ⊗ b1, . . . , aF ⊗ bF ], where A is

of size I × F , B is of size J × F and af ,bf , f = 1, . . . , F are
columns of A,B. If rA + kB ≥ F + 1 or rB + kA ≥ F + 1
holds, then A � B is full column rank, as rA�B = F .
Assume A,B are Vandermonde matrices. According to

Lemma 1, rA = kA = min(I, F), rB = kB = min(J , F). As a
special case of Lemma 5, the full rank condition of A � B
with Vandermonde assumption is

min(I, F) + min(J , F) ≥ F + 1 (29)

Randomly select K sub-matrices C̃1, . . . , C̃K from C and
construct a new matrix

C̃ =
[
C̃1, . . . , C̃K

]
=
[
Ã1 � B̃1, . . . , ÃK � B̃K

]
=
[
Ã1, . . . , ÃK

]
�
[
B̃1, . . . , B̃K

]
= Ã � B̃

where Ãf is I × r̃f , B̃f is J × r̃f , Ã is I × ∑K
f=1 r̃f and B̃

is J × ∑K
f=1 r̃f . Note that here Ãf ∈ {A1, . . . ,AF} , B̃f ∈

{B1, . . . ,BF}, and Ãi �= Ãj, B̃i �= B̃j, i �= j. Similar to the
proof procedure of Lemma 2, we only need to show that
C̃ is full column rank under condition (22). It is equivalent
to prove:

min

⎛
⎝I, K∑

f=1
r̃f

⎞
⎠+ min

⎛
⎝J , K∑

f=1
r̃f

⎞
⎠ ≥

K∑
f=1

r̃f + 1 (30)

In the light of (30), consider the following cases

(1) I ≥∑K
f=1 r̃f , J ≥∑K

f=1 r̃f . Then

min

⎛
⎝I, K∑

f=1
r̃f

⎞
⎠+ min

⎛
⎝J , K∑

f=1
r̃f

⎞
⎠

=
K∑
f=1

r̃f +
K∑
f=1

r̃f ≥
K∑
f=1

r̃f + 1

Condition (30) is satisfied.
(2) I <

∑K
f=1 r̃f , J ≥∑K

f=1 r̃f or I ≥∑K
f=1 r̃f , J <∑K

f=1 r̃f . Then

min

⎛
⎝I, K∑

f=1
r̃f

⎞
⎠+ min

⎛
⎝J , K∑

f=1
r̃f

⎞
⎠

= min (I, J) +
K∑
f=1

r̃f ≥
K∑
f=1

r̃f + 1

Condition (30) is satisfied.
(3) I <

∑K
f=1 r̃f , J <

∑K
f=1 r̃f . Then depending on

condition (22),

min

⎛
⎝I, K∑

f=1
r̃f

⎞
⎠+min

⎛
⎝J , K∑

f=1
r̃f

⎞
⎠ = I+J ≥

K∑
f=1

rf +1

Since r1 ≥ r2 ≥, · · · ,≥ rF , and
{r̃1, . . . , r̃K } ⊂ {r1, . . . , rF}, it holds that∑K

f=1 rf +1 ≥∑K
f=1 r̃f +1. Condition (30) is satisfied.

Therefore, C̃ is full column rank, so that k′
C ≥ K . The

proof is complete. �

Proof of Theorem 3
Note that P = L + M − 1 and L = ∑R

i=1 ri ≤ P. Accord-
ing to Lemma 2, the k’-rank of FLφ is R. Condition (23)
becomes

P + K ≥
R∑
i=1

ri +
F+2−R∑
i=1

ri

⇒ L + M − 1 + K ≥
R∑
i=1

ri +
F+2−R∑
i=1

ri

⇒
R∑
i=1

ri + M − 1 + K ≥
R∑
i=1

ri +
F+2−R∑
i=1

ri

⇒ K + M ≥
F+2−R∑
i=1

ri + 1

(31)

According to Lemma 3, condition (31) provides that the
k’-rank of AM

θ is larger than F + 2 − R. Then we have

k′
FLφ

= R

k′
AM

θ

≥ F + 2 − R

⎫⎬
⎭⇒ k′

FLφ
+ k′

AM
θ

≥ F + 2 (32)

With the assumption of kS = F and Theorem 1, condi-
tion (32) shows that the partial uniqueness of model (21)
is achieved. Then we have

F̂Lφ,f = FLφ,fV
T
f (33)

ÂM
θ ,f = AM

θ ,fU
T
f =

(
FMφ,f � Aθ ,f

)
UT
f (34)

where Vf ,Uf are nonsingular square matrices of size rf ×
rf . Because L =∑R

i=1 ri ≥ rf + 1. According to Lemma 4,
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FL
φ,f can be uniquely determined from F̂L

φ,f . Then we wish
to prove that FM

φ,f and Aθ ,f can be uniquely determined
from ÂM

θ ,f . Consider the following cases with different
value of rf

(1) rf = 1
If rf = 1, FM

φ,f and Aθ ,f degenerate to vectors fM
φ,f ,

aθ ,f , and Uf degenerates to a scalar uf . Equation (34)
becomes

âMθ ,f = uf
(
fMφ,f � aθ ,f

)
= uf

(
fMφ,f ⊗ aθ ,f

)

where âM
θ ,f ∈ C

MK×1, fM
φ,f ∈ C

M×1 and aθ ,f ∈ C
K×1.

Because uf only leads to column scaling of fM
φ,f and

aθ ,f , which will not affect the identifiability result. We
simplify uf to be 1. Rearrange âM

θ ,f to be aM × K
matrix �

�=unvec
(
âMθ ,f ,M,K

)
=unvec

(
fMφ,f ⊗ aθ ,f ,M,K

)
= aθ ,f

(
fMφ,f
)T

Then fM
φ,f and aθ ,f can be easily determined from �

by using singular value decomposition method (SVD)
up to scaling ambiguity.

(2) rf ≥ 2
It is of interest that Equation (34) is a standard slice
matrix formulation of PARAFAC model when
rf ≥ 2, of which three mode matrices are FM

φ,f , Aθ ,f
and Uf . Recall that the uniqueness condition of
PARAFAC model is [11,25,29-31]

kFM
φ,f

+ kAθ ,f + kUf ≥ 2rf + 2 (35)

Uf is a rf × rf square nonsingular matrix with full
k-rank, as kU = rf . FMφ,f ∈ C

M×rf and Aθ ,f ∈ C
K×rf

are Vandermonde matrices, and their k-ranks can be
determined as kFM

φ,f
= min(M, rf ),

kAφ,f = min(K , rf ). Then condition (35) becomes:

min(M, rf ) + min(K , rf ) ≥ rf + 2 (36)

We now prove that condition (31) is sufficient to
(36). Four cases need to be discussed:

(2.1) M ≥ rf ,K ≥ rf , then
min(M, rf ) + min(K , rf ) = rf + rf ≥ rf + 2.
Condition (36) is satisfied.

(2.2) M < rf ,K ≥ rf ,then
min(M, rf ) + min(K , rf ) = M + rf .
Condition (36) is satisfied whenM ≥ 2.

However, ifM = 1, L = P, the structure of
FM

φ,f shows that model (21) degenerate to
X̃ = (Fφ � Aθ

)
(SJ)T. According to (31),

K ≥∑F+2−R
i=1 ri. The k’-rank of Aθ is larger

than F + 2 − R. With the assumption of
L =∑R

i=1 ri, the k’-rank of Fφ is R. It holds

k′
Fφ

+ k′
Aθ

+ kS ≥ R+F −R+ 2+F = 2F + 2
(37)

Theorem 2 shows that Aθ and Fφ can be
uniquely determined from X̃ under
condition (37).

(2.3) M ≥ rf ,K < rf , then
min(M, rf ) + min(K , rf ) = rf + K . Since
min(K ,P) ≥ 2.min(M, rf ) + min(K , rf ) is
larger than rf + 2. Condition (36) is satisfied.

(2.4) M < rf ,K < rf , then
min(M, rf ) + min(K , rf ) = M + K ≥∑F+2−R

i=1 ri + 1. Because 2 ≤ R ≤ F ,∑F+2−R
i=1 ri + 1 ≥ r1 + r2 + 1 ≥ rf + 2.

Condition (36) is satisfied.

Therefore, FL
φ,f , F

M
φ,f and Aθ ,f can be uniquely deter-

mined from F̂L
φ,f and ÂM

θ ,f under condition (23). This
completes the proof. �
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